ppsspp/GPU/Software/TransformUnit.cpp
Henrik Rydgård e01ca5b057
Logging API change (refactor) (#19324)
* Rename LogType to Log

* Explicitly use the Log:: enum when logging. Allows for autocomplete when editing.

* Mac/ARM64 buildfix

* Do the same with the hle result log macros

* Rename the log names to mixed case while at it.

* iOS buildfix

* Qt buildfix attempt, ARM32 buildfix
2024-07-14 14:42:59 +02:00

1046 lines
34 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cmath>
#include <algorithm>
#include "Common/Common.h"
#include "Common/CPUDetect.h"
#include "Common/Math/math_util.h"
#include "Common/MemoryUtil.h"
#include "Common/Profiler/Profiler.h"
#include "Core/Config.h"
#include "GPU/GPUState.h"
#include "GPU/Common/DrawEngineCommon.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Common/SplineCommon.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Debugger/Debugger.h"
#include "GPU/Software/BinManager.h"
#include "GPU/Software/Clipper.h"
#include "GPU/Software/FuncId.h"
#include "GPU/Software/Lighting.h"
#include "GPU/Software/Rasterizer.h"
#include "GPU/Software/RasterizerRectangle.h"
#include "GPU/Software/TransformUnit.h"
#define TRANSFORM_BUF_SIZE (65536 * 48)
TransformUnit::TransformUnit() {
decoded_ = (u8 *)AllocateAlignedMemory(TRANSFORM_BUF_SIZE, 16);
if (!decoded_)
return;
binner_ = new BinManager();
}
TransformUnit::~TransformUnit() {
FreeAlignedMemory(decoded_);
delete binner_;
}
bool TransformUnit::IsStarted() {
return binner_ && decoded_;
}
SoftwareDrawEngine::SoftwareDrawEngine() {
flushOnParams_ = false;
}
SoftwareDrawEngine::~SoftwareDrawEngine() {}
void SoftwareDrawEngine::NotifyConfigChanged() {
DrawEngineCommon::NotifyConfigChanged();
decOptions_.applySkinInDecode = true;
}
void SoftwareDrawEngine::DispatchFlush() {
transformUnit.Flush("debug");
}
void SoftwareDrawEngine::DispatchSubmitPrim(const void *verts, const void *inds, GEPrimitiveType prim, int vertexCount, u32 vertTypeID, bool clockwise, int *bytesRead) {
_assert_msg_(clockwise, "Mixed cull mode not supported.");
transformUnit.SubmitPrimitive(verts, inds, prim, vertexCount, vertTypeID, bytesRead, this);
}
void SoftwareDrawEngine::DispatchSubmitImm(GEPrimitiveType prim, TransformedVertex *buffer, int vertexCount, int cullMode, bool continuation) {
uint32_t vertTypeID = GetVertTypeID(gstate.vertType | GE_VTYPE_POS_FLOAT, gstate.getUVGenMode(), true);
int flipCull = cullMode != gstate.getCullMode() ? 1 : 0;
// TODO: For now, just setting all dirty.
transformUnit.SetDirty(SoftDirty(-1));
gstate.cullmode ^= flipCull;
// TODO: This is a bit ugly. Should bypass when clipping...
uint32_t xScale = gstate.viewportxscale;
uint32_t xCenter = gstate.viewportxcenter;
uint32_t yScale = gstate.viewportyscale;
uint32_t yCenter = gstate.viewportycenter;
uint32_t zScale = gstate.viewportzscale;
uint32_t zCenter = gstate.viewportzcenter;
// Force scale to 1 and center to zero.
gstate.viewportxscale = (GE_CMD_VIEWPORTXSCALE << 24) | 0x3F8000;
gstate.viewportxcenter = (GE_CMD_VIEWPORTXCENTER << 24) | 0x000000;
gstate.viewportyscale = (GE_CMD_VIEWPORTYSCALE << 24) | 0x3F8000;
gstate.viewportycenter = (GE_CMD_VIEWPORTYCENTER << 24) | 0x000000;
// Z we scale to 65535 for neg z clipping.
gstate.viewportzscale = (GE_CMD_VIEWPORTZSCALE << 24) | 0x477FFF;
gstate.viewportzcenter = (GE_CMD_VIEWPORTZCENTER << 24) | 0x000000;
// Before we start, submit 0 prims to reset the prev prim type.
// Following submits will always be KEEP_PREVIOUS.
if (!continuation)
transformUnit.SubmitPrimitive(nullptr, nullptr, prim, 0, vertTypeID, nullptr, this);
for (int i = 0; i < vertexCount; i++) {
ClipVertexData vert;
vert.clippos = ClipCoords(buffer[i].pos);
vert.v.texturecoords.x = buffer[i].u;
vert.v.texturecoords.y = buffer[i].v;
vert.v.texturecoords.z = buffer[i].uv_w;
if (gstate.isModeThrough()) {
vert.v.texturecoords.x *= gstate.getTextureWidth(0);
vert.v.texturecoords.y *= gstate.getTextureHeight(0);
} else {
vert.clippos.z *= 1.0f / 65535.0f;
}
vert.v.clipw = buffer[i].pos_w;
vert.v.color0 = buffer[i].color0_32;
vert.v.color1 = gstate.isUsingSecondaryColor() && !gstate.isModeThrough() ? buffer[i].color1_32 : 0;
vert.v.fogdepth = buffer[i].fog;
vert.v.screenpos.x = (int)(buffer[i].x * 16.0f);
vert.v.screenpos.y = (int)(buffer[i].y * 16.0f);
vert.v.screenpos.z = (u16)(u32)buffer[i].z;
transformUnit.SubmitImmVertex(vert, this);
}
gstate.viewportxscale = xScale;
gstate.viewportxcenter = xCenter;
gstate.viewportyscale = yScale;
gstate.viewportycenter = yCenter;
gstate.viewportzscale = zScale;
gstate.viewportzcenter = zCenter;
gstate.cullmode ^= flipCull;
// TODO: Should really clear, but a bunch of values are forced so we this is safest.
transformUnit.SetDirty(SoftDirty(-1));
}
VertexDecoder *SoftwareDrawEngine::FindVertexDecoder(u32 vtype) {
const u32 vertTypeID = GetVertTypeID(vtype, gstate.getUVGenMode(), true);
return DrawEngineCommon::GetVertexDecoder(vertTypeID);
}
WorldCoords TransformUnit::ModelToWorld(const ModelCoords &coords) {
return Vec3ByMatrix43(coords, gstate.worldMatrix);
}
WorldCoords TransformUnit::ModelToWorldNormal(const ModelCoords &coords) {
return Norm3ByMatrix43(coords, gstate.worldMatrix);
}
ViewCoords TransformUnit::WorldToView(const WorldCoords &coords) {
return Vec3ByMatrix43(coords, gstate.viewMatrix);
}
ClipCoords TransformUnit::ViewToClip(const ViewCoords &coords) {
return Vec3ByMatrix44(coords, gstate.projMatrix);
}
template <bool depthClamp, bool alwaysCheckRange>
static ScreenCoords ClipToScreenInternal(Vec3f scaled, const ClipCoords &coords, bool *outside_range_flag) {
ScreenCoords ret;
// Account for rounding for X and Y.
// TODO: Validate actual rounding range.
const float SCREEN_BOUND = 4095.0f + (15.5f / 16.0f);
// This matches hardware tests - depth is clamped when this flag is on.
if constexpr (depthClamp) {
// Note: if the depth is clipped (z/w <= -1.0), the outside_range_flag should NOT be set, even for x and y.
if ((alwaysCheckRange || coords.z > -coords.w) && (scaled.x >= SCREEN_BOUND || scaled.y >= SCREEN_BOUND || scaled.x < 0 || scaled.y < 0)) {
*outside_range_flag = true;
}
if (scaled.z < 0.f)
scaled.z = 0.f;
else if (scaled.z > 65535.0f)
scaled.z = 65535.0f;
} else if (scaled.x > SCREEN_BOUND || scaled.y >= SCREEN_BOUND || scaled.x < 0 || scaled.y < 0 || scaled.z < 0.0f || scaled.z >= 65536.0f) {
*outside_range_flag = true;
}
// 16 = 0xFFFF / 4095.9375
// Round up at 0.625 to the nearest subpixel.
static_assert(SCREEN_SCALE_FACTOR == 16, "Currently only supports scale 16");
int x = (int)(scaled.x * 16.0f + 0.375f - gstate.getOffsetX16());
int y = (int)(scaled.y * 16.0f + 0.375f - gstate.getOffsetY16());
return ScreenCoords(x, y, scaled.z);
}
static inline ScreenCoords ClipToScreenInternal(const ClipCoords &coords, bool *outside_range_flag) {
// Parameters here can seem invalid, but the PSP is fine with negative viewport widths etc.
// The checking that OpenGL and D3D do is actually quite superflous as the calculations still "work"
// with some pretty crazy inputs, which PSP games are happy to do at times.
float xScale = gstate.getViewportXScale();
float xCenter = gstate.getViewportXCenter();
float yScale = gstate.getViewportYScale();
float yCenter = gstate.getViewportYCenter();
float zScale = gstate.getViewportZScale();
float zCenter = gstate.getViewportZCenter();
float x = coords.x * xScale / coords.w + xCenter;
float y = coords.y * yScale / coords.w + yCenter;
float z = coords.z * zScale / coords.w + zCenter;
if (gstate.isDepthClampEnabled()) {
return ClipToScreenInternal<true, true>(Vec3f(x, y, z), coords, outside_range_flag);
}
return ClipToScreenInternal<false, true>(Vec3f(x, y, z), coords, outside_range_flag);
}
ScreenCoords TransformUnit::ClipToScreen(const ClipCoords &coords, bool *outsideRangeFlag) {
return ClipToScreenInternal(coords, outsideRangeFlag);
}
ScreenCoords TransformUnit::DrawingToScreen(const DrawingCoords &coords, u16 z) {
ScreenCoords ret;
ret.x = (u32)coords.x * SCREEN_SCALE_FACTOR;
ret.y = (u32)coords.y * SCREEN_SCALE_FACTOR;
ret.z = z;
return ret;
}
enum class MatrixMode {
POS_TO_CLIP = 1,
WORLD_TO_CLIP = 2,
};
struct TransformState {
Lighting::State lightingState;
float matrix[16];
Vec4f posToFog;
Vec3f screenScale;
Vec3f screenAdd;
ScreenCoords(*roundToScreen)(Vec3f scaled, const ClipCoords &coords, bool *outside_range_flag);
struct {
bool enableTransform : 1;
bool enableLighting : 1;
bool enableFog : 1;
bool readUV : 1;
bool negateNormals : 1;
uint8_t uvGenMode : 2;
uint8_t matrixMode : 2;
};
};
void ComputeTransformState(TransformState *state, const VertexReader &vreader) {
state->enableTransform = !vreader.isThrough();
state->enableLighting = gstate.isLightingEnabled();
state->enableFog = gstate.isFogEnabled();
state->readUV = !gstate.isModeClear() && gstate.isTextureMapEnabled() && vreader.hasUV();
state->negateNormals = gstate.areNormalsReversed();
state->uvGenMode = gstate.getUVGenMode();
if (state->uvGenMode == GE_TEXMAP_UNKNOWN)
state->uvGenMode = GE_TEXMAP_TEXTURE_COORDS;
if (state->enableTransform) {
bool canSkipWorldPos = true;
if (state->enableLighting) {
Lighting::ComputeState(&state->lightingState, vreader.hasColor0());
canSkipWorldPos = !state->lightingState.usesWorldPos;
} else {
state->lightingState.usesWorldNormal = state->uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP;
}
float world[16];
float view[16];
float worldview[16];
ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
if (state->enableFog || canSkipWorldPos) {
ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
Matrix4ByMatrix4(worldview, world, view);
}
if (canSkipWorldPos) {
state->matrixMode = (uint8_t)MatrixMode::POS_TO_CLIP;
Matrix4ByMatrix4(state->matrix, worldview, gstate.projMatrix);
} else {
state->matrixMode = (uint8_t)MatrixMode::WORLD_TO_CLIP;
Matrix4ByMatrix4(state->matrix, view, gstate.projMatrix);
}
if (state->enableFog) {
float fogEnd = getFloat24(gstate.fog1);
float fogSlope = getFloat24(gstate.fog2);
// We bake fog end and slope into the dot product.
state->posToFog = Vec4f(worldview[2], worldview[6], worldview[10], worldview[14] + fogEnd);
// If either are NAN/INF, we simplify so there's no inf + -inf muddying things.
// This is required for Outrun to render proper skies, for example.
// The PSP treats these exponents as if they were valid.
if (my_isnanorinf(fogEnd)) {
bool sign = std::signbit(fogEnd);
// The multiply would reverse it if it wasn't infinity (doesn't matter if it's infnan.)
if (std::signbit(fogSlope))
sign = !sign;
// Also allow a multiply by zero (slope) to result in zero, regardless of sign.
// Act like it was negative and clamped to zero.
if (fogSlope == 0.0f)
sign = true;
// Since this is constant for the entire draw, we don't even use infinity.
float forced = sign ? 0.0f : 1.0f;
state->posToFog = Vec4f(0.0f, 0.0f, 0.0f, forced);
} else if (my_isnanorinf(fogSlope)) {
// We can't have signs differ with infinities, so we use a large value.
// Anything outside [0, 1] will clamp, so this essentially forces extremes.
fogSlope = std::signbit(fogSlope) ? -262144.0f : 262144.0f;
state->posToFog *= fogSlope;
} else {
state->posToFog *= fogSlope;
}
}
state->screenScale = Vec3f(gstate.getViewportXScale(), gstate.getViewportYScale(), gstate.getViewportZScale());
state->screenAdd = Vec3f(gstate.getViewportXCenter(), gstate.getViewportYCenter(), gstate.getViewportZCenter());
}
if (gstate.isDepthClampEnabled())
state->roundToScreen = &ClipToScreenInternal<true, false>;
else
state->roundToScreen = &ClipToScreenInternal<false, false>;
}
#if defined(_M_SSE)
#if defined(__GNUC__) || defined(__clang__) || defined(__INTEL_COMPILER)
[[gnu::target("sse4.1")]]
#endif
static inline __m128 Dot43SSE4(__m128 a, __m128 b) {
__m128 multiplied = _mm_mul_ps(a, _mm_insert_ps(b, _mm_set1_ps(1.0f), 0x30));
__m128 lanes3311 = _mm_movehdup_ps(multiplied);
__m128 partial = _mm_add_ps(multiplied, lanes3311);
return _mm_add_ss(partial, _mm_movehl_ps(lanes3311, partial));
}
#endif
static inline float Dot43(const Vec4f &a, const Vec3f &b) {
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
if (cpu_info.bSSE4_1)
return _mm_cvtss_f32(Dot43SSE4(a.vec, b.vec));
#elif PPSSPP_ARCH(ARM64_NEON)
float32x4_t multipled = vmulq_f32(a.vec, vsetq_lane_f32(1.0f, b.vec, 3));
float32x2_t add1 = vget_low_f32(vpaddq_f32(multipled, multipled));
float32x2_t add2 = vpadd_f32(add1, add1);
return vget_lane_f32(add2, 0);
#endif
return Dot(a, Vec4f(b, 1.0f));
}
ClipVertexData TransformUnit::ReadVertex(const VertexReader &vreader, const TransformState &state) {
PROFILE_THIS_SCOPE("read_vert");
// If we ever thread this, we'll have to change this.
ClipVertexData vertex;
ModelCoords pos;
// VertexDecoder normally scales z, but we want it unscaled.
vreader.ReadPosThroughZ16(pos.AsArray());
static Vec3Packedf lastTC;
if (state.readUV) {
vreader.ReadUV(vertex.v.texturecoords.AsArray());
vertex.v.texturecoords.q() = 0.0f;
lastTC = vertex.v.texturecoords;
} else {
vertex.v.texturecoords = lastTC;
}
static Vec3f lastnormal;
if (vreader.hasNormal())
vreader.ReadNrm(lastnormal.AsArray());
Vec3f normal = lastnormal;
if (state.negateNormals)
normal = -normal;
if (vreader.hasColor0()) {
vertex.v.color0 = vreader.ReadColor0_8888();
} else {
vertex.v.color0 = gstate.getMaterialAmbientRGBA();
}
vertex.v.color1 = 0;
if (state.enableTransform) {
WorldCoords worldpos;
switch (MatrixMode(state.matrixMode)) {
case MatrixMode::POS_TO_CLIP:
vertex.clippos = Vec3ByMatrix44(pos, state.matrix);
break;
case MatrixMode::WORLD_TO_CLIP:
worldpos = TransformUnit::ModelToWorld(pos);
vertex.clippos = Vec3ByMatrix44(worldpos, state.matrix);
break;
}
Vec3f screenScaled;
#ifdef _M_SSE
screenScaled.vec = _mm_mul_ps(vertex.clippos.vec, state.screenScale.vec);
screenScaled.vec = _mm_div_ps(screenScaled.vec, _mm_shuffle_ps(vertex.clippos.vec, vertex.clippos.vec, _MM_SHUFFLE(3, 3, 3, 3)));
screenScaled.vec = _mm_add_ps(screenScaled.vec, state.screenAdd.vec);
#else
screenScaled = vertex.clippos.xyz() * state.screenScale / vertex.clippos.w + state.screenAdd;
#endif
bool outside_range_flag = false;
vertex.v.screenpos = state.roundToScreen(screenScaled, vertex.clippos, &outside_range_flag);
if (outside_range_flag) {
// We use this, essentially, as the flag.
vertex.v.screenpos.x = 0x7FFFFFFF;
return vertex;
}
if (state.enableFog) {
vertex.v.fogdepth = Dot43(state.posToFog, pos);
} else {
vertex.v.fogdepth = 1.0f;
}
vertex.v.clipw = vertex.clippos.w;
Vec3<float> worldnormal;
if (state.lightingState.usesWorldNormal) {
worldnormal = TransformUnit::ModelToWorldNormal(normal);
worldnormal.NormalizeOr001();
}
// Time to generate some texture coords. Lighting will handle shade mapping.
if (state.uvGenMode == GE_TEXMAP_TEXTURE_MATRIX) {
Vec3f source;
switch (gstate.getUVProjMode()) {
case GE_PROJMAP_POSITION:
source = pos;
break;
case GE_PROJMAP_UV:
source = Vec3f(vertex.v.texturecoords.uv(), 0.0f);
break;
case GE_PROJMAP_NORMALIZED_NORMAL:
// This does not use 0, 0, 1 if length is zero.
source = normal.Normalized(cpu_info.bSSE4_1);
break;
case GE_PROJMAP_NORMAL:
source = normal;
break;
}
// Note that UV scale/offset are not used in this mode.
Vec3<float> stq = Vec3ByMatrix43(source, gstate.tgenMatrix);
vertex.v.texturecoords = Vec3Packedf(stq.x, stq.y, stq.z);
} else if (state.uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP) {
Lighting::GenerateLightST(vertex.v, worldnormal);
}
PROFILE_THIS_SCOPE("light");
if (state.enableLighting)
Lighting::Process(vertex.v, worldpos, worldnormal, state.lightingState);
} else {
vertex.v.screenpos.x = (int)(pos[0] * SCREEN_SCALE_FACTOR);
vertex.v.screenpos.y = (int)(pos[1] * SCREEN_SCALE_FACTOR);
vertex.v.screenpos.z = pos[2];
vertex.v.clipw = 1.0f;
vertex.v.fogdepth = 1.0f;
}
return vertex;
}
void TransformUnit::SetDirty(SoftDirty flags) {
binner_->SetDirty(flags);
}
SoftDirty TransformUnit::GetDirty() {
return binner_->GetDirty();
}
class SoftwareVertexReader {
public:
SoftwareVertexReader(u8 *base, VertexDecoder &vdecoder, u32 vertex_type, int vertex_count, const void *vertices, const void *indices, const TransformState &transformState, TransformUnit &transform)
: vreader_(base, vdecoder.GetDecVtxFmt(), vertex_type), conv_(vertex_type, indices), transformState_(transformState), transform_(transform) {
useIndices_ = indices != nullptr;
lowerBound_ = 0;
upperBound_ = vertex_count == 0 ? 0 : vertex_count - 1;
if (useIndices_)
GetIndexBounds(indices, vertex_count, vertex_type, &lowerBound_, &upperBound_);
if (vertex_count != 0)
vdecoder.DecodeVerts(base, vertices, &gstate_c.uv, lowerBound_, upperBound_);
// If we're only using a subset of verts, it's better to decode with random access (usually.)
// However, if we're reusing a lot of verts, we should read and cache them.
useCache_ = useIndices_ && vertex_count > (upperBound_ - lowerBound_ + 1);
if (useCache_ && (int)cached_.size() < upperBound_ - lowerBound_ + 1)
cached_.resize(std::max(128, upperBound_ - lowerBound_ + 1));
}
const VertexReader &GetVertexReader() const {
return vreader_;
}
bool IsThrough() const {
return vreader_.isThrough();
}
void UpdateCache() {
if (!useCache_)
return;
for (int i = 0; i < upperBound_ - lowerBound_ + 1; ++i) {
vreader_.Goto(i);
cached_[i] = transform_.ReadVertex(vreader_, transformState_);
}
}
inline ClipVertexData Read(int vtx) {
if (useIndices_) {
if (useCache_) {
return cached_[conv_(vtx) - lowerBound_];
}
vreader_.Goto(conv_(vtx) - lowerBound_);
} else {
vreader_.Goto(vtx);
}
return transform_.ReadVertex(vreader_, transformState_);
};
protected:
VertexReader vreader_;
const IndexConverter conv_;
const TransformState &transformState_;
TransformUnit &transform_;
uint16_t lowerBound_;
uint16_t upperBound_;
static std::vector<ClipVertexData> cached_;
bool useIndices_ = false;
bool useCache_ = false;
};
// Static to reduce allocations mid-frame.
std::vector<ClipVertexData> SoftwareVertexReader::cached_;
void TransformUnit::SubmitPrimitive(const void* vertices, const void* indices, GEPrimitiveType prim_type, int vertex_count, u32 vertex_type, int *bytesRead, SoftwareDrawEngine *drawEngine)
{
VertexDecoder &vdecoder = *drawEngine->FindVertexDecoder(vertex_type);
if (bytesRead)
*bytesRead = vertex_count * vdecoder.VertexSize();
// Frame skipping.
if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) {
return;
}
// Vertices without position are just entirely culled.
// Note: Throughmode does draw 8-bit primitives, but positions are always zero - handled in decode.
if ((vertex_type & GE_VTYPE_POS_MASK) == 0)
return;
static TransformState transformState;
SoftwareVertexReader vreader(decoded_, vdecoder, vertex_type, vertex_count, vertices, indices, transformState, *this);
if (prim_type != GE_PRIM_KEEP_PREVIOUS) {
data_index_ = 0;
prev_prim_ = prim_type;
} else {
prim_type = prev_prim_;
}
binner_->UpdateState();
hasDraws_ = true;
if (binner_->HasDirty(SoftDirty::LIGHT_ALL | SoftDirty::TRANSFORM_ALL)) {
ComputeTransformState(&transformState, vreader.GetVertexReader());
binner_->ClearDirty(SoftDirty::LIGHT_ALL | SoftDirty::TRANSFORM_ALL);
}
vreader.UpdateCache();
bool skipCull = !gstate.isCullEnabled() || gstate.isModeClear();
const CullType cullType = skipCull ? CullType::OFF : (gstate.getCullMode() ? CullType::CCW : CullType::CW);
if (vreader.IsThrough() && cullType == CullType::OFF && prim_type == GE_PRIM_TRIANGLES && data_index_ == 0 && vertex_count >= 6 && ((vertex_count) % 6) == 0) {
// Some games send rectangles as a series of regular triangles.
// We look for this, but only in throughmode.
ClipVertexData buf[6];
// Could start at data_index_ and copy to buf, but there's little reason.
int buf_index = 0;
_assert_(data_index_ == 0);
for (int vtx = 0; vtx < vertex_count; ++vtx) {
buf[buf_index++] = vreader.Read(vtx);
if (buf_index < 6)
continue;
int tl = -1, br = -1;
if (Rasterizer::DetectRectangleFromPair(binner_->State(), buf, &tl, &br)) {
Clipper::ProcessRect(buf[tl], buf[br], *binner_);
} else {
SendTriangle(cullType, &buf[0]);
SendTriangle(cullType, &buf[3]);
}
buf_index = 0;
}
if (buf_index >= 3) {
SendTriangle(cullType, &buf[0]);
data_index_ = 0;
for (int i = 3; i < buf_index; ++i) {
data_[data_index_++] = buf[i];
}
} else if (buf_index > 0) {
for (int i = 0; i < buf_index; ++i) {
data_[i] = buf[i];
}
data_index_ = buf_index;
} else {
data_index_ = 0;
}
return;
}
// Note: intentionally, these allow for the case of vertex_count == 0, but data_index_ > 0.
// This is used for immediate-mode primitives.
switch (prim_type) {
case GE_PRIM_POINTS:
for (int i = 0; i < data_index_; ++i)
Clipper::ProcessPoint(data_[i], *binner_);
data_index_ = 0;
for (int vtx = 0; vtx < vertex_count; ++vtx) {
data_[0] = vreader.Read(vtx);
Clipper::ProcessPoint(data_[0], *binner_);
}
break;
case GE_PRIM_LINES:
for (int i = 0; i < data_index_ - 1; i += 2)
Clipper::ProcessLine(data_[i + 0], data_[i + 1], *binner_);
data_index_ &= 1;
for (int vtx = 0; vtx < vertex_count; ++vtx) {
data_[data_index_++] = vreader.Read(vtx);
if (data_index_ == 2) {
Clipper::ProcessLine(data_[0], data_[1], *binner_);
data_index_ = 0;
}
}
break;
case GE_PRIM_TRIANGLES:
for (int vtx = 0; vtx < vertex_count; ++vtx) {
data_[data_index_++] = vreader.Read(vtx);
if (data_index_ < 3) {
// Keep reading. Note: an incomplete prim will stay read for GE_PRIM_KEEP_PREVIOUS.
continue;
}
// Okay, we've got enough verts. Reset the index for next time.
data_index_ = 0;
SendTriangle(cullType, &data_[0]);
}
// In case vertex_count was 0.
if (data_index_ >= 3) {
SendTriangle(cullType, &data_[0]);
data_index_ = 0;
}
break;
case GE_PRIM_RECTANGLES:
for (int vtx = 0; vtx < vertex_count; ++vtx) {
data_[data_index_++] = vreader.Read(vtx);
if (data_index_ == 4 && vreader.IsThrough() && cullType == CullType::OFF) {
if (Rasterizer::DetectRectangleThroughModeSlices(binner_->State(), data_)) {
data_[1] = data_[3];
data_index_ = 2;
}
}
if (data_index_ == 4) {
Clipper::ProcessRect(data_[0], data_[1], *binner_);
Clipper::ProcessRect(data_[2], data_[3], *binner_);
data_index_ = 0;
}
}
if (data_index_ >= 2) {
Clipper::ProcessRect(data_[0], data_[1], *binner_);
data_index_ -= 2;
}
break;
case GE_PRIM_LINE_STRIP:
{
// Don't draw a line when loading the first vertex.
// If data_index_ is 1 or 2, etc., it means we're continuing a line strip.
int skip_count = data_index_ == 0 ? 1 : 0;
for (int vtx = 0; vtx < vertex_count; ++vtx) {
data_[(data_index_++) & 1] = vreader.Read(vtx);
if (skip_count) {
--skip_count;
} else {
// We already incremented data_index_, so data_index_ & 1 is previous one.
Clipper::ProcessLine(data_[data_index_ & 1], data_[(data_index_ & 1) ^ 1], *binner_);
}
}
// If this is from immediate-mode drawing, we always had one new vert (already in data_.)
if (isImmDraw_ && data_index_ >= 2)
Clipper::ProcessLine(data_[data_index_ & 1], data_[(data_index_ & 1) ^ 1], *binner_);
break;
}
case GE_PRIM_TRIANGLE_STRIP:
{
// Don't draw a triangle when loading the first two vertices.
int skip_count = data_index_ >= 2 ? 0 : 2 - data_index_;
int start_vtx = 0;
// If index count == 4, check if we can convert to a rectangle.
// This is for Darkstalkers (and should speed up many 2D games).
if (data_index_ == 0 && vertex_count >= 4 && (vertex_count & 1) == 0 && cullType == CullType::OFF) {
for (int base = 0; base < vertex_count - 2; base += 2) {
for (int vtx = base == 0 ? 0 : 2; vtx < 4; ++vtx) {
data_[vtx] = vreader.Read(base + vtx);
}
// If a strip is effectively a rectangle, draw it as such!
int tl = -1, br = -1;
if (Rasterizer::DetectRectangleFromStrip(binner_->State(), data_, &tl, &br)) {
Clipper::ProcessRect(data_[tl], data_[br], *binner_);
start_vtx += 2;
skip_count = 2;
if (base + 4 >= vertex_count) {
start_vtx = vertex_count;
break;
}
// Just copy the first two so we can detect easier.
// TODO: Maybe should give detection two halves?
data_[0] = data_[2];
data_[1] = data_[3];
data_index_ = 2;
} else {
// Go into triangle mode. Unfortunately, we re-read the verts.
break;
}
}
}
for (int vtx = start_vtx; vtx < vertex_count && skip_count > 0; ++vtx) {
int provoking_index = (data_index_++) % 3;
data_[provoking_index] = vreader.Read(vtx);
--skip_count;
++start_vtx;
}
for (int vtx = start_vtx; vtx < vertex_count; ++vtx) {
int provoking_index = (data_index_++) % 3;
data_[provoking_index] = vreader.Read(vtx);
int wind = (data_index_ - 1) % 2;
CullType altCullType = cullType == CullType::OFF ? cullType : CullType((int)cullType ^ wind);
SendTriangle(altCullType, &data_[0], provoking_index);
}
// If this is from immediate-mode drawing, we always had one new vert (already in data_.)
if (isImmDraw_ && data_index_ >= 3) {
int provoking_index = (data_index_ - 1) % 3;
int wind = (data_index_ - 1) % 2;
CullType altCullType = cullType == CullType::OFF ? cullType : CullType((int)cullType ^ wind);
SendTriangle(altCullType, &data_[0], provoking_index);
}
break;
}
case GE_PRIM_TRIANGLE_FAN:
{
// Don't draw a triangle when loading the first two vertices.
// (this doesn't count the central one.)
int skip_count = data_index_ <= 1 ? 1 : 0;
int start_vtx = 0;
// Only read the central vertex if we're not continuing.
if (data_index_ == 0 && vertex_count > 0) {
data_[0] = vreader.Read(0);
data_index_++;
start_vtx = 1;
}
if (data_index_ == 1 && vertex_count == 4 && cullType == CullType::OFF) {
for (int vtx = start_vtx; vtx < vertex_count; ++vtx) {
data_[vtx] = vreader.Read(vtx);
}
int tl = -1, br = -1;
if (Rasterizer::DetectRectangleFromFan(binner_->State(), data_, &tl, &br)) {
Clipper::ProcessRect(data_[tl], data_[br], *binner_);
break;
}
}
for (int vtx = start_vtx; vtx < vertex_count && skip_count > 0; ++vtx) {
int provoking_index = 2 - ((data_index_++) % 2);
data_[provoking_index] = vreader.Read(vtx);
--skip_count;
++start_vtx;
}
for (int vtx = start_vtx; vtx < vertex_count; ++vtx) {
int provoking_index = 2 - ((data_index_++) % 2);
data_[provoking_index] = vreader.Read(vtx);
int wind = (data_index_ - 1) % 2;
CullType altCullType = cullType == CullType::OFF ? cullType : CullType((int)cullType ^ wind);
SendTriangle(altCullType, &data_[0], provoking_index);
}
// If this is from immediate-mode drawing, we always had one new vert (already in data_.)
if (isImmDraw_ && data_index_ >= 3) {
int wind = (data_index_ - 1) % 2;
int provoking_index = 2 - wind;
CullType altCullType = cullType == CullType::OFF ? cullType : CullType((int)cullType ^ wind);
SendTriangle(altCullType, &data_[0], provoking_index);
}
break;
}
default:
ERROR_LOG(Log::G3D, "Unexpected prim type: %d", prim_type);
break;
}
}
void TransformUnit::SubmitImmVertex(const ClipVertexData &vert, SoftwareDrawEngine *drawEngine) {
// Where we put it is different for STRIP/FAN types.
switch (prev_prim_) {
case GE_PRIM_POINTS:
case GE_PRIM_LINES:
case GE_PRIM_TRIANGLES:
case GE_PRIM_RECTANGLES:
// This is the easy one. SubmitPrimitive resets data_index_.
data_[data_index_++] = vert;
break;
case GE_PRIM_LINE_STRIP:
// This one alternates, and data_index_ > 0 means it draws a segment.
data_[(data_index_++) & 1] = vert;
break;
case GE_PRIM_TRIANGLE_STRIP:
data_[(data_index_++) % 3] = vert;
break;
case GE_PRIM_TRIANGLE_FAN:
if (data_index_ == 0) {
data_[data_index_++] = vert;
} else {
int provoking_index = 2 - ((data_index_++) % 2);
data_[provoking_index] = vert;
}
break;
default:
_assert_msg_(false, "Invalid prim type: %d", (int)prev_prim_);
break;
}
uint32_t vertTypeID = GetVertTypeID(gstate.vertType | GE_VTYPE_POS_FLOAT, gstate.getUVGenMode(), true);
// This now processes the step with shared logic, given the existing data_.
isImmDraw_ = true;
SubmitPrimitive(nullptr, nullptr, GE_PRIM_KEEP_PREVIOUS, 0, vertTypeID, nullptr, drawEngine);
isImmDraw_ = false;
}
void TransformUnit::SendTriangle(CullType cullType, const ClipVertexData *verts, int provoking) {
if (cullType == CullType::OFF) {
Clipper::ProcessTriangle(verts[0], verts[1], verts[2], verts[provoking], *binner_);
Clipper::ProcessTriangle(verts[2], verts[1], verts[0], verts[provoking], *binner_);
} else if (cullType == CullType::CW) {
Clipper::ProcessTriangle(verts[2], verts[1], verts[0], verts[provoking], *binner_);
} else {
Clipper::ProcessTriangle(verts[0], verts[1], verts[2], verts[provoking], *binner_);
}
}
void TransformUnit::Flush(const char *reason) {
if (!hasDraws_)
return;
binner_->Flush(reason);
GPUDebug::NotifyDraw();
hasDraws_ = false;
}
void TransformUnit::GetStats(char *buffer, size_t bufsize) {
// TODO: More stats?
binner_->GetStats(buffer, bufsize);
}
void TransformUnit::FlushIfOverlap(const char *reason, bool modifying, uint32_t addr, uint32_t stride, uint32_t w, uint32_t h) {
if (!hasDraws_)
return;
if (binner_->HasPendingWrite(addr, stride, w, h))
Flush(reason);
if (modifying && binner_->HasPendingRead(addr, stride, w, h))
Flush(reason);
}
void TransformUnit::NotifyClutUpdate(const void *src) {
binner_->UpdateClut(src);
}
// TODO: This probably is not the best interface.
// Also, we should try to merge this into the similar function in DrawEngineCommon.
bool TransformUnit::GetCurrentSimpleVertices(int count, std::vector<GPUDebugVertex> &vertices, std::vector<u16> &indices) {
// This is always for the current vertices.
u16 indexLowerBound = 0;
u16 indexUpperBound = count - 1;
if (!Memory::IsValidAddress(gstate_c.vertexAddr) || count == 0)
return false;
if (count > 0 && (gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
const u8 *inds = Memory::GetPointer(gstate_c.indexAddr);
const u16_le *inds16 = (const u16_le *)inds;
const u32_le *inds32 = (const u32_le *)inds;
if (inds) {
GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound);
indices.resize(count);
switch (gstate.vertType & GE_VTYPE_IDX_MASK) {
case GE_VTYPE_IDX_8BIT:
for (int i = 0; i < count; ++i) {
indices[i] = inds[i];
}
break;
case GE_VTYPE_IDX_16BIT:
for (int i = 0; i < count; ++i) {
indices[i] = inds16[i];
}
break;
case GE_VTYPE_IDX_32BIT:
WARN_LOG_REPORT_ONCE(simpleIndexes32, Log::G3D, "SimpleVertices: Decoding 32-bit indexes");
for (int i = 0; i < count; ++i) {
// These aren't documented and should be rare. Let's bounds check each one.
if (inds32[i] != (u16)inds32[i]) {
ERROR_LOG_REPORT_ONCE(simpleIndexes32Bounds, Log::G3D, "SimpleVertices: Index outside 16-bit range");
}
indices[i] = (u16)inds32[i];
}
break;
}
} else {
indices.clear();
}
} else {
indices.clear();
}
static std::vector<u32> temp_buffer;
static std::vector<SimpleVertex> simpleVertices;
temp_buffer.resize(std::max((int)indexUpperBound, 8192) * 128 / sizeof(u32));
simpleVertices.resize(indexUpperBound + 1);
VertexDecoder vdecoder;
VertexDecoderOptions options{};
options.applySkinInDecode = true;
vdecoder.SetVertexType(gstate.vertType, options);
if (!Memory::IsValidRange(gstate_c.vertexAddr, (indexUpperBound + 1) * vdecoder.VertexSize()))
return false;
DrawEngineCommon::NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), &vdecoder, indexLowerBound, indexUpperBound, gstate.vertType);
float world[16];
float view[16];
float worldview[16];
float worldviewproj[16];
ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
Matrix4ByMatrix4(worldview, world, view);
Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix);
const float zScale = gstate.getViewportZScale();
const float zCenter = gstate.getViewportZCenter();
vertices.resize(indexUpperBound + 1);
for (int i = indexLowerBound; i <= indexUpperBound; ++i) {
const SimpleVertex &vert = simpleVertices[i];
if (gstate.isModeThrough()) {
if (gstate.vertType & GE_VTYPE_TC_MASK) {
vertices[i].u = vert.uv[0];
vertices[i].v = vert.uv[1];
} else {
vertices[i].u = 0.0f;
vertices[i].v = 0.0f;
}
vertices[i].x = vert.pos.x;
vertices[i].y = vert.pos.y;
vertices[i].z = vert.pos.z;
} else {
Vec4f clipPos = Vec3ByMatrix44(vert.pos, worldviewproj);
bool outsideRangeFlag;
ScreenCoords screenPos = ClipToScreen(clipPos, &outsideRangeFlag);
float z = clipPos.z * zScale / clipPos.w + zCenter;
if (gstate.vertType & GE_VTYPE_TC_MASK) {
vertices[i].u = vert.uv[0] * (float)gstate.getTextureWidth(0);
vertices[i].v = vert.uv[1] * (float)gstate.getTextureHeight(0);
} else {
vertices[i].u = 0.0f;
vertices[i].v = 0.0f;
}
vertices[i].x = (float)screenPos.x / SCREEN_SCALE_FACTOR;
vertices[i].y = (float)screenPos.y / SCREEN_SCALE_FACTOR;
vertices[i].z = screenPos.z <= 0 || screenPos.z >= 0xFFFF ? z : (float)screenPos.z;
}
if (gstate.vertType & GE_VTYPE_COL_MASK) {
memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
} else {
memset(vertices[i].c, 0, sizeof(vertices[i].c));
}
vertices[i].nx = vert.nrm.x;
vertices[i].ny = vert.nrm.y;
vertices[i].nz = vert.nrm.z;
}
// The GE debugger expects these to be set.
gstate_c.curTextureWidth = gstate.getTextureWidth(0);
gstate_c.curTextureHeight = gstate.getTextureHeight(0);
return true;
}