ppsspp/GPU/Directx9/SplineDX9.cpp

260 lines
8.7 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "Core/Config.h"
#include "Core/MemMap.h"
#include "GPU/Directx9/TransformPipelineDX9.h"
#include "GPU/Common/SplineCommon.h"
#include "GPU/Common/VertexDecoderCommon.h"
namespace DX9 {
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning.
// The rest of the transform pipeline like lighting will go as normal, either hardware or software.
// The implementation is initially a bit inefficient but shouldn't be a big deal.
// An intermediate buffer of not-easy-to-predict size is stored at bufPtr.
u32 TransformDrawEngineDX9::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, VertexDecoder *dec, int lowerBound, int upperBound, u32 vertType) {
// First, decode the vertices into a GPU compatible format. This step can be eliminated but will need a separate
// implementation of the vertex decoder.
dec->DecodeVerts(bufPtr, inPtr, lowerBound, upperBound);
// OK, morphing eliminated but bones still remain to be taken care of.
// Let's do a partial software transform where we only do skinning.
VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType);
SimpleVertex *sverts = (SimpleVertex *)outPtr;
const u8 defaultColor[4] = {
(u8)gstate.getMaterialAmbientR(),
(u8)gstate.getMaterialAmbientG(),
(u8)gstate.getMaterialAmbientB(),
(u8)gstate.getMaterialAmbientA(),
};
// Let's have two separate loops, one for non skinning and one for skinning.
if (!g_Config.bSoftwareSkinning && (vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) {
int numBoneWeights = vertTypeGetNumBoneWeights(vertType);
for (int i = lowerBound; i <= upperBound; i++) {
reader.Goto(i);
SimpleVertex &sv = sverts[i];
if (vertType & GE_VTYPE_TC_MASK) {
reader.ReadUV(sv.uv);
}
if (vertType & GE_VTYPE_COL_MASK) {
reader.ReadColor0_8888(sv.color);
} else {
memcpy(sv.color, defaultColor, 4);
}
float nrm[3], pos[3];
float bnrm[3], bpos[3];
if (vertType & GE_VTYPE_NRM_MASK) {
// Normals are generated during tesselation anyway, not sure if any need to supply
reader.ReadNrm(nrm);
} else {
nrm[0] = 0;
nrm[1] = 0;
nrm[2] = 1.0f;
}
reader.ReadPos(pos);
// Apply skinning transform directly
float weights[8];
reader.ReadWeights(weights);
// Skinning
Vec3Packedf psum(0,0,0);
Vec3Packedf nsum(0,0,0);
for (int w = 0; w < numBoneWeights; w++) {
if (weights[w] != 0.0f) {
Vec3ByMatrix43(bpos, pos, gstate.boneMatrix+w*12);
Vec3Packedf tpos(bpos);
psum += tpos * weights[w];
Norm3ByMatrix43(bnrm, nrm, gstate.boneMatrix+w*12);
Vec3Packedf tnorm(bnrm);
nsum += tnorm * weights[w];
}
}
sv.pos = psum;
sv.nrm = nsum;
}
} else {
for (int i = lowerBound; i <= upperBound; i++) {
reader.Goto(i);
SimpleVertex &sv = sverts[i];
if (vertType & GE_VTYPE_TC_MASK) {
reader.ReadUV(sv.uv);
} else {
sv.uv[0] = 0; // This will get filled in during tesselation
sv.uv[1] = 0;
}
if (vertType & GE_VTYPE_COL_MASK) {
reader.ReadColor0_8888(sv.color);
} else {
memcpy(sv.color, defaultColor, 4);
}
if (vertType & GE_VTYPE_NRM_MASK) {
// Normals are generated during tesselation anyway, not sure if any need to supply
reader.ReadNrm((float *)&sv.nrm);
} else {
sv.nrm.x = 0;
sv.nrm.y = 0;
sv.nrm.z = 1.0f;
}
reader.ReadPos((float *)&sv.pos);
}
}
// Okay, there we are! Return the new type (but keep the index bits)
return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & (GE_VTYPE_IDX_MASK | GE_VTYPE_THROUGH));
}
u32 TransformDrawEngineDX9::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, int lowerBound, int upperBound, u32 vertType) {
const u32 vertTypeID = (vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24);
VertexDecoder *dec = GetVertexDecoder(vertTypeID);
return NormalizeVertices(outPtr, bufPtr, inPtr, dec, lowerBound, upperBound, vertType);
}
// Spline implementation copied and modified from neobrain's softgpu (orphis code?)
#define START_OPEN_U 1
#define END_OPEN_U 2
#define START_OPEN_V 4
#define END_OPEN_V 8
// We decode all vertices into a common format for easy interpolation and stuff.
// Not fast but can be optimized later.
struct HWSplinePatch {
u8 *points[16];
int type;
// We need to generate both UVs and normals later...
// float u0, v0, u1, v1;
};
static void CopyTriangle(u8 *&dest, u8 *v1, u8 *v2, u8 * v3, int vertexSize) {
memcpy(dest, v1, vertexSize);
dest += vertexSize;
memcpy(dest, v2, vertexSize);
dest += vertexSize;
memcpy(dest, v3, vertexSize);
dest += vertexSize;
}
void TransformDrawEngineDX9::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) {
Flush();
if (prim_type != GE_PATCHPRIM_TRIANGLES) {
// Only triangles supported!
return;
}
// We're not actually going to decode, only reshuffle.
VertexDecoder *vdecoder = GetVertexDecoder(vertex_type);
int undecodedVertexSize = vdecoder->VertexSize();
const DecVtxFormat & vtxfmt = vdecoder->GetDecVtxFmt();
u16 index_lower_bound = 0;
u16 index_upper_bound = count_u * count_v - 1;
bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
u8* indices8 = (u8*)indices;
u16* indices16 = (u16*)indices;
if (indices)
GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);
int num_patches_u = count_u - 3;
int num_patches_v = count_v - 3;
// TODO: Do something less idiotic to manage this buffer
HWSplinePatch* patches = new HWSplinePatch[num_patches_u * num_patches_v];
for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
HWSplinePatch& patch = patches[patch_u + patch_v * num_patches_u];
for (int point = 0; point < 16; ++point) {
int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
if (indices)
patch.points[point] = (u8 *)control_points + undecodedVertexSize * (indices_16bit ? indices16[idx] : indices8[idx]);
else
patch.points[point] = (u8 *)control_points + undecodedVertexSize * idx;
}
patch.type = (type_u | (type_v<<2));
if (patch_u != 0) patch.type &= ~START_OPEN_U;
if (patch_v != 0) patch.type &= ~START_OPEN_V;
if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
}
}
u8 *decoded2 = decoded + 65536 * 24;
int count = 0;
u8 *dest = decoded2;
for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
HWSplinePatch& patch = patches[patch_idx];
// TODO: Should do actual patch subdivision instead of just drawing the control points!
const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
int point_index = tile_u + tile_v*4;
u8 *v0 = patch.points[point_index];
u8 *v1 = patch.points[point_index+1];
u8 *v2 = patch.points[point_index+4];
u8 *v3 = patch.points[point_index+5];
// TODO: Insert UVs and normals if not present.
CopyTriangle(dest, v0, v2, v1, undecodedVertexSize);
CopyTriangle(dest, v1, v2, v3, undecodedVertexSize);
count += 6;
}
}
}
delete[] patches;
u32 vertTypeWithoutIndex = vertex_type & ~GE_VTYPE_IDX_MASK;
SubmitPrim(decoded2, 0, GE_PRIM_TRIANGLES, count, vertTypeWithoutIndex, GE_VTYPE_IDX_NONE, 0);
Flush();
}
// TODO
void TransformDrawEngineDX9::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertex_type) {
if (prim_type != GE_PATCHPRIM_TRIANGLES) {
// Only triangles supported!
return;
}
// We're not actually going to decode, only reshuffle.
//VertexDecoder vdecoder;
//vdecoder.SetVertexType(vertex_type);
Flush();
}
};