ppsspp/GPU/Common/VertexDecoderCommon.h

693 lines
18 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#pragma once
#include <cstring>
#include "base/basictypes.h"
#include "Common/Log.h"
#include "Common/CommonTypes.h"
#include "Core/Reporting.h"
#include "GPU/ge_constants.h"
#include "GPU/Common/ShaderCommon.h"
#ifdef ARM
#include "Common/ArmEmitter.h"
#elif defined(ARM64)
#include "Common/Arm64Emitter.h"
#elif defined(_M_IX86) || defined(_M_X64)
#include "Common/x64Emitter.h"
#elif defined(MIPS)
#include "Common/MipsEmitter.h"
#else
#include "Common/FakeEmitter.h"
#endif
#include "Globals.h"
// DecVtxFormat - vertex formats for PC
// Kind of like a D3D VertexDeclaration.
// Can write code to easily bind these using OpenGL, or read these manually.
// No morph support, that is taken care of by the VertexDecoder.
enum {
DEC_NONE,
DEC_FLOAT_1,
DEC_FLOAT_2,
DEC_FLOAT_3,
DEC_FLOAT_4,
DEC_S8_3,
DEC_S16_3,
DEC_U8_1,
DEC_U8_2,
DEC_U8_3,
DEC_U8_4,
DEC_U16_1,
DEC_U16_2,
DEC_U16_3,
DEC_U16_4,
DEC_U8A_2,
DEC_U16A_2,
};
int DecFmtSize(u8 fmt);
struct DecVtxFormat {
u8 w0fmt; u8 w0off; // first 4 weights
u8 w1fmt; u8 w1off; // second 4 weights
u8 uvfmt; u8 uvoff;
u8 c0fmt; u8 c0off; // First color
u8 c1fmt; u8 c1off;
u8 nrmfmt; u8 nrmoff;
u8 posfmt; u8 posoff;
short stride;
};
struct TransformedVertex
{
union {
struct {
float x, y, z, fog; // in case of morph, preblend during decode
};
float pos[4];
};
union {
struct {
float u; float v; float w; // scaled by uscale, vscale, if there
};
float uv[3];
};
union {
u8 color0[4]; // prelit
u32 color0_32;
};
union {
u8 color1[4]; // prelit
u32 color1_32;
};
};
void GetIndexBounds(const void *inds, int count, u32 vertType, u16 *indexLowerBound, u16 *indexUpperBound);
inline int RoundUp4(int x) {
return (x + 3) & ~3;
}
// Reads decoded vertex formats in a convenient way. For software transform and debugging.
class VertexReader {
public:
VertexReader(u8 *base, const DecVtxFormat &decFmt, int vtype) : base_(base), data_(base), decFmt_(decFmt), vtype_(vtype) {}
void ReadPos(float pos[3]) const {
switch (decFmt_.posfmt) {
case DEC_FLOAT_3:
{
const float *f = (const float *)(data_ + decFmt_.posoff);
memcpy(pos, f, 12);
if (isThrough()) {
// Integer value passed in a float. Clamped to 0, 65535.
const float z = (int)pos[2] * (1.0f / 65535.0f);
pos[2] = z > 1.0f ? 1.0f : (z < 0.0f ? 0.0f : z);
}
}
break;
case DEC_S16_3:
{
// X and Y are signed 16 bit, Z is unsigned 16 bit
const s16 *s = (const s16 *)(data_ + decFmt_.posoff);
const u16 *u = (const u16 *)(data_ + decFmt_.posoff);
if (isThrough()) {
for (int i = 0; i < 2; i++)
pos[i] = s[i];
pos[2] = u[2] * (1.0f / 65535.0f);
} else {
for (int i = 0; i < 3; i++)
pos[i] = s[i] * (1.0f / 32768.0f);
}
}
break;
case DEC_S8_3:
{
// X and Y are signed 8 bit, Z is unsigned 8 bit
const s8 *b = (const s8 *)(data_ + decFmt_.posoff);
const u8 *u = (const u8 *)(data_ + decFmt_.posoff);
if (isThrough()) {
for (int i = 0; i < 2; i++)
pos[i] = b[i];
pos[2] = u[2] * (1.0f / 255.0f);
} else {
for (int i = 0; i < 3; i++)
pos[i] = b[i] * (1.0f / 128.0f);
}
}
break;
default:
ERROR_LOG_REPORT_ONCE(fmtpos, G3D, "Reader: Unsupported Pos Format %d", decFmt_.posfmt);
memset(pos, 0, sizeof(float) * 3);
break;
}
}
void ReadPosThroughZ16(float pos[3]) const {
switch (decFmt_.posfmt) {
case DEC_FLOAT_3:
{
const float *f = (const float *)(data_ + decFmt_.posoff);
memcpy(pos, f, 12);
if (isThrough()) {
// Integer value passed in a float. Clamped to 0, 65535.
const float z = (int)pos[2];
pos[2] = z > 65535.0f ? 65535.0f : (z < 0.0f ? 0.0f : z);
}
}
break;
case DEC_S16_3:
{
// X and Y are signed 16 bit, Z is unsigned 16 bit
const s16 *s = (const s16 *)(data_ + decFmt_.posoff);
const u16 *u = (const u16 *)(data_ + decFmt_.posoff);
if (isThrough()) {
for (int i = 0; i < 2; i++)
pos[i] = s[i];
pos[2] = u[2];
} else {
for (int i = 0; i < 3; i++)
pos[i] = s[i] * (1.0f / 32768.0f);
}
}
break;
case DEC_S8_3:
{
// X and Y are signed 8 bit, Z is unsigned 8 bit
const s8 *b = (const s8 *)(data_ + decFmt_.posoff);
const u8 *u = (const u8 *)(data_ + decFmt_.posoff);
if (isThrough()) {
for (int i = 0; i < 2; i++)
pos[i] = b[i];
pos[2] = u[2];
} else {
for (int i = 0; i < 3; i++)
pos[i] = b[i] * (1.0f / 128.0f);
}
}
break;
default:
ERROR_LOG_REPORT_ONCE(fmtz16, G3D, "Reader: Unsupported Pos Format %d", decFmt_.posfmt);
memset(pos, 0, sizeof(float) * 3);
break;
}
}
void ReadNrm(float nrm[3]) const {
switch (decFmt_.nrmfmt) {
case DEC_FLOAT_3:
//memcpy(nrm, data_ + decFmt_.nrmoff, 12);
{
const float *f = (const float *)(data_ + decFmt_.nrmoff);
for (int i = 0; i < 3; i++)
nrm[i] = f[i];
}
break;
case DEC_S16_3:
{
const s16 *s = (const s16 *)(data_ + decFmt_.nrmoff);
for (int i = 0; i < 3; i++)
nrm[i] = s[i] * (1.f / 32767.f);
}
break;
case DEC_S8_3:
{
const s8 *b = (const s8 *)(data_ + decFmt_.nrmoff);
for (int i = 0; i < 3; i++)
nrm[i] = b[i] * (1.f / 127.f);
}
break;
default:
ERROR_LOG_REPORT_ONCE(fmtnrm, G3D, "Reader: Unsupported Nrm Format %d", decFmt_.nrmfmt);
memset(nrm, 0, sizeof(float) * 3);
break;
}
}
void ReadUV(float uv[2]) const {
switch (decFmt_.uvfmt) {
case DEC_U8_2:
{
const u8 *b = (const u8 *)(data_ + decFmt_.uvoff);
uv[0] = b[0] * (1.f / 128.f);
uv[1] = b[1] * (1.f / 128.f);
}
break;
case DEC_U16_2:
{
const u16 *s = (const u16 *)(data_ + decFmt_.uvoff);
uv[0] = s[0] * (1.f / 32768.f);
uv[1] = s[1] * (1.f / 32768.f);
}
break;
case DEC_FLOAT_2:
{
const float *f = (const float *)(data_ + decFmt_.uvoff);
uv[0] = f[0];
uv[1] = f[1];
}
break;
case DEC_U8A_2:
{
const u8 *b = (const u8 *)(data_ + decFmt_.uvoff);
uv[0] = (float)b[0];
uv[1] = (float)b[1];
}
break;
case DEC_U16A_2:
{
const u16 *p = (const u16 *)(data_ + decFmt_.uvoff);
uv[0] = (float)p[0];
uv[1] = (float)p[1];
}
break;
default:
ERROR_LOG_REPORT_ONCE(fmtuv, G3D, "Reader: Unsupported UV Format %d", decFmt_.uvfmt);
memset(uv, 0, sizeof(float) * 2);
break;
}
}
void ReadColor0(float color[4]) const {
switch (decFmt_.c0fmt) {
case DEC_U8_4:
{
const u8 *b = (const u8 *)(data_ + decFmt_.c0off);
for (int i = 0; i < 4; i++)
color[i] = b[i] * (1.f / 255.f);
}
break;
case DEC_FLOAT_4:
memcpy(color, data_ + decFmt_.c0off, 16);
break;
default:
ERROR_LOG_REPORT_ONCE(fmtc0, G3D, "Reader: Unsupported C0 Format %d", decFmt_.c0fmt);
memset(color, 0, sizeof(float) * 4);
break;
}
}
void ReadColor0_8888(u8 color[4]) const {
switch (decFmt_.c0fmt) {
case DEC_U8_4:
{
const u8 *b = (const u8 *)(data_ + decFmt_.c0off);
for (int i = 0; i < 4; i++)
color[i] = b[i];
}
break;
case DEC_FLOAT_4:
{
const float *f = (const float *)(data_ + decFmt_.c0off);
for (int i = 0; i < 4; i++)
color[i] = f[i] * 255.0f;
}
break;
default:
ERROR_LOG_REPORT_ONCE(fmtc0_8888, G3D, "Reader: Unsupported C0 Format %d", decFmt_.c0fmt);
memset(color, 0, sizeof(u8) * 4);
break;
}
}
void ReadColor1(float color[3]) const {
switch (decFmt_.c1fmt) {
case DEC_U8_4:
{
const u8 *b = (const u8 *)(data_ + decFmt_.c1off);
for (int i = 0; i < 3; i++)
color[i] = b[i] * (1.f / 255.f);
}
break;
case DEC_FLOAT_4:
memcpy(color, data_ + decFmt_.c1off, 12);
break;
default:
ERROR_LOG_REPORT_ONCE(fmtc1, G3D, "Reader: Unsupported C1 Format %d", decFmt_.c1fmt);
memset(color, 0, sizeof(float) * 3);
break;
}
}
void ReadWeights(float weights[8]) const {
const float *f = (const float *)(data_ + decFmt_.w0off);
const u8 *b = (const u8 *)(data_ + decFmt_.w0off);
const u16 *s = (const u16 *)(data_ + decFmt_.w0off);
switch (decFmt_.w0fmt) {
case DEC_FLOAT_1:
case DEC_FLOAT_2:
case DEC_FLOAT_3:
case DEC_FLOAT_4:
for (int i = 0; i <= decFmt_.w0fmt - DEC_FLOAT_1; i++)
weights[i] = f[i];
break;
case DEC_U8_1: weights[0] = b[0] * (1.f / 128.f); break;
case DEC_U8_2: for (int i = 0; i < 2; i++) weights[i] = b[i] * (1.f / 128.f); break;
case DEC_U8_3: for (int i = 0; i < 3; i++) weights[i] = b[i] * (1.f / 128.f); break;
case DEC_U8_4: for (int i = 0; i < 4; i++) weights[i] = b[i] * (1.f / 128.f); break;
case DEC_U16_1: weights[0] = s[0] * (1.f / 32768.f); break;
case DEC_U16_2: for (int i = 0; i < 2; i++) weights[i] = s[i] * (1.f / 32768.f); break;
case DEC_U16_3: for (int i = 0; i < 3; i++) weights[i] = s[i] * (1.f / 32768.f); break;
case DEC_U16_4: for (int i = 0; i < 4; i++) weights[i] = s[i] * (1.f / 32768.f); break;
default:
ERROR_LOG_REPORT_ONCE(fmtw0, G3D, "Reader: Unsupported W0 Format %d", decFmt_.w0fmt);
memset(weights, 0, sizeof(float) * 8);
break;
}
f = (const float *)(data_ + decFmt_.w1off);
b = (const u8 *)(data_ + decFmt_.w1off);
s = (const u16 *)(data_ + decFmt_.w1off);
switch (decFmt_.w1fmt) {
case 0:
// It's fine for there to be w0 weights but not w1.
break;
case DEC_FLOAT_1:
case DEC_FLOAT_2:
case DEC_FLOAT_3:
case DEC_FLOAT_4:
for (int i = 0; i <= decFmt_.w1fmt - DEC_FLOAT_1; i++)
weights[i+4] = f[i];
break;
case DEC_U8_1: weights[4] = b[0] * (1.f / 128.f); break;
case DEC_U8_2: for (int i = 0; i < 2; i++) weights[i+4] = b[i] * (1.f / 128.f); break;
case DEC_U8_3: for (int i = 0; i < 3; i++) weights[i+4] = b[i] * (1.f / 128.f); break;
case DEC_U8_4: for (int i = 0; i < 4; i++) weights[i+4] = b[i] * (1.f / 128.f); break;
case DEC_U16_1: weights[4] = s[0] * (1.f / 32768.f); break;
case DEC_U16_2: for (int i = 0; i < 2; i++) weights[i+4] = s[i] * (1.f / 32768.f); break;
case DEC_U16_3: for (int i = 0; i < 3; i++) weights[i+4] = s[i] * (1.f / 32768.f); break;
case DEC_U16_4: for (int i = 0; i < 4; i++) weights[i+4] = s[i] * (1.f / 32768.f); break;
default:
ERROR_LOG_REPORT_ONCE(fmtw1, G3D, "Reader: Unsupported W1 Format %d", decFmt_.w1fmt);
memset(weights + 4, 0, sizeof(float) * 4);
break;
}
}
bool hasColor0() const { return decFmt_.c0fmt != 0; }
bool hasColor1() const { return decFmt_.c1fmt != 0; }
bool hasNormal() const { return decFmt_.nrmfmt != 0; }
bool hasUV() const { return decFmt_.uvfmt != 0; }
bool isThrough() const { return (vtype_ & GE_VTYPE_THROUGH) != 0; }
void Goto(int index) {
data_ = base_ + index * decFmt_.stride;
}
private:
u8 *base_;
u8 *data_;
DecVtxFormat decFmt_;
int vtype_;
};
// Debugging utilities
void PrintDecodedVertex(VertexReader &vtx);
class VertexDecoder;
class VertexDecoderJitCache;
typedef void (VertexDecoder::*StepFunction)() const;
typedef void (VertexDecoderJitCache::*JitStepFunction)();
struct JitLookup {
StepFunction func;
JitStepFunction jitFunc;
};
// Collapse to less skinning shaders to reduce shader switching, which is expensive.
int TranslateNumBones(int bones);
typedef void(*JittedVertexDecoder)(const u8 *src, u8 *dst, int count);
struct VertexDecoderOptions {
bool expandAllUVtoFloat;
bool expandAllWeightsToFloat;
bool expand8BitNormalsToFloat;
};
class VertexDecoder {
public:
VertexDecoder();
// A jit cache is not mandatory, we don't use it in the sw renderer
void SetVertexType(u32 vtype, const VertexDecoderOptions &options, VertexDecoderJitCache *jitCache = 0);
u32 VertexType() const { return fmt_; }
const DecVtxFormat &GetDecVtxFmt() { return decFmt; }
void DecodeVerts(u8 *decoded, const void *verts, int indexLowerBound, int indexUpperBound) const;
bool hasColor() const { return col != 0; }
bool hasTexcoord() const { return tc != 0; }
int VertexSize() const { return size; } // PSP format size
std::string GetString(DebugShaderStringType stringType);
void Step_WeightsU8() const;
void Step_WeightsU16() const;
void Step_WeightsU8ToFloat() const;
void Step_WeightsU16ToFloat() const;
void Step_WeightsFloat() const;
void Step_WeightsU8Skin() const;
void Step_WeightsU16Skin() const;
void Step_WeightsFloatSkin() const;
void Step_TcU8() const;
void Step_TcU16() const;
void Step_TcU8ToFloat() const;
void Step_TcU16ToFloat() const;
void Step_TcFloat() const;
void Step_TcU8Prescale() const;
void Step_TcU16Prescale() const;
void Step_TcFloatPrescale() const;
void Step_TcU16Double() const;
void Step_TcU16Through() const;
void Step_TcU16ThroughDouble() const;
void Step_TcU16DoubleToFloat() const;
void Step_TcU16ThroughToFloat() const;
void Step_TcU16ThroughDoubleToFloat() const;
void Step_TcFloatThrough() const;
void Step_ColorInvalid() const;
void Step_Color4444() const;
void Step_Color565() const;
void Step_Color5551() const;
void Step_Color8888() const;
void Step_Color4444Morph() const;
void Step_Color565Morph() const;
void Step_Color5551Morph() const;
void Step_Color8888Morph() const;
void Step_NormalS8() const;
void Step_NormalS8ToFloat() const;
void Step_NormalS16() const;
void Step_NormalFloat() const;
void Step_NormalS8Skin() const;
void Step_NormalS16Skin() const;
void Step_NormalFloatSkin() const;
void Step_NormalS8Morph() const;
void Step_NormalS16Morph() const;
void Step_NormalFloatMorph() const;
void Step_PosS8() const;
void Step_PosS16() const;
void Step_PosFloat() const;
void Step_PosS8Skin() const;
void Step_PosS16Skin() const;
void Step_PosFloatSkin() const;
void Step_PosS8Morph() const;
void Step_PosS16Morph() const;
void Step_PosFloatMorph() const;
void Step_PosS8Through() const;
void Step_PosS16Through() const;
void Step_PosFloatThrough() const;
// output must be big for safety.
// Returns number of chars written.
// Ugly for speed.
int ToString(char *output) const;
// Mutable decoder state
mutable u8 *decoded_;
mutable const u8 *ptr_;
JittedVertexDecoder jitted_;
int32_t jittedSize_;
// "Immutable" state, set at startup
// The decoding steps. Never more than 5.
StepFunction steps_[5];
int numSteps_;
u32 fmt_;
DecVtxFormat decFmt;
bool throughmode;
u8 size;
u8 onesize_;
u8 weightoff;
u8 tcoff;
u8 coloff;
u8 nrmoff;
u8 posoff;
u8 tc;
u8 col;
u8 nrm;
u8 pos;
u8 weighttype;
u8 idx;
u8 morphcount;
u8 nweights;
friend class VertexDecoderJitCache;
};
// A compiled vertex decoder takes the following arguments (C calling convention):
// u8 *src, u8 *dst, int count
//
// x86:
// src is placed in esi and dst in edi
// for every vertex, we step esi and edi forwards by the two vertex sizes
// all movs are done relative to esi and edi
//
// that's it!
#ifdef ARM
class VertexDecoderJitCache : public ArmGen::ARMXCodeBlock {
#elif defined(ARM64)
class VertexDecoderJitCache : public Arm64Gen::ARM64CodeBlock {
#elif defined(_M_IX86) || defined(_M_X64)
class VertexDecoderJitCache : public Gen::XCodeBlock {
#elif defined(MIPS)
class VertexDecoderJitCache : public MIPSGen::MIPSCodeBlock {
#else
class VertexDecoderJitCache : public FakeGen::FakeXCodeBlock {
#endif
public:
VertexDecoderJitCache();
// Returns a pointer to the code to run.
JittedVertexDecoder Compile(const VertexDecoder &dec, int32_t *jittedSize);
void Clear();
void Jit_WeightsU8();
void Jit_WeightsU16();
void Jit_WeightsU8ToFloat();
void Jit_WeightsU16ToFloat();
void Jit_WeightsFloat();
void Jit_WeightsU8Skin();
void Jit_WeightsU16Skin();
void Jit_WeightsFloatSkin();
void Jit_TcU8();
void Jit_TcU8ToFloat();
void Jit_TcU16();
void Jit_TcU16ToFloat();
void Jit_TcFloat();
void Jit_TcU8Prescale();
void Jit_TcU16Prescale();
void Jit_TcFloatPrescale();
void Jit_TcU16Double();
void Jit_TcU16ThroughDouble();
void Jit_TcU16Through();
void Jit_TcU16ThroughToFloat();
void Jit_TcFloatThrough();
void Jit_Color8888();
void Jit_Color4444();
void Jit_Color565();
void Jit_Color5551();
void Jit_NormalS8();
void Jit_NormalS8ToFloat();
void Jit_NormalS16();
void Jit_NormalFloat();
void Jit_NormalS8Skin();
void Jit_NormalS16Skin();
void Jit_NormalFloatSkin();
void Jit_PosS8();
void Jit_PosS8ToFloat();
void Jit_PosS16();
void Jit_PosFloat();
void Jit_PosS8Through();
void Jit_PosS16Through();
void Jit_PosS8Skin();
void Jit_PosS16Skin();
void Jit_PosFloatSkin();
void Jit_NormalS8Morph();
void Jit_NormalS16Morph();
void Jit_NormalFloatMorph();
void Jit_PosS8Morph();
void Jit_PosS16Morph();
void Jit_PosFloatMorph();
void Jit_Color8888Morph();
void Jit_Color4444Morph();
void Jit_Color565Morph();
void Jit_Color5551Morph();
private:
bool CompileStep(const VertexDecoder &dec, int i);
void Jit_ApplyWeights();
void Jit_WriteMatrixMul(int outOff, bool pos);
void Jit_WriteMorphColor(int outOff, bool checkAlpha = true);
void Jit_AnyS8ToFloat(int srcoff);
void Jit_AnyS16ToFloat(int srcoff);
void Jit_AnyU8ToFloat(int srcoff, u32 bits = 32);
void Jit_AnyU16ToFloat(int srcoff, u32 bits = 64);
void Jit_AnyS8Morph(int srcoff, int dstoff);
void Jit_AnyS16Morph(int srcoff, int dstoff);
void Jit_AnyFloatMorph(int srcoff, int dstoff);
const VertexDecoder *dec_;
#ifdef ARM64
Arm64Gen::ARM64FloatEmitter fp;
#endif
};