ppsspp/GPU/Common/VertexDecoderArm64.cpp
Unknown W. Brackets ca248e1201 softgpu: Fix s8 primitives in throughmode.
Also always cull no-position verts, hardware too.  Matches tests.
2022-09-18 07:46:18 -07:00

792 lines
28 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#if PPSSPP_ARCH(ARM64)
#include "Common/CPUDetect.h"
#include "Common/Log.h"
#include "Core/Config.h"
#include "Core/Reporting.h"
#include "Common/Arm64Emitter.h"
#include "Core/MIPS/JitCommon/JitCommon.h"
#include "GPU/GPUState.h"
#include "GPU/Common/VertexDecoderCommon.h"
alignas(16) static float bones[16 * 8]; // First four are kept in registers
alignas(16) static float boneMask[4] = {1.0f, 1.0f, 1.0f, 0.0f};
static const float by128 = 1.0f / 128.0f;
static const float by32768 = 1.0f / 32768.0f;
using namespace Arm64Gen;
// Pointers, X regs (X0 - X17 safe to use.)
static const ARM64Reg srcReg = X0;
static const ARM64Reg dstReg = X1;
static const ARM64Reg counterReg = W2;
static const ARM64Reg tempReg1 = W3;
static const ARM64Reg tempRegPtr = X3;
static const ARM64Reg tempReg2 = W4;
static const ARM64Reg tempReg3 = W5;
static const ARM64Reg scratchReg = W6;
static const ARM64Reg scratchReg64 = X6;
static const ARM64Reg scratchReg2 = W7;
static const ARM64Reg scratchReg3 = W8;
static const ARM64Reg fullAlphaReg = W12;
static const ARM64Reg boundsMinUReg = W13;
static const ARM64Reg boundsMinVReg = W14;
static const ARM64Reg boundsMaxUReg = W15;
static const ARM64Reg boundsMaxVReg = W16;
static const ARM64Reg fpScratchReg = S4;
static const ARM64Reg fpScratchReg2 = S5;
static const ARM64Reg fpScratchReg3 = S6;
static const ARM64Reg fpScratchReg4 = S7;
static const ARM64Reg neonScratchRegD = D2;
static const ARM64Reg neonScratchRegQ = Q2;
static const ARM64Reg neonUVScaleReg = D0;
static const ARM64Reg neonUVOffsetReg = D1;
static const ARM64Reg src[3] = {S2, S3, S8};
static const ARM64Reg srcD[3] = {D2, D3, D8};
static const ARM64Reg srcQ[3] = {Q2, Q3, Q8};
static const ARM64Reg srcNEON = Q8;
static const ARM64Reg accNEON = Q9;
static const ARM64Reg neonWeightRegsQ[2] = { Q3, Q2 }; // reverse order to prevent clash with neonScratchReg in Jit_WeightsU*Skin.
// Q4-Q7 is the generated matrix that we multiply things by.
// Q8,Q9 are accumulators/scratch for matrix mul.
// Q10, Q11 are more scratch for matrix mul.
// Q16+ are free-for-all for matrices. In 16 registers, we can fit 4 4x4 matrices.
static const JitLookup jitLookup[] = {
{&VertexDecoder::Step_WeightsU8, &VertexDecoderJitCache::Jit_WeightsU8},
{&VertexDecoder::Step_WeightsU16, &VertexDecoderJitCache::Jit_WeightsU16},
{&VertexDecoder::Step_WeightsFloat, &VertexDecoderJitCache::Jit_WeightsFloat},
{&VertexDecoder::Step_WeightsU8Skin, &VertexDecoderJitCache::Jit_WeightsU8Skin},
{&VertexDecoder::Step_WeightsU16Skin, &VertexDecoderJitCache::Jit_WeightsU16Skin},
{&VertexDecoder::Step_WeightsFloatSkin, &VertexDecoderJitCache::Jit_WeightsFloatSkin},
{&VertexDecoder::Step_TcFloat, &VertexDecoderJitCache::Jit_TcFloat},
{&VertexDecoder::Step_TcU8ToFloat, &VertexDecoderJitCache::Jit_TcU8ToFloat},
{&VertexDecoder::Step_TcU16ToFloat, &VertexDecoderJitCache::Jit_TcU16ToFloat},
{&VertexDecoder::Step_TcU8Prescale, &VertexDecoderJitCache::Jit_TcU8Prescale},
{&VertexDecoder::Step_TcU16Prescale, &VertexDecoderJitCache::Jit_TcU16Prescale},
{&VertexDecoder::Step_TcFloatPrescale, &VertexDecoderJitCache::Jit_TcFloatPrescale},
{&VertexDecoder::Step_TcFloatThrough, &VertexDecoderJitCache::Jit_TcFloatThrough},
{&VertexDecoder::Step_TcU16ThroughToFloat, &VertexDecoderJitCache::Jit_TcU16ThroughToFloat},
{&VertexDecoder::Step_NormalS8, &VertexDecoderJitCache::Jit_NormalS8},
{&VertexDecoder::Step_NormalS16, &VertexDecoderJitCache::Jit_NormalS16},
{&VertexDecoder::Step_NormalFloat, &VertexDecoderJitCache::Jit_NormalFloat},
{&VertexDecoder::Step_NormalS8Skin, &VertexDecoderJitCache::Jit_NormalS8Skin},
{&VertexDecoder::Step_NormalS16Skin, &VertexDecoderJitCache::Jit_NormalS16Skin},
{&VertexDecoder::Step_NormalFloatSkin, &VertexDecoderJitCache::Jit_NormalFloatSkin},
{&VertexDecoder::Step_Color8888, &VertexDecoderJitCache::Jit_Color8888},
{&VertexDecoder::Step_Color4444, &VertexDecoderJitCache::Jit_Color4444},
{&VertexDecoder::Step_Color565, &VertexDecoderJitCache::Jit_Color565},
{&VertexDecoder::Step_Color5551, &VertexDecoderJitCache::Jit_Color5551},
{&VertexDecoder::Step_PosS8Through, &VertexDecoderJitCache::Jit_PosS8Through},
{&VertexDecoder::Step_PosS16Through, &VertexDecoderJitCache::Jit_PosS16Through},
{&VertexDecoder::Step_PosFloatThrough, &VertexDecoderJitCache::Jit_PosFloatThrough},
{&VertexDecoder::Step_PosS8, &VertexDecoderJitCache::Jit_PosS8},
{&VertexDecoder::Step_PosS16, &VertexDecoderJitCache::Jit_PosS16},
{&VertexDecoder::Step_PosFloat, &VertexDecoderJitCache::Jit_PosFloat},
{&VertexDecoder::Step_PosS8Skin, &VertexDecoderJitCache::Jit_PosS8Skin},
{&VertexDecoder::Step_PosS16Skin, &VertexDecoderJitCache::Jit_PosS16Skin},
{&VertexDecoder::Step_PosFloatSkin, &VertexDecoderJitCache::Jit_PosFloatSkin},
/*
{&VertexDecoder::Step_NormalS8Morph, &VertexDecoderJitCache::Jit_NormalS8Morph},
{&VertexDecoder::Step_NormalS16Morph, &VertexDecoderJitCache::Jit_NormalS16Morph},
{&VertexDecoder::Step_NormalFloatMorph, &VertexDecoderJitCache::Jit_NormalFloatMorph},
{&VertexDecoder::Step_PosS8Morph, &VertexDecoderJitCache::Jit_PosS8Morph},
{&VertexDecoder::Step_PosS16Morph, &VertexDecoderJitCache::Jit_PosS16Morph},
{&VertexDecoder::Step_PosFloatMorph, &VertexDecoderJitCache::Jit_PosFloatMorph},
{&VertexDecoder::Step_Color8888Morph, &VertexDecoderJitCache::Jit_Color8888Morph},
{&VertexDecoder::Step_Color4444Morph, &VertexDecoderJitCache::Jit_Color4444Morph},
{&VertexDecoder::Step_Color565Morph, &VertexDecoderJitCache::Jit_Color565Morph},
{&VertexDecoder::Step_Color5551Morph, &VertexDecoderJitCache::Jit_Color5551Morph},
*/
};
JittedVertexDecoder VertexDecoderJitCache::Compile(const VertexDecoder &dec, int32_t *jittedSize) {
dec_ = &dec;
BeginWrite();
const u8 *start = AlignCode16();
bool prescaleStep = false;
bool skinning = false;
bool log = false;
// Look for prescaled texcoord steps
for (int i = 0; i < dec.numSteps_; i++) {
if (dec.steps_[i] == &VertexDecoder::Step_TcU8Prescale ||
dec.steps_[i] == &VertexDecoder::Step_TcU16Prescale ||
dec.steps_[i] == &VertexDecoder::Step_TcFloatPrescale) {
prescaleStep = true;
}
if (dec.steps_[i] == &VertexDecoder::Step_WeightsU8Skin ||
dec.steps_[i] == &VertexDecoder::Step_WeightsU16Skin ||
dec.steps_[i] == &VertexDecoder::Step_WeightsFloatSkin) {
skinning = true;
}
}
// Not used below, but useful for logging.
(void)skinning;
// if (skinning) log = true;
uint64_t regs_to_save = Arm64Gen::ALL_CALLEE_SAVED;
uint64_t regs_to_save_fp = Arm64Gen::ALL_CALLEE_SAVED_FP;
fp.ABI_PushRegisters(regs_to_save, regs_to_save_fp);
// Keep the scale/offset in a few fp registers if we need it.
if (prescaleStep) {
MOVP2R(X3, &gstate_c.uv);
fp.LDR(64, INDEX_UNSIGNED, neonUVScaleReg, X3, 0);
fp.LDR(64, INDEX_UNSIGNED, neonUVOffsetReg, X3, 8);
if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_8BIT) {
fp.MOVI2FDUP(neonScratchRegD, by128, scratchReg);
fp.FMUL(32, neonUVScaleReg, neonUVScaleReg, neonScratchRegD);
} else if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_16BIT) {
fp.MOVI2FDUP(neonScratchRegD, by32768, scratchReg);
fp.FMUL(32, neonUVScaleReg, neonUVScaleReg, neonScratchRegD);
}
}
// Add code to convert matrices to 4x4.
// Later we might want to do this when the matrices are loaded instead.
if (dec.skinInDecode) {
// Copying from R3 to R4
MOVP2R(X3, gstate.boneMatrix);
MOVP2R(X4, bones);
MOVP2R(X5, boneMask);
fp.LDR(128, INDEX_UNSIGNED, Q3, X5, 0);
for (int i = 0; i < dec.nweights; i++) {
// Note that INDEX_UNSIGNED does not support offsets not aligned to the data size so we must use POST.
fp.LDR(128, INDEX_POST, Q4, X3, 12); // Load 128 bits even though we just want 96
fp.LDR(128, INDEX_POST, Q5, X3, 12);
fp.LDR(128, INDEX_POST, Q6, X3, 12);
fp.LDR(128, INDEX_POST, Q7, X3, 12);
// First four matrices are in registers Q16+.
if (i < 4) {
fp.FMUL(32, (ARM64Reg)(Q16 + i * 4), Q4, Q3);
fp.FMUL(32, (ARM64Reg)(Q17 + i * 4), Q5, Q3);
fp.FMUL(32, (ARM64Reg)(Q18 + i * 4), Q6, Q3);
fp.FMUL(32, (ARM64Reg)(Q19 + i * 4), Q7, Q3);
ADDI2R(X4, X4, 16 * 4);
} else {
fp.FMUL(32, Q4, Q4, Q3);
fp.FMUL(32, Q5, Q5, Q3);
fp.FMUL(32, Q6, Q6, Q3);
fp.FMUL(32, Q7, Q7, Q3);
fp.STR(128, INDEX_UNSIGNED, Q4, X4, 0);
fp.STR(128, INDEX_UNSIGNED, Q5, X4, 16);
fp.STR(128, INDEX_UNSIGNED, Q6, X4, 32);
fp.STR(128, INDEX_UNSIGNED, Q7, X4, 48);
ADDI2R(X4, X4, 16 * 4);
}
}
}
if (dec.col) {
// Or LDB and skip the conditional? This is probably cheaper.
MOVI2R(fullAlphaReg, 0xFF);
}
if (dec.tc && dec.throughmode) {
// TODO: Smarter, only when doing bounds.
MOVP2R(scratchReg64, &gstate_c.vertBounds.minU);
LDRH(INDEX_UNSIGNED, boundsMinUReg, scratchReg64, offsetof(KnownVertexBounds, minU));
LDRH(INDEX_UNSIGNED, boundsMaxUReg, scratchReg64, offsetof(KnownVertexBounds, maxU));
LDRH(INDEX_UNSIGNED, boundsMinVReg, scratchReg64, offsetof(KnownVertexBounds, minV));
LDRH(INDEX_UNSIGNED, boundsMaxVReg, scratchReg64, offsetof(KnownVertexBounds, maxV));
}
const u8 *loopStart = GetCodePtr();
for (int i = 0; i < dec.numSteps_; i++) {
if (!CompileStep(dec, i)) {
EndWrite();
// Reset the code ptr (effectively undoing what we generated) and return zero to indicate that we failed.
ResetCodePtr(GetOffset(start));
char temp[1024] = {0};
dec.ToString(temp);
ERROR_LOG(G3D, "Could not compile vertex decoder, failed at step %d: %s", i, temp);
return nullptr;
}
}
ADDI2R(srcReg, srcReg, dec.VertexSize(), scratchReg);
ADDI2R(dstReg, dstReg, dec.decFmt.stride, scratchReg);
SUBS(counterReg, counterReg, 1);
B(CC_NEQ, loopStart);
if (dec.col) {
MOVP2R(tempRegPtr, &gstate_c.vertexFullAlpha);
CMP(fullAlphaReg, 0);
FixupBranch skip = B(CC_NEQ);
STRB(INDEX_UNSIGNED, fullAlphaReg, tempRegPtr, 0);
SetJumpTarget(skip);
}
if (dec.tc && dec.throughmode) {
// TODO: Smarter, only when doing bounds.
MOVP2R(scratchReg64, &gstate_c.vertBounds.minU);
STRH(INDEX_UNSIGNED, boundsMinUReg, scratchReg64, offsetof(KnownVertexBounds, minU));
STRH(INDEX_UNSIGNED, boundsMaxUReg, scratchReg64, offsetof(KnownVertexBounds, maxU));
STRH(INDEX_UNSIGNED, boundsMinVReg, scratchReg64, offsetof(KnownVertexBounds, minV));
STRH(INDEX_UNSIGNED, boundsMaxVReg, scratchReg64, offsetof(KnownVertexBounds, maxV));
}
fp.ABI_PopRegisters(regs_to_save, regs_to_save_fp);
RET();
FlushIcache();
if (log) {
char temp[1024] = { 0 };
dec.ToString(temp);
INFO_LOG(JIT, "=== %s (%d bytes) ===", temp, (int)(GetCodePtr() - start));
std::vector<std::string> lines = DisassembleArm64(start, (int)(GetCodePtr() - start));
for (auto line : lines) {
INFO_LOG(JIT, "%s", line.c_str());
}
INFO_LOG(JIT, "==========");
}
*jittedSize = (int)(GetCodePtr() - start);
EndWrite();
return (JittedVertexDecoder)start;
}
bool VertexDecoderJitCache::CompileStep(const VertexDecoder &dec, int step) {
// See if we find a matching JIT function
for (size_t i = 0; i < ARRAY_SIZE(jitLookup); i++) {
if (dec.steps_[step] == jitLookup[i].func) {
((*this).*jitLookup[i].jitFunc)();
return true;
}
}
return false;
}
void VertexDecoderJitCache::Jit_ApplyWeights() {
// We construct a matrix in Q4-Q7
if (dec_->nweights >= 4) {
MOVP2R(scratchReg64, bones + 16 * 4);
}
for (int i = 0; i < dec_->nweights; i++) {
switch (i) {
case 0:
fp.FMUL(32, Q4, Q16, neonWeightRegsQ[0], 0);
fp.FMUL(32, Q5, Q17, neonWeightRegsQ[0], 0);
fp.FMUL(32, Q6, Q18, neonWeightRegsQ[0], 0);
fp.FMUL(32, Q7, Q19, neonWeightRegsQ[0], 0);
break;
case 1:
fp.FMLA(32, Q4, Q20, neonWeightRegsQ[0], 1);
fp.FMLA(32, Q5, Q21, neonWeightRegsQ[0], 1);
fp.FMLA(32, Q6, Q22, neonWeightRegsQ[0], 1);
fp.FMLA(32, Q7, Q23, neonWeightRegsQ[0], 1);
break;
case 2:
fp.FMLA(32, Q4, Q24, neonWeightRegsQ[0], 2);
fp.FMLA(32, Q5, Q25, neonWeightRegsQ[0], 2);
fp.FMLA(32, Q6, Q26, neonWeightRegsQ[0], 2);
fp.FMLA(32, Q7, Q27, neonWeightRegsQ[0], 2);
break;
case 3:
fp.FMLA(32, Q4, Q28, neonWeightRegsQ[0], 3);
fp.FMLA(32, Q5, Q29, neonWeightRegsQ[0], 3);
fp.FMLA(32, Q6, Q30, neonWeightRegsQ[0], 3);
fp.FMLA(32, Q7, Q31, neonWeightRegsQ[0], 3);
break;
default:
// Matrices 4+ need to be loaded from memory.
fp.LDP(128, INDEX_SIGNED, Q8, Q9, scratchReg64, 0);
fp.LDP(128, INDEX_SIGNED, Q10, Q11, scratchReg64, 2 * 16);
fp.FMLA(32, Q4, Q8, neonWeightRegsQ[i >> 2], i & 3);
fp.FMLA(32, Q5, Q9, neonWeightRegsQ[i >> 2], i & 3);
fp.FMLA(32, Q6, Q10, neonWeightRegsQ[i >> 2], i & 3);
fp.FMLA(32, Q7, Q11, neonWeightRegsQ[i >> 2], i & 3);
ADDI2R(scratchReg64, scratchReg64, 4 * 16);
break;
}
}
}
void VertexDecoderJitCache::Jit_WeightsU8() {
// Basic implementation - a byte at a time. TODO: Optimize
int j;
for (j = 0; j < dec_->nweights; j++) {
LDRB(INDEX_UNSIGNED, tempReg1, srcReg, dec_->weightoff + j);
STRB(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.w0off + j);
}
while (j & 3) {
STRB(INDEX_UNSIGNED, WZR, dstReg, dec_->decFmt.w0off + j);
j++;
}
}
void VertexDecoderJitCache::Jit_WeightsU16() {
// Basic implementation - a short at a time. TODO: Optimize
int j;
for (j = 0; j < dec_->nweights; j++) {
LDRH(INDEX_UNSIGNED, tempReg1, srcReg, dec_->weightoff + j * 2);
STRH(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.w0off + j * 2);
}
while (j & 3) {
STRH(INDEX_UNSIGNED, WZR, dstReg, dec_->decFmt.w0off + j * 2);
j++;
}
}
void VertexDecoderJitCache::Jit_WeightsFloat() {
int j;
for (j = 0; j < dec_->nweights; j++) {
LDR(INDEX_UNSIGNED, tempReg1, srcReg, dec_->weightoff + j * 4);
STR(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.w0off + j * 4);
}
while (j & 3) { // Zero additional weights rounding up to 4.
STR(INDEX_UNSIGNED, WZR, dstReg, dec_->decFmt.w0off + j * 4);
j++;
}
}
void VertexDecoderJitCache::Jit_WeightsU8Skin() {
// Weight is first so srcReg is correct.
switch (dec_->nweights) {
case 1: fp.LDR(8, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0); break;
case 2: fp.LDR(16, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0); break;
default:
// For 3, we over read, for over 4, we read more later.
fp.LDR(32, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0);
break;
}
fp.UXTL(8, neonScratchRegQ, neonScratchRegD);
fp.UXTL(16, neonScratchRegQ, neonScratchRegD);
fp.UCVTF(32, neonWeightRegsQ[0], neonScratchRegQ, 7);
if (dec_->nweights > 4) {
switch (dec_->nweights) {
case 5: fp.LDR(8, INDEX_UNSIGNED, neonScratchRegD, srcReg, 4); break;
case 6: fp.LDR(16, INDEX_UNSIGNED, neonScratchRegD, srcReg, 4); break;
case 7:
case 8:
fp.LDR(32, INDEX_UNSIGNED, neonScratchRegD, srcReg, 4);
break;
}
fp.UXTL(8, neonScratchRegQ, neonScratchRegD);
fp.UXTL(16, neonScratchRegQ, neonScratchRegD);
fp.UCVTF(32, neonWeightRegsQ[1], neonScratchRegQ, 7);
}
Jit_ApplyWeights();
}
void VertexDecoderJitCache::Jit_WeightsU16Skin() {
switch (dec_->nweights) {
case 1: fp.LDR(16, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0); break;
case 2: fp.LDR(32, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0); break;
default:
// For 3, we over read, for over 4, we read more later.
fp.LDR(64, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0);
break;
}
fp.UXTL(16, neonScratchRegQ, neonScratchRegD);
fp.UCVTF(32, neonWeightRegsQ[0], neonScratchRegQ, 15);
if (dec_->nweights > 4) {
switch (dec_->nweights) {
case 5: fp.LDR(16, INDEX_UNSIGNED, neonScratchRegD, srcReg, 8); break;
case 6: fp.LDR(32, INDEX_UNSIGNED, neonScratchRegD, srcReg, 8); break;
case 7:
case 8:
fp.LDR(64, INDEX_UNSIGNED, neonScratchRegD, srcReg, 8);
break;
}
fp.UXTL(16, neonScratchRegQ, neonScratchRegD);
fp.UCVTF(32, neonWeightRegsQ[1], neonScratchRegQ, 15);
}
Jit_ApplyWeights();
}
void VertexDecoderJitCache::Jit_WeightsFloatSkin() {
switch (dec_->nweights) {
case 1:
fp.LDR(32, INDEX_UNSIGNED, neonWeightRegsQ[0], srcReg, 0);
break;
case 2:
fp.LDR(64, INDEX_UNSIGNED, neonWeightRegsQ[0], srcReg, 0);
break;
case 3:
case 4:
fp.LDR(128, INDEX_UNSIGNED, neonWeightRegsQ[0], srcReg, 0);
break;
case 5:
fp.LDR(128, INDEX_UNSIGNED, neonWeightRegsQ[0], srcReg, 0);
fp.LDR(32, INDEX_UNSIGNED, neonWeightRegsQ[1], srcReg, 16);
break;
case 6:
fp.LDR(128, INDEX_UNSIGNED, neonWeightRegsQ[0], srcReg, 0);
fp.LDR(64, INDEX_UNSIGNED, neonWeightRegsQ[1], srcReg, 16);
break;
case 7:
case 8:
fp.LDP(128, INDEX_SIGNED, neonWeightRegsQ[0], neonWeightRegsQ[1], srcReg, 0);
break;
}
Jit_ApplyWeights();
}
void VertexDecoderJitCache::Jit_Color8888() {
LDR(INDEX_UNSIGNED, tempReg1, srcReg, dec_->coloff);
// Set flags to determine if alpha != 0xFF.
ORN(tempReg2, WZR, tempReg1, ArithOption(tempReg1, ST_ASR, 24));
CMP(tempReg2, 0);
// Clear fullAlphaReg when the inverse was not 0.
// fullAlphaReg = tempReg2 == 0 ? fullAlphaReg : 0 + 1;
CSEL(fullAlphaReg, fullAlphaReg, WZR, CC_EQ);
STR(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.c0off);
}
void VertexDecoderJitCache::Jit_Color4444() {
LDRH(INDEX_UNSIGNED, tempReg1, srcReg, dec_->coloff);
// Spread out the components.
ANDI2R(tempReg2, tempReg1, 0x000F, scratchReg);
ANDI2R(tempReg3, tempReg1, 0x00F0, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 4));
ANDI2R(tempReg3, tempReg1, 0x0F00, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 8));
ANDI2R(tempReg3, tempReg1, 0xF000, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 12));
// And expand to 8 bits.
ORR(tempReg1, tempReg2, tempReg2, ArithOption(tempReg2, ST_LSL, 4));
STR(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.c0off);
// Set flags to determine if alpha != 0xFF.
ORN(tempReg2, WZR, tempReg1, ArithOption(tempReg1, ST_ASR, 24));
CMP(tempReg2, 0);
// Clear fullAlphaReg when the inverse was not 0.
// fullAlphaReg = tempReg2 == 0 ? fullAlphaReg : 0 + 1;
CSEL(fullAlphaReg, fullAlphaReg, WZR, CC_EQ);
}
void VertexDecoderJitCache::Jit_Color565() {
LDRH(INDEX_UNSIGNED, tempReg1, srcReg, dec_->coloff);
// Spread out R and B first. This puts them in 0x001F001F.
ANDI2R(tempReg2, tempReg1, 0x001F, scratchReg);
ANDI2R(tempReg3, tempReg1, 0xF800, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 5));
// Expand 5 -> 8.
LSL(tempReg3, tempReg2, 3);
ORR(tempReg2, tempReg3, tempReg2, ArithOption(tempReg2, ST_LSR, 2));
ANDI2R(tempReg2, tempReg2, 0xFFFF00FF, scratchReg);
// Now finally G. We start by shoving it into a wall.
LSR(tempReg1, tempReg1, 5);
ANDI2R(tempReg1, tempReg1, 0x003F, scratchReg);
LSL(tempReg3, tempReg1, 2);
// Don't worry, shifts into a wall.
ORR(tempReg3, tempReg3, tempReg1, ArithOption(tempReg1, ST_LSR, 4));
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 8));
// Add in full alpha. No need to update fullAlphaReg.
ORRI2R(tempReg1, tempReg2, 0xFF000000, scratchReg);
STR(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.c0off);
}
void VertexDecoderJitCache::Jit_Color5551() {
LDRSH(INDEX_UNSIGNED, tempReg1, srcReg, dec_->coloff);
ANDI2R(tempReg2, tempReg1, 0x001F, scratchReg);
ANDI2R(tempReg3, tempReg1, 0x03E0, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 3));
ANDI2R(tempReg3, tempReg1, 0x7C00, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 6));
// Expand 5 -> 8.
LSR(tempReg3, tempReg2, 2);
// Clean up the bits that were shifted right.
ANDI2R(tempReg3, tempReg3, ~0x000000F8);
ANDI2R(tempReg3, tempReg3, ~0x0000F800);
ORR(tempReg2, tempReg3, tempReg2, ArithOption(tempReg2, ST_LSL, 3));
// Now we just need alpha. Since we loaded as signed, it'll be extended.
ANDI2R(tempReg1, tempReg1, 0xFF000000, scratchReg);
ORR(tempReg2, tempReg2, tempReg1);
// Set flags to determine if alpha != 0xFF.
ORN(tempReg3, WZR, tempReg1, ArithOption(tempReg1, ST_ASR, 24));
CMP(tempReg3, 0);
STR(INDEX_UNSIGNED, tempReg2, dstReg, dec_->decFmt.c0off);
// Clear fullAlphaReg when the inverse was not 0.
// fullAlphaReg = tempReg3 == 0 ? fullAlphaReg : 0 + 1;
CSEL(fullAlphaReg, fullAlphaReg, WZR, CC_EQ);
}
void VertexDecoderJitCache::Jit_TcU16ThroughToFloat() {
LDRH(INDEX_UNSIGNED, tempReg1, srcReg, dec_->tcoff);
LDRH(INDEX_UNSIGNED, tempReg2, srcReg, dec_->tcoff + 2);
auto updateSide = [&](ARM64Reg src, CCFlags cc, ARM64Reg dst) {
CMP(src, dst);
CSEL(dst, src, dst, cc);
};
updateSide(tempReg1, CC_LT, boundsMinUReg);
updateSide(tempReg1, CC_GT, boundsMaxUReg);
updateSide(tempReg2, CC_LT, boundsMinVReg);
updateSide(tempReg2, CC_GT, boundsMaxVReg);
fp.LDUR(32, neonScratchRegD, srcReg, dec_->tcoff);
fp.UXTL(16, neonScratchRegQ, neonScratchRegD); // Widen to 32-bit
fp.UCVTF(32, neonScratchRegD, neonScratchRegD);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcFloatThrough() {
LDP(INDEX_SIGNED, tempReg1, tempReg2, srcReg, dec_->tcoff);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcFloat() {
LDP(INDEX_SIGNED, tempReg1, tempReg2, srcReg, dec_->tcoff);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcU8Prescale() {
fp.LDUR(16, neonScratchRegD, srcReg, dec_->tcoff);
fp.UXTL(8, neonScratchRegQ, neonScratchRegD); // Widen to 16-bit
fp.UXTL(16, neonScratchRegQ, neonScratchRegD); // Widen to 32-bit
fp.UCVTF(32, neonScratchRegD, neonScratchRegD);
fp.FMUL(32, neonScratchRegD, neonScratchRegD, neonUVScaleReg); // TODO: FMLA
fp.FADD(32, neonScratchRegD, neonScratchRegD, neonUVOffsetReg);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcU8ToFloat() {
fp.LDUR(16, neonScratchRegD, srcReg, dec_->tcoff);
fp.UXTL(8, neonScratchRegQ, neonScratchRegD); // Widen to 16-bit
fp.UXTL(16, neonScratchRegQ, neonScratchRegD); // Widen to 32-bit
fp.UCVTF(32, neonScratchRegD, neonScratchRegD, 7);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcU16Prescale() {
fp.LDUR(32, neonScratchRegD, srcReg, dec_->tcoff);
fp.UXTL(16, neonScratchRegQ, neonScratchRegD); // Widen to 32-bit
fp.UCVTF(32, neonScratchRegD, neonScratchRegD);
fp.FMUL(32, neonScratchRegD, neonScratchRegD, neonUVScaleReg); // TODO: FMLA
fp.FADD(32, neonScratchRegD, neonScratchRegD, neonUVOffsetReg);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcU16ToFloat() {
fp.LDUR(32, neonScratchRegD, srcReg, dec_->tcoff);
fp.UXTL(16, neonScratchRegQ, neonScratchRegD); // Widen to 32-bit
fp.UCVTF(32, neonScratchRegD, neonScratchRegD, 15);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcFloatPrescale() {
fp.LDUR(64, neonScratchRegD, srcReg, dec_->tcoff);
fp.FMUL(32, neonScratchRegD, neonScratchRegD, neonUVScaleReg); // TODO: FMLA
fp.FADD(32, neonScratchRegD, neonScratchRegD, neonUVOffsetReg);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_PosS8() {
Jit_AnyS8ToFloat(dec_->posoff);
fp.STUR(128, srcQ[0], dstReg, dec_->decFmt.posoff);
}
void VertexDecoderJitCache::Jit_PosS16() {
Jit_AnyS16ToFloat(dec_->posoff);
fp.STUR(128, srcQ[0], dstReg, dec_->decFmt.posoff);
}
void VertexDecoderJitCache::Jit_PosFloat() {
// Only need to copy 12 bytes, but copying 16 should be okay (and is faster.)
if ((dec_->posoff & 7) == 0 && (dec_->decFmt.posoff & 7) == 0) {
LDP(INDEX_SIGNED, EncodeRegTo64(tempReg1), EncodeRegTo64(tempReg2), srcReg, dec_->posoff);
STP(INDEX_SIGNED, EncodeRegTo64(tempReg1), EncodeRegTo64(tempReg2), dstReg, dec_->decFmt.posoff);
} else {
LDP(INDEX_SIGNED, tempReg1, tempReg2, srcReg, dec_->posoff);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.posoff);
LDR(INDEX_UNSIGNED, tempReg3, srcReg, dec_->posoff + 8);
STR(INDEX_UNSIGNED, tempReg3, dstReg, dec_->decFmt.posoff + 8);
}
}
void VertexDecoderJitCache::Jit_PosS8Through() {
// 8-bit positions in throughmode always decode to 0, depth included.
fp.EOR(fpScratchReg, fpScratchReg, fpScratchReg);
STR(INDEX_UNSIGNED, fpScratchReg, dstReg, dec_->decFmt.posoff);
STR(INDEX_UNSIGNED, fpScratchReg, dstReg, dec_->decFmt.posoff + 4);
STR(INDEX_UNSIGNED, fpScratchReg, dstReg, dec_->decFmt.posoff + 8);
}
void VertexDecoderJitCache::Jit_PosS16Through() {
// Start with X and Y (which is signed.)
fp.LDUR(32, src[0], srcReg, dec_->posoff);
fp.SXTL(16, srcD[0], src[0]);
fp.SCVTF(32, srcD[0], srcD[0]);
fp.STUR(64, src[0], dstReg, dec_->decFmt.posoff);
// Now load in Z (which is unsigned.)
LDRH(INDEX_UNSIGNED, tempReg3, srcReg, dec_->posoff + 4);
fp.SCVTF(src[1], tempReg3);
STR(INDEX_UNSIGNED, src[1], dstReg, dec_->decFmt.posoff + 8);
}
void VertexDecoderJitCache::Jit_PosFloatThrough() {
// Instead of just copying 12 bytes, we copy 8 and clamp Z.
if ((dec_->posoff & 7) == 0 && (dec_->decFmt.posoff & 7) == 0) {
LDR(INDEX_UNSIGNED, EncodeRegTo64(tempReg1), srcReg, dec_->posoff);
STR(INDEX_UNSIGNED, EncodeRegTo64(tempReg1), dstReg, dec_->decFmt.posoff);
} else {
LDP(INDEX_SIGNED, tempReg1, tempReg2, srcReg, dec_->posoff);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.posoff);
}
fp.LDUR(32, neonScratchRegD, srcReg, dec_->posoff + 8);
fp.FCVTZU(32, neonScratchRegD, neonScratchRegD);
// Narrow to 16 bit, saturating meanwhile.
fp.UQXTN(16, neonScratchRegD, neonScratchRegD);
fp.UXTL(16, neonScratchRegD, neonScratchRegD);
fp.UCVTF(32, neonScratchRegD, neonScratchRegD);
fp.STUR(32, neonScratchRegD, dstReg, dec_->decFmt.posoff + 8);
}
void VertexDecoderJitCache::Jit_NormalS8() {
LDURH(tempReg1, srcReg, dec_->nrmoff);
LDRB(INDEX_UNSIGNED, tempReg3, srcReg, dec_->nrmoff + 2);
ORR(tempReg1, tempReg1, tempReg3, ArithOption(tempReg3, ST_LSL, 16));
STR(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.nrmoff);
}
// Copy 6 bytes and then 2 zeroes.
void VertexDecoderJitCache::Jit_NormalS16() {
// NOTE: Not LDRH, we just copy the raw bytes here.
LDUR(tempReg1, srcReg, dec_->nrmoff);
LDRH(INDEX_UNSIGNED, tempReg2, srcReg, dec_->nrmoff + 4);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.nrmoff);
}
void VertexDecoderJitCache::Jit_NormalFloat() {
// Only need to copy 12 bytes, but copying 16 should be okay (and is faster.)
if ((dec_->posoff & 7) == 0 && (dec_->decFmt.posoff & 7) == 0) {
LDP(INDEX_SIGNED, EncodeRegTo64(tempReg1), EncodeRegTo64(tempReg2), srcReg, dec_->nrmoff);
STP(INDEX_SIGNED, EncodeRegTo64(tempReg1), EncodeRegTo64(tempReg2), dstReg, dec_->decFmt.nrmoff);
} else {
LDP(INDEX_SIGNED, tempReg1, tempReg2, srcReg, dec_->nrmoff);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.nrmoff);
LDR(INDEX_UNSIGNED, tempReg3, srcReg, dec_->nrmoff + 8);
STR(INDEX_UNSIGNED, tempReg3, dstReg, dec_->decFmt.nrmoff + 8);
}
}
void VertexDecoderJitCache::Jit_NormalS8Skin() {
Jit_AnyS8ToFloat(dec_->nrmoff);
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
void VertexDecoderJitCache::Jit_NormalS16Skin() {
Jit_AnyS16ToFloat(dec_->nrmoff);
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
void VertexDecoderJitCache::Jit_NormalFloatSkin() {
fp.LDUR(128, srcQ[0], srcReg, dec_->nrmoff);
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
void VertexDecoderJitCache::Jit_PosS8Skin() {
Jit_AnyS8ToFloat(dec_->posoff);
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_PosS16Skin() {
Jit_AnyS16ToFloat(dec_->posoff);
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_PosFloatSkin() {
fp.LDUR(128, srcQ[0], srcReg, dec_->posoff);
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_AnyS8ToFloat(int srcoff) {
fp.LDUR(32, src[0], srcReg, srcoff);
fp.SXTL(8, srcD[0], src[0]);
fp.SXTL(16, srcQ[0], srcD[0]);
fp.SCVTF(32, srcQ[0], srcQ[0], 7);
}
void VertexDecoderJitCache::Jit_AnyS16ToFloat(int srcoff) {
fp.LDUR(64, src[0], srcReg, srcoff);
fp.SXTL(16, srcQ[0], srcD[0]);
fp.SCVTF(32, srcQ[0], srcQ[0], 15);
}
void VertexDecoderJitCache::Jit_WriteMatrixMul(int outOff, bool pos) {
// Multiply with the matrix sitting in Q4-Q7.
fp.FMUL(32, accNEON, Q4, srcQ[0], 0);
fp.FMLA(32, accNEON, Q5, srcQ[0], 1);
fp.FMLA(32, accNEON, Q6, srcQ[0], 2);
if (pos) {
fp.FADD(32, accNEON, accNEON, Q7);
}
fp.STUR(128, accNEON, dstReg, outOff);
}
#endif // PPSSPP_ARCH(ARM64)