ppsspp/GPU/Common/TextureCacheCommon.cpp
2023-01-08 10:20:52 -08:00

2907 lines
106 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#include <algorithm>
#include "Common/Common.h"
#include "Common/Data/Convert/ColorConv.h"
#include "Common/Data/Collections/TinySet.h"
#include "Common/Profiler/Profiler.h"
#include "Common/LogReporting.h"
#include "Common/MemoryUtil.h"
#include "Common/StringUtils.h"
#include "Common/TimeUtil.h"
#include "Common/Math/math_util.h"
#include "Core/Config.h"
#include "Core/Debugger/MemBlockInfo.h"
#include "Core/System.h"
#include "GPU/Common/FramebufferManagerCommon.h"
#include "GPU/Common/TextureCacheCommon.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Common/ShaderId.h"
#include "GPU/Common/GPUStateUtils.h"
#include "GPU/Debugger/Debugger.h"
#include "GPU/Debugger/Record.h"
#include "GPU/GPUCommon.h"
#include "GPU/GPUInterface.h"
#include "GPU/GPUState.h"
#include "Core/Util/PPGeDraw.h"
#if defined(_M_SSE)
#include <emmintrin.h>
#endif
#if PPSSPP_ARCH(ARM_NEON)
#if defined(_MSC_VER) && PPSSPP_ARCH(ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
#endif
// Videos should be updated every few frames, so we forget quickly.
#define VIDEO_DECIMATE_AGE 4
// If a texture hasn't been seen for this many frames, get rid of it.
#define TEXTURE_KILL_AGE 200
#define TEXTURE_KILL_AGE_LOWMEM 60
// Not used in lowmem mode.
#define TEXTURE_SECOND_KILL_AGE 100
// Used when there are multiple CLUT variants of a texture.
#define TEXTURE_KILL_AGE_CLUT 6
#define TEXTURE_CLUT_VARIANTS_MIN 6
// Try to be prime to other decimation intervals.
#define TEXCACHE_DECIMATION_INTERVAL 13
#define TEXCACHE_MIN_PRESSURE 16 * 1024 * 1024 // Total in VRAM
#define TEXCACHE_SECOND_MIN_PRESSURE 4 * 1024 * 1024
// Just for reference
// PSP Color formats:
// 565: BBBBBGGGGGGRRRRR
// 5551: ABBBBBGGGGGRRRRR
// 4444: AAAABBBBGGGGRRRR
// 8888: AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR (Bytes in memory: RGBA)
// D3D11/9 Color formats:
// DXGI_FORMAT_B4G4R4A4/D3DFMT_A4R4G4B4: AAAARRRRGGGGBBBB
// DXGI_FORMAT_B5G5R5A1/D3DFMT_A1R5G6B5: ARRRRRGGGGGBBBBB
// DXGI_FORMAT_B5G6R6/D3DFMT_R5G6B5: RRRRRGGGGGGBBBBB
// DXGI_FORMAT_B8G8R8A8: AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB (Bytes in memory: BGRA)
// These are Data::Format:: A4R4G4B4_PACK16, A1R5G6B5_PACK16, R5G6B5_PACK16, B8G8R8A8.
// So these are good matches, just with R/B swapped.
// OpenGL ES color formats:
// GL_UNSIGNED_SHORT_4444: BBBBGGGGRRRRAAAA (4-bit rotation)
// GL_UNSIGNED_SHORT_565: BBBBBGGGGGGRRRRR (match)
// GL_UNSIGNED_SHORT_1555: BBBBBGGGGGRRRRRA (1-bit rotation)
// GL_UNSIGNED_BYTE/RGBA: AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR (match)
// These are Data::Format:: B4G4R4A4_PACK16, B5G6R6_PACK16, B5G5R5A1_PACK16, R8G8B8A8
// Allow the extra bits from the remasters for the purposes of this.
inline int dimWidth(u16 dim) {
return 1 << (dim & 0xFF);
}
inline int dimHeight(u16 dim) {
return 1 << ((dim >> 8) & 0xFF);
}
TextureCacheCommon::TextureCacheCommon(Draw::DrawContext *draw, Draw2D *draw2D)
: draw_(draw), draw2D_(draw2D) {
decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL;
// It's only possible to have 1KB of palette entries, although we allow 2KB in a hack.
clutBufRaw_ = (u32 *)AllocateAlignedMemory(2048, 16);
clutBufConverted_ = (u32 *)AllocateAlignedMemory(2048, 16);
// Here we need 2KB to expand a 1KB CLUT.
expandClut_ = (u32 *)AllocateAlignedMemory(2048, 16);
// Zap so we get consistent behavior if the game fails to load some of the CLUT.
memset(clutBufRaw_, 0, 2048);
memset(clutBufConverted_, 0, 2048);
clutBuf_ = clutBufConverted_;
// These buffers will grow if necessary, but most won't need more than this.
tmpTexBuf32_.resize(512 * 512); // 1MB
tmpTexBufRearrange_.resize(512 * 512); // 1MB
replacer_.Init();
textureShaderCache_ = new TextureShaderCache(draw, draw2D_);
}
TextureCacheCommon::~TextureCacheCommon() {
delete textureShaderCache_;
FreeAlignedMemory(clutBufConverted_);
FreeAlignedMemory(clutBufRaw_);
FreeAlignedMemory(expandClut_);
}
// Produces a signed 1.23.8 value.
static int TexLog2(float delta) {
union FloatBits {
float f;
u32 u;
};
FloatBits f;
f.f = delta;
// Use the exponent as the tex level, and the top mantissa bits for a frac.
// We can't support more than 8 bits of frac, so truncate.
int useful = (f.u >> 15) & 0xFFFF;
// Now offset so the exponent aligns with log2f (exp=127 is 0.)
return useful - 127 * 256;
}
SamplerCacheKey TextureCacheCommon::GetSamplingParams(int maxLevel, const TexCacheEntry *entry) {
SamplerCacheKey key{};
int minFilt = gstate.texfilter & 0x7;
key.minFilt = minFilt & 1;
key.mipEnable = (minFilt >> 2) & 1;
key.mipFilt = (minFilt >> 1) & 1;
key.magFilt = gstate.isMagnifyFilteringEnabled();
key.sClamp = gstate.isTexCoordClampedS();
key.tClamp = gstate.isTexCoordClampedT();
key.aniso = false;
key.texture3d = gstate_c.curTextureIs3D;
GETexLevelMode mipMode = gstate.getTexLevelMode();
bool autoMip = mipMode == GE_TEXLEVEL_MODE_AUTO;
// TODO: Slope mipmap bias is still not well understood.
float lodBias = (float)gstate.getTexLevelOffset16() * (1.0f / 16.0f);
if (mipMode == GE_TEXLEVEL_MODE_SLOPE) {
lodBias += 1.0f + TexLog2(gstate.getTextureLodSlope()) * (1.0f / 256.0f);
}
// If mip level is forced to zero, disable mipmapping.
bool noMip = maxLevel == 0 || (!autoMip && lodBias <= 0.0f);
if (IsFakeMipmapChange()) {
noMip = noMip || !autoMip;
}
if (noMip) {
// Enforce no mip filtering, for safety.
key.mipEnable = false;
key.mipFilt = 0;
lodBias = 0.0f;
}
if (!key.mipEnable) {
key.maxLevel = 0;
key.minLevel = 0;
key.lodBias = 0;
key.mipFilt = 0;
} else {
switch (mipMode) {
case GE_TEXLEVEL_MODE_AUTO:
key.maxLevel = maxLevel * 256;
key.minLevel = 0;
key.lodBias = (int)(lodBias * 256.0f);
if (gstate_c.Use(GPU_USE_ANISOTROPY) && g_Config.iAnisotropyLevel > 0) {
key.aniso = true;
}
break;
case GE_TEXLEVEL_MODE_CONST:
case GE_TEXLEVEL_MODE_UNKNOWN:
key.maxLevel = (int)(lodBias * 256.0f);
key.minLevel = (int)(lodBias * 256.0f);
key.lodBias = 0;
break;
case GE_TEXLEVEL_MODE_SLOPE:
// It's incorrect to use the slope as a bias. Instead it should be passed
// into the shader directly as an explicit lod level, with the bias on top. For now, we just kill the
// lodBias in this mode, working around #9772.
key.maxLevel = maxLevel * 256;
key.minLevel = 0;
key.lodBias = 0;
break;
}
}
// Video bilinear override
if (!key.magFilt && entry != nullptr && IsVideo(entry->addr)) {
// Enforce bilinear filtering on magnification.
key.magFilt = 1;
}
// Filtering overrides from replacements or settings.
TextureFiltering forceFiltering = TEX_FILTER_AUTO;
u64 cachekey = replacer_.Enabled() ? (entry ? entry->CacheKey() : 0) : 0;
if (!replacer_.Enabled() || entry == nullptr || !replacer_.FindFiltering(cachekey, entry->fullhash, &forceFiltering)) {
switch (g_Config.iTexFiltering) {
case TEX_FILTER_AUTO:
// Follow what the game wants. We just do a single heuristic change to avoid bleeding of wacky color test colors
// in higher resolution (used by some games for sprites, and they accidentally have linear filter on).
if (gstate.isModeThrough() && g_Config.iInternalResolution != 1) {
bool uglyColorTest = gstate.isColorTestEnabled() && !IsColorTestTriviallyTrue() && gstate.getColorTestRef() != 0;
if (uglyColorTest)
forceFiltering = TEX_FILTER_FORCE_NEAREST;
}
break;
case TEX_FILTER_FORCE_LINEAR:
// Override to linear filtering if there's no alpha or color testing going on.
if ((!gstate.isColorTestEnabled() || IsColorTestTriviallyTrue()) &&
(!gstate.isAlphaTestEnabled() || IsAlphaTestTriviallyTrue())) {
forceFiltering = TEX_FILTER_FORCE_LINEAR;
}
break;
case TEX_FILTER_FORCE_NEAREST:
// Just force to nearest without checks. Safe (but ugly).
forceFiltering = TEX_FILTER_FORCE_NEAREST;
break;
case TEX_FILTER_AUTO_MAX_QUALITY:
default:
forceFiltering = TEX_FILTER_AUTO_MAX_QUALITY;
if (gstate.isModeThrough() && g_Config.iInternalResolution != 1) {
bool uglyColorTest = gstate.isColorTestEnabled() && !IsColorTestTriviallyTrue() && gstate.getColorTestRef() != 0;
if (uglyColorTest)
forceFiltering = TEX_FILTER_FORCE_NEAREST;
}
break;
}
}
switch (forceFiltering) {
case TEX_FILTER_AUTO:
break;
case TEX_FILTER_FORCE_LINEAR:
key.magFilt = 1;
key.minFilt = 1;
key.mipFilt = 1;
break;
case TEX_FILTER_FORCE_NEAREST:
key.magFilt = 0;
key.minFilt = 0;
break;
case TEX_FILTER_AUTO_MAX_QUALITY:
// NOTE: We do not override magfilt here. If a game should have pixellated filtering,
// let it keep it. But we do enforce minification and mipmap filtering and max out the level.
// Later we'll also auto-generate any missing mipmaps.
key.minFilt = 1;
key.mipFilt = 1;
key.maxLevel = 9 * 256;
key.lodBias = 0.0f;
if (gstate_c.Use(GPU_USE_ANISOTROPY) && g_Config.iAnisotropyLevel > 0) {
key.aniso = true;
}
break;
}
return key;
}
SamplerCacheKey TextureCacheCommon::GetFramebufferSamplingParams(u16 bufferWidth, u16 bufferHeight) {
SamplerCacheKey key = GetSamplingParams(0, nullptr);
// In case auto max quality was on, restore min filt. Another fix for water in Outrun.
if (g_Config.iTexFiltering == TEX_FILTER_AUTO_MAX_QUALITY) {
int minFilt = gstate.texfilter & 0x7;
key.minFilt = minFilt & 1;
}
// Kill any mipmapping settings.
key.mipEnable = false;
key.mipFilt = false;
key.aniso = 0.0;
key.maxLevel = 0.0f;
key.lodBias = 0.0f;
// Often the framebuffer will not match the texture size. We'll wrap/clamp in the shader in that case.
int w = gstate.getTextureWidth(0);
int h = gstate.getTextureHeight(0);
if (w != bufferWidth || h != bufferHeight) {
key.sClamp = true;
key.tClamp = true;
}
return key;
}
void TextureCacheCommon::UpdateMaxSeenV(TexCacheEntry *entry, bool throughMode) {
// If the texture is >= 512 pixels tall...
if (entry->dim >= 0x900) {
if (entry->cluthash != 0 && entry->maxSeenV == 0) {
const u64 cachekeyMin = (u64)(entry->addr & 0x3FFFFFFF) << 32;
const u64 cachekeyMax = cachekeyMin + (1ULL << 32);
for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) {
// They should all be the same, just make sure we take any that has already increased.
// This is for a new texture.
if (it->second->maxSeenV != 0) {
entry->maxSeenV = it->second->maxSeenV;
break;
}
}
}
// Texture scale/offset and gen modes don't apply in through.
// So we can optimize how much of the texture we look at.
if (throughMode) {
if (entry->maxSeenV == 0 && gstate_c.vertBounds.maxV > 0) {
// Let's not hash less than 272, we might use more later and have to rehash. 272 is very common.
entry->maxSeenV = std::max((u16)272, gstate_c.vertBounds.maxV);
} else if (gstate_c.vertBounds.maxV > entry->maxSeenV) {
// The max height changed, so we're better off hashing the entire thing.
entry->maxSeenV = 512;
entry->status |= TexCacheEntry::STATUS_FREE_CHANGE;
}
} else {
// Otherwise, we need to reset to ensure we use the whole thing.
// Can't tell how much is used.
// TODO: We could tell for texcoord UV gen, and apply scale to max?
entry->maxSeenV = 512;
}
// We need to keep all CLUT variants in sync so we detect changes properly.
// See HandleTextureChange / STATUS_CLUT_RECHECK.
if (entry->cluthash != 0) {
const u64 cachekeyMin = (u64)(entry->addr & 0x3FFFFFFF) << 32;
const u64 cachekeyMax = cachekeyMin + (1ULL << 32);
for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) {
it->second->maxSeenV = entry->maxSeenV;
}
}
}
}
TexCacheEntry *TextureCacheCommon::SetTexture() {
u8 level = 0;
if (IsFakeMipmapChange()) {
level = std::max(0, gstate.getTexLevelOffset16() / 16);
}
u32 texaddr = gstate.getTextureAddress(level);
if (!Memory::IsValidAddress(texaddr)) {
// Bind a null texture and return.
Unbind();
gstate_c.SetTextureIs3D(false);
gstate_c.SetTextureIsArray(false);
return nullptr;
}
const u16 dim = gstate.getTextureDimension(level);
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
GETextureFormat texFormat = gstate.getTextureFormat();
if (texFormat >= 11) {
// TODO: Better assumption? Doesn't really matter, these are invalid.
texFormat = GE_TFMT_5650;
}
bool hasClut = gstate.isTextureFormatIndexed();
bool hasClutGPU = false;
u32 cluthash;
if (hasClut) {
if (clutRenderAddress_ != 0xFFFFFFFF) {
gstate_c.curTextureXOffset = 0.0f;
gstate_c.curTextureYOffset = 0.0f;
hasClutGPU = true;
cluthash = 0; // Or should we use some other marker value?
} else {
if (clutLastFormat_ != gstate.clutformat) {
// We update here because the clut format can be specified after the load.
// TODO: Unify this as far as possible (I think only GLES backend really needs its own implementation due to different component order).
UpdateCurrentClut(gstate.getClutPaletteFormat(), gstate.getClutIndexStartPos(), gstate.isClutIndexSimple());
}
cluthash = clutHash_ ^ gstate.clutformat;
}
} else {
cluthash = 0;
}
u64 cachekey = TexCacheEntry::CacheKey(texaddr, texFormat, dim, cluthash);
int bufw = GetTextureBufw(0, texaddr, texFormat);
u8 maxLevel = gstate.getTextureMaxLevel();
u32 minihash = MiniHash((const u32 *)Memory::GetPointerUnchecked(texaddr));
TexCache::iterator entryIter = cache_.find(cachekey);
TexCacheEntry *entry = nullptr;
// Note: It's necessary to reset needshadertexclamp, for otherwise DIRTY_TEXCLAMP won't get set later.
// Should probably revisit how this works..
gstate_c.SetNeedShaderTexclamp(false);
gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE;
bool isBgraTexture = isBgraBackend_ && !hasClutGPU;
gstate_c.SetTextureIsBGRA(isBgraTexture);
if (entryIter != cache_.end()) {
entry = entryIter->second.get();
// Validate the texture still matches the cache entry.
bool match = entry->Matches(dim, texFormat, maxLevel);
const char *reason = "different params";
// Check for dynamic CLUT status
if (((entry->status & TexCacheEntry::STATUS_CLUT_GPU) != 0) != hasClutGPU) {
// Need to recreate, suddenly a CLUT GPU texture was used without it, or vice versa.
// I think this can only happen on a clut hash collision with the marker value, so highly unlikely.
match = false;
}
// Check for FBO changes.
if (entry->status & TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP) {
// Fall through to the end where we'll delete the entry if there's a framebuffer.
entry->status &= ~TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP;
match = false;
}
bool rehash = entry->GetHashStatus() == TexCacheEntry::STATUS_UNRELIABLE;
// First let's see if another texture with the same address had a hashfail.
if (entry->status & TexCacheEntry::STATUS_CLUT_RECHECK) {
// Always rehash in this case, if one changed the rest all probably did.
rehash = true;
entry->status &= ~TexCacheEntry::STATUS_CLUT_RECHECK;
} else if (!gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE)) {
// Okay, just some parameter change - the data didn't change, no need to rehash.
rehash = false;
}
// Do we need to recreate?
if (entry->status & TexCacheEntry::STATUS_FORCE_REBUILD) {
match = false;
entry->status &= ~TexCacheEntry::STATUS_FORCE_REBUILD;
}
if (match) {
if (entry->lastFrame != gpuStats.numFlips) {
u32 diff = gpuStats.numFlips - entry->lastFrame;
entry->numFrames++;
if (entry->framesUntilNextFullHash < diff) {
// Exponential backoff up to 512 frames. Textures are often reused.
if (entry->numFrames > 32) {
// Also, try to add some "randomness" to avoid rehashing several textures the same frame.
entry->framesUntilNextFullHash = std::min(512, entry->numFrames) + (((intptr_t)(entry->textureName) >> 12) & 15);
} else {
entry->framesUntilNextFullHash = entry->numFrames;
}
rehash = true;
} else {
entry->framesUntilNextFullHash -= diff;
}
}
// If it's not huge or has been invalidated many times, recheck the whole texture.
if (entry->invalidHint > 180 || (entry->invalidHint > 15 && (dim >> 8) < 9 && (dim & 0xF) < 9)) {
entry->invalidHint = 0;
rehash = true;
}
if (minihash != entry->minihash) {
match = false;
reason = "minihash";
} else if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
rehash = false;
}
}
if (match && (entry->status & TexCacheEntry::STATUS_TO_SCALE) && standardScaleFactor_ != 1 && texelsScaledThisFrame_ < TEXCACHE_MAX_TEXELS_SCALED) {
if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) {
// INFO_LOG(G3D, "Reloading texture to do the scaling we skipped..");
match = false;
reason = "scaling";
}
}
if (match && (entry->status & TexCacheEntry::STATUS_TO_REPLACE) && replacementTimeThisFrame_ < replacementFrameBudget_) {
int w0 = gstate.getTextureWidth(0);
int h0 = gstate.getTextureHeight(0);
int d0 = 1;
ReplacedTexture &replaced = FindReplacement(entry, w0, h0, d0);
if (replaced.IsInvalid()) {
entry->status &= ~TexCacheEntry::STATUS_TO_REPLACE;
if (g_Config.bSaveNewTextures) {
// Load once more to actually save.
match = false;
reason = "replacing";
}
} else {
match = false;
reason = "replacing";
}
}
if (match) {
// got one!
gstate_c.curTextureWidth = w;
gstate_c.curTextureHeight = h;
gstate_c.SetTextureIs3D((entry->status & TexCacheEntry::STATUS_3D) != 0);
gstate_c.SetTextureIsArray(false);
if (rehash) {
// Update in case any of these changed.
entry->sizeInRAM = (textureBitsPerPixel[texFormat] * bufw * h / 2) / 8;
entry->bufw = bufw;
entry->cluthash = cluthash;
}
nextTexture_ = entry;
nextNeedsRehash_ = rehash;
nextNeedsChange_ = false;
// Might need a rebuild if the hash fails, but that will be set later.
nextNeedsRebuild_ = false;
failedTexture_ = false;
VERBOSE_LOG(G3D, "Texture at %08x found in cache, applying", texaddr);
return entry; //Done!
} else {
// Wasn't a match, we will rebuild.
nextChangeReason_ = reason;
nextNeedsChange_ = true;
// Fall through to the rebuild case.
}
}
// No texture found, or changed (depending on entry).
// Check for framebuffers.
TextureDefinition def{};
def.addr = texaddr;
def.dim = dim;
def.format = texFormat;
def.bufw = bufw;
AttachCandidate bestCandidate;
if (GetBestFramebufferCandidate(def, 0, &bestCandidate)) {
// If we had a texture entry here, let's get rid of it.
if (entryIter != cache_.end()) {
DeleteTexture(entryIter);
}
nextTexture_ = nullptr;
nextNeedsRebuild_ = false;
SetTextureFramebuffer(bestCandidate); // sets curTexture3D
return nullptr;
}
// Didn't match a framebuffer, keep going.
if (!entry) {
VERBOSE_LOG(G3D, "No texture in cache for %08x, decoding...", texaddr);
entry = new TexCacheEntry{};
cache_[cachekey].reset(entry);
if (PPGeIsFontTextureAddress(texaddr)) {
// It's the builtin font texture.
entry->status = TexCacheEntry::STATUS_RELIABLE;
} else if (g_Config.bTextureBackoffCache && !IsVideo(texaddr)) {
entry->status = TexCacheEntry::STATUS_HASHING;
} else {
entry->status = TexCacheEntry::STATUS_UNRELIABLE;
}
if (hasClutGPU) {
WARN_LOG_REPORT_ONCE(clutUseRender, G3D, "Using texture with dynamic CLUT: texfmt=%d, clutfmt=%d", gstate.getTextureFormat(), gstate.getClutPaletteFormat());
entry->status |= TexCacheEntry::STATUS_CLUT_GPU;
}
if (hasClut && clutRenderAddress_ == 0xFFFFFFFF) {
const u64 cachekeyMin = (u64)(texaddr & 0x3FFFFFFF) << 32;
const u64 cachekeyMax = cachekeyMin + (1ULL << 32);
int found = 0;
for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) {
found++;
}
if (found >= TEXTURE_CLUT_VARIANTS_MIN) {
for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) {
it->second->status |= TexCacheEntry::STATUS_CLUT_VARIANTS;
}
entry->status |= TexCacheEntry::STATUS_CLUT_VARIANTS;
}
}
nextNeedsChange_ = false;
}
// We have to decode it, let's setup the cache entry first.
entry->addr = texaddr;
entry->minihash = minihash;
entry->dim = dim;
entry->format = texFormat;
entry->maxLevel = maxLevel;
// This would overestimate the size in many case so we underestimate instead
// to avoid excessive clearing caused by cache invalidations.
entry->sizeInRAM = (textureBitsPerPixel[texFormat] * bufw * h / 2) / 8;
entry->bufw = bufw;
entry->cluthash = cluthash;
gstate_c.curTextureWidth = w;
gstate_c.curTextureHeight = h;
gstate_c.SetTextureIs3D((entry->status & TexCacheEntry::STATUS_3D) != 0);
gstate_c.SetTextureIsArray(false); // Ordinary 2D textures still aren't used by array view in VK. We probably might as well, though, at this point..
failedTexture_ = false;
nextTexture_ = entry;
nextFramebufferTexture_ = nullptr;
nextNeedsRehash_ = true;
// We still need to rebuild, to allocate a texture. But we'll bail early.
nextNeedsRebuild_ = true;
return entry;
}
bool TextureCacheCommon::GetBestFramebufferCandidate(const TextureDefinition &entry, u32 texAddrOffset, AttachCandidate *bestCandidate) const {
gpuStats.numFramebufferEvaluations++;
TinySet<AttachCandidate, 6> candidates;
const std::vector<VirtualFramebuffer *> &framebuffers = framebufferManager_->Framebuffers();
for (VirtualFramebuffer *framebuffer : framebuffers) {
FramebufferMatchInfo match{};
if (MatchFramebuffer(entry, framebuffer, texAddrOffset, RASTER_COLOR, &match)) {
candidates.push_back(AttachCandidate{ framebuffer, match, RASTER_COLOR });
}
match = {};
if (MatchFramebuffer(entry, framebuffer, texAddrOffset, RASTER_DEPTH, &match)) {
candidates.push_back(AttachCandidate{ framebuffer, match, RASTER_DEPTH });
}
}
if (candidates.size() == 0) {
return false;
} else if (candidates.size() == 1) {
*bestCandidate = candidates[0];
return true;
}
bool logging = Reporting::ShouldLogNTimes("multifbcandidate", 5);
// OK, multiple possible candidates. Will need to figure out which one is the most relevant.
int bestRelevancy = -1;
size_t bestIndex = -1;
bool kzCompat = PSP_CoreParameter().compat.flags().SplitFramebufferMargin;
// We simply use the sequence counter as relevancy nowadays.
for (size_t i = 0; i < candidates.size(); i++) {
AttachCandidate &candidate = candidates[i];
int relevancy = candidate.channel == RASTER_COLOR ? candidate.fb->colorBindSeq : candidate.fb->depthBindSeq;
// Add a small negative penalty if the texture is currently bound as a framebuffer, and offset is not zero.
// Should avoid problems when pingponging two nearby buffers, like in Wipeout Pure in #15927.
if (candidate.channel == RASTER_COLOR &&
(candidate.match.yOffset != 0 || candidate.match.xOffset != 0) &&
candidate.fb->fb_address == (gstate.getFrameBufRawAddress() | 0x04000000)) {
relevancy -= 2;
}
if (candidate.match.xOffset != 0 && PSP_CoreParameter().compat.flags().DisallowFramebufferAtOffset) {
continue;
}
// Avoid binding as texture the framebuffer we're rendering to.
// In Killzone, we split the framebuffer but the matching algorithm can still pick the wrong one,
// which this avoids completely.
if (kzCompat && candidate.fb == framebufferManager_->GetCurrentRenderVFB()) {
continue;
}
if (logging) {
candidate.relevancy = relevancy;
}
if (relevancy > bestRelevancy) {
bestRelevancy = relevancy;
bestIndex = i;
}
}
if (logging) {
std::string cands;
for (size_t i = 0; i < candidates.size(); i++) {
cands += candidates[i].ToString();
if (i != candidates.size() - 1)
cands += "\n";
}
cands += "\n";
WARN_LOG(G3D, "GetFramebufferCandidates: Multiple (%d) candidate framebuffers. texaddr: %08x offset: %d (%dx%d stride %d, %s):\n%s",
(int)candidates.size(),
entry.addr, texAddrOffset, dimWidth(entry.dim), dimHeight(entry.dim), entry.bufw, GeTextureFormatToString(entry.format),
cands.c_str()
);
logging = true;
}
if (bestIndex != -1) {
if (logging) {
WARN_LOG(G3D, "Chose candidate %d:\n%s\n", (int)bestIndex, candidates[bestIndex].ToString().c_str());
}
*bestCandidate = candidates[bestIndex];
return true;
} else {
return false;
}
}
// Removes old textures.
void TextureCacheCommon::Decimate(bool forcePressure) {
if (--decimationCounter_ <= 0) {
decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL;
} else {
return;
}
if (forcePressure || cacheSizeEstimate_ >= TEXCACHE_MIN_PRESSURE) {
const u32 had = cacheSizeEstimate_;
ForgetLastTexture();
int killAgeBase = lowMemoryMode_ ? TEXTURE_KILL_AGE_LOWMEM : TEXTURE_KILL_AGE;
for (TexCache::iterator iter = cache_.begin(); iter != cache_.end(); ) {
bool hasClut = (iter->second->status & TexCacheEntry::STATUS_CLUT_VARIANTS) != 0;
int killAge = hasClut ? TEXTURE_KILL_AGE_CLUT : killAgeBase;
if (iter->second->lastFrame + killAge < gpuStats.numFlips) {
DeleteTexture(iter++);
} else {
++iter;
}
}
VERBOSE_LOG(G3D, "Decimated texture cache, saved %d estimated bytes - now %d bytes", had - cacheSizeEstimate_, cacheSizeEstimate_);
}
// If enabled, we also need to clear the secondary cache.
if (PSP_CoreParameter().compat.flags().SecondaryTextureCache && (forcePressure || secondCacheSizeEstimate_ >= TEXCACHE_SECOND_MIN_PRESSURE)) {
const u32 had = secondCacheSizeEstimate_;
for (TexCache::iterator iter = secondCache_.begin(); iter != secondCache_.end(); ) {
// In low memory mode, we kill them all since secondary cache is disabled.
if (lowMemoryMode_ || iter->second->lastFrame + TEXTURE_SECOND_KILL_AGE < gpuStats.numFlips) {
ReleaseTexture(iter->second.get(), true);
secondCacheSizeEstimate_ -= EstimateTexMemoryUsage(iter->second.get());
secondCache_.erase(iter++);
} else {
++iter;
}
}
VERBOSE_LOG(G3D, "Decimated second texture cache, saved %d estimated bytes - now %d bytes", had - secondCacheSizeEstimate_, secondCacheSizeEstimate_);
}
DecimateVideos();
replacer_.Decimate(forcePressure ? ReplacerDecimateMode::FORCE_PRESSURE : ReplacerDecimateMode::NEW_FRAME);
}
void TextureCacheCommon::DecimateVideos() {
for (auto iter = videos_.begin(); iter != videos_.end(); ) {
if (iter->flips + VIDEO_DECIMATE_AGE < gpuStats.numFlips) {
iter = videos_.erase(iter++);
} else {
++iter;
}
}
}
bool TextureCacheCommon::IsVideo(u32 texaddr) const {
texaddr &= 0x3FFFFFFF;
for (auto &info : videos_) {
if (texaddr < info.addr) {
continue;
}
if (texaddr < info.addr + info.size) {
return true;
}
}
return false;
}
void TextureCacheCommon::HandleTextureChange(TexCacheEntry *const entry, const char *reason, bool initialMatch, bool doDelete) {
cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry);
entry->numInvalidated++;
gpuStats.numTextureInvalidations++;
DEBUG_LOG(G3D, "Texture different or overwritten, reloading at %08x: %s", entry->addr, reason);
if (doDelete) {
InvalidateLastTexture();
ReleaseTexture(entry, true);
entry->status &= ~TexCacheEntry::STATUS_IS_SCALED;
}
// Mark as hashing, if marked as reliable.
if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
entry->SetHashStatus(TexCacheEntry::STATUS_HASHING);
}
// Also, mark any textures with the same address but different clut. They need rechecking.
if (entry->cluthash != 0) {
const u64 cachekeyMin = (u64)(entry->addr & 0x3FFFFFFF) << 32;
const u64 cachekeyMax = cachekeyMin + (1ULL << 32);
for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) {
if (it->second->cluthash != entry->cluthash) {
it->second->status |= TexCacheEntry::STATUS_CLUT_RECHECK;
}
}
}
if (entry->numFrames < TEXCACHE_FRAME_CHANGE_FREQUENT) {
if (entry->status & TexCacheEntry::STATUS_FREE_CHANGE) {
entry->status &= ~TexCacheEntry::STATUS_FREE_CHANGE;
} else {
entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
}
entry->numFrames = 0;
}
void TextureCacheCommon::NotifyFramebuffer(VirtualFramebuffer *framebuffer, FramebufferNotification msg) {
const u32 fb_addr = framebuffer->fb_address;
const u32 z_addr = framebuffer->z_address;
const u32 fb_bpp = BufferFormatBytesPerPixel(framebuffer->fb_format);
const u32 z_bpp = 2; // No other format exists.
const u32 fb_stride = framebuffer->fb_stride;
const u32 z_stride = framebuffer->z_stride;
// NOTE: Some games like Burnout massively misdetects the height of some framebuffers, leading to a lot of unnecessary invalidations.
// Let's only actually get rid of textures that cover the very start of the framebuffer.
const u32 fb_endAddr = fb_addr + fb_stride * std::min((int)framebuffer->height, 16) * fb_bpp;
const u32 z_endAddr = z_addr + z_stride * std::min((int)framebuffer->height, 16) * z_bpp;
switch (msg) {
case NOTIFY_FB_CREATED:
case NOTIFY_FB_UPDATED:
{
// Try to match the new framebuffer to existing textures.
// Backwards from the "usual" texturing case so can't share a utility function.
u64 cacheKey = (u64)fb_addr << 32;
// If it has a clut, those are the low 32 bits, so it'll be inside this range.
// Also, if it's a subsample of the buffer, it'll also be within the FBO.
u64 cacheKeyEnd = (u64)fb_endAddr << 32;
// Color - no need to look in the mirrors.
for (auto it = cache_.lower_bound(cacheKey), end = cache_.upper_bound(cacheKeyEnd); it != end; ++it) {
it->second->status |= TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP;
gpuStats.numTextureInvalidationsByFramebuffer++;
}
if (z_stride != 0) {
// Depth. Just look at the range, but in each mirror (0x04200000 and 0x04600000).
// Games don't use 0x04400000 as far as I know - it has no swizzle effect so kinda useless.
cacheKey = (u64)z_addr << 32;
cacheKeyEnd = (u64)z_endAddr << 32;
for (auto it = cache_.lower_bound(cacheKey | 0x200000), end = cache_.upper_bound(cacheKeyEnd | 0x200000); it != end; ++it) {
it->second->status |= TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP;
gpuStats.numTextureInvalidationsByFramebuffer++;
}
for (auto it = cache_.lower_bound(cacheKey | 0x600000), end = cache_.upper_bound(cacheKeyEnd | 0x600000); it != end; ++it) {
it->second->status |= TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP;
gpuStats.numTextureInvalidationsByFramebuffer++;
}
}
break;
}
default:
break;
}
}
bool TextureCacheCommon::MatchFramebuffer(
const TextureDefinition &entry,
VirtualFramebuffer *framebuffer, u32 texaddrOffset, RasterChannel channel, FramebufferMatchInfo *matchInfo) const {
static const u32 MAX_SUBAREA_Y_OFFSET_SAFE = 32;
uint32_t fb_address = channel == RASTER_DEPTH ? framebuffer->z_address : framebuffer->fb_address;
uint32_t fb_stride = channel == RASTER_DEPTH ? framebuffer->z_stride : framebuffer->fb_stride;
GEBufferFormat fb_format = channel == RASTER_DEPTH ? GE_FORMAT_DEPTH16 : framebuffer->fb_format;
if (channel == RASTER_DEPTH && (framebuffer->z_address == framebuffer->fb_address || framebuffer->z_address == 0)) {
// Try to avoid silly matches to somewhat malformed buffers.
return false;
}
if (!fb_stride) {
// Hard to make decisions.
return false;
}
switch (entry.format) {
case GE_TFMT_DXT1:
case GE_TFMT_DXT3:
case GE_TFMT_DXT5:
return false;
default: break;
}
uint32_t fb_stride_in_bytes = fb_stride * BufferFormatBytesPerPixel(fb_format);
uint32_t tex_stride_in_bytes = entry.bufw * textureBitsPerPixel[entry.format] / 8; // Note, we're looking up bits here so need to divide by 8.
u32 addr = fb_address;
u32 texaddr = entry.addr + texaddrOffset;
bool texInVRAM = Memory::IsVRAMAddress(texaddr);
bool fbInVRAM = Memory::IsVRAMAddress(fb_address);
if (texInVRAM != fbInVRAM) {
// Shortcut. Cannot possibly be a match.
return false;
}
if (texInVRAM) {
const u32 mirrorMask = 0x041FFFFF;
addr &= mirrorMask;
texaddr &= mirrorMask;
}
const bool noOffset = texaddr == addr;
const bool exactMatch = noOffset && entry.format < 4 && channel == RASTER_COLOR && fb_stride_in_bytes == tex_stride_in_bytes;
const u32 texWidth = 1 << ((entry.dim >> 0) & 0xf);
const u32 texHeight = 1 << ((entry.dim >> 8) & 0xf);
// 512 on a 272 framebuffer is sane, so let's be lenient.
const u32 minSubareaHeight = texHeight / 4;
// If they match "exactly", it's non-CLUT and from the top left.
if (exactMatch) {
// NOTE: This check is okay because the first texture formats are the same as the buffer formats.
if (IsTextureFormatBufferCompatible(entry.format)) {
if (TextureFormatMatchesBufferFormat(entry.format, fb_format) || (framebuffer->usageFlags & FB_USAGE_BLUE_TO_ALPHA)) {
return true;
} else {
WARN_LOG_ONCE(diffFormat1, G3D, "Found matching framebuffer with reinterpretable fb_format: %s != %s at %08x", GeTextureFormatToString(entry.format), GeBufferFormatToString(fb_format), fb_address);
*matchInfo = FramebufferMatchInfo{ 0, 0, true, TextureFormatToBufferFormat(entry.format) };
return true;
}
} else {
// Format incompatible, ignoring without comment. (maybe some really gnarly hacks will end up here...)
return false;
}
} else {
// Apply to buffered mode only.
if (!framebufferManager_->UseBufferedRendering()) {
return false;
}
// Check works for D16 too.
const bool matchingClutFormat =
(fb_format == GE_FORMAT_DEPTH16 && entry.format == GE_TFMT_CLUT16) ||
(fb_format == GE_FORMAT_DEPTH16 && entry.format == GE_TFMT_5650) ||
(fb_format == GE_FORMAT_8888 && entry.format == GE_TFMT_CLUT32) ||
(fb_format != GE_FORMAT_8888 && entry.format == GE_TFMT_CLUT16) ||
(fb_format == GE_FORMAT_8888 && entry.format == GE_TFMT_CLUT8);
const int texBitsPerPixel = std::max(1U, (u32)textureBitsPerPixel[entry.format]);
const int byteOffset = texaddr - addr;
if (byteOffset > 0) {
matchInfo->yOffset = byteOffset / fb_stride_in_bytes;
matchInfo->xOffset = 8 * (byteOffset % fb_stride_in_bytes) / texBitsPerPixel;
} else if (byteOffset < 0) {
int texelOffset = 8 * byteOffset / texBitsPerPixel;
// We don't support negative Y offsets, and negative X offsets are only for the Killzone workaround.
if (texelOffset < -(int)entry.bufw || !PSP_CoreParameter().compat.flags().SplitFramebufferMargin) {
return false;
}
matchInfo->xOffset = entry.bufw == 0 ? 0 : -(-texelOffset % (int)entry.bufw);
}
if (matchInfo->yOffset > 0 && matchInfo->yOffset + minSubareaHeight >= framebuffer->height) {
// Can't be inside the framebuffer.
return false;
}
// Check if it's in bufferWidth (which might be higher than width and may indicate the framebuffer includes the data.)
// Do the computation in bytes so that it's valid even in case of weird reinterpret scenarios.
const int xOffsetInBytes = matchInfo->xOffset * 8 / texBitsPerPixel;
const int texWidthInBytes = texWidth * 8 / texBitsPerPixel;
if (xOffsetInBytes >= framebuffer->BufferWidthInBytes() && xOffsetInBytes + texWidthInBytes <= (int)fb_stride_in_bytes) {
// This happens in Brave Story, see #10045 - the texture is in the space between strides, with matching stride.
return false;
}
// Trying to play it safe. Below 0x04110000 is almost always framebuffers.
// TODO: Maybe we can reduce this check and find a better way above 0x04110000?
if (matchInfo->yOffset > MAX_SUBAREA_Y_OFFSET_SAFE && addr > 0x04110000 && !PSP_CoreParameter().compat.flags().AllowLargeFBTextureOffsets) {
WARN_LOG_REPORT_ONCE(subareaIgnored, G3D, "Ignoring possible texturing from framebuffer at %08x +%dx%d / %dx%d", fb_address, matchInfo->xOffset, matchInfo->yOffset, framebuffer->width, framebuffer->height);
return false;
}
// Note the check for texHeight - we really don't care about a stride mismatch if texHeight == 1.
// This also takes care of the 4x1 texture check we used to have here for Burnout Dominator.
if (fb_stride_in_bytes != tex_stride_in_bytes && texHeight > 1) {
// Probably irrelevant.
return false;
}
// Check for CLUT. The framebuffer is always RGB, but it can be interpreted as a CLUT texture.
// 3rd Birthday (and a bunch of other games) render to a 16 bit clut texture.
if (matchingClutFormat) {
if (!noOffset) {
WARN_LOG_ONCE(subareaClut, G3D, "Matching framebuffer (%s) using %s with offset at %08x +%dx%d", channel == RASTER_DEPTH ? "DEPTH" : "COLOR", GeTextureFormatToString(entry.format), fb_address, matchInfo->xOffset, matchInfo->yOffset);
}
return true;
} else if (IsClutFormat((GETextureFormat)(entry.format)) || IsDXTFormat((GETextureFormat)(entry.format))) {
WARN_LOG_ONCE(fourEightBit, G3D, "%s texture format not matching framebuffer of format %s at %08x/%d", GeTextureFormatToString(entry.format), GeBufferFormatToString(fb_format), fb_address, fb_stride);
return false;
}
// This is either normal or we failed to generate a shader to depalettize
if ((int)fb_format == (int)entry.format || matchingClutFormat) {
if ((int)fb_format != (int)entry.format) {
WARN_LOG_ONCE(diffFormat2, G3D, "Matching framebuffer with different formats %s != %s at %08x",
GeTextureFormatToString(entry.format), GeBufferFormatToString(fb_format), fb_address);
return true;
} else {
WARN_LOG_ONCE(subarea, G3D, "Matching from framebuffer at %08x +%dx%d", fb_address, matchInfo->xOffset, matchInfo->yOffset);
return true;
}
} else {
WARN_LOG_ONCE(diffFormat2, G3D, "Ignoring possible texturing from framebuffer with incompatible format %s != %s at %08x (+%dx%d)",
GeTextureFormatToString(entry.format), GeBufferFormatToString(fb_format), fb_address, matchInfo->xOffset, matchInfo->yOffset);
return false;
}
}
}
void TextureCacheCommon::SetTextureFramebuffer(const AttachCandidate &candidate) {
VirtualFramebuffer *framebuffer = candidate.fb;
FramebufferMatchInfo fbInfo = candidate.match;
RasterChannel channel = candidate.channel;
if (candidate.match.reinterpret) {
framebuffer = framebufferManager_->ResolveFramebufferColorToFormat(candidate.fb, candidate.match.reinterpretTo);
}
_dbg_assert_msg_(framebuffer != nullptr, "Framebuffer must not be null.");
framebuffer->usageFlags |= FB_USAGE_TEXTURE;
// Keep the framebuffer alive.
framebuffer->last_frame_used = gpuStats.numFlips;
nextFramebufferTextureChannel_ = RASTER_COLOR;
if (framebufferManager_->UseBufferedRendering()) {
// Detect when we need to apply the horizontal texture swizzle.
u64 depthUpperBits = (channel == RASTER_DEPTH && framebuffer->fb_format == GE_FORMAT_8888) ? ((gstate.getTextureAddress(0) & 0x600000) >> 20) : 0;
bool needsDepthXSwizzle = depthUpperBits == 2;
// We need to force it, since we may have set it on a texture before attaching.
gstate_c.curTextureWidth = framebuffer->bufferWidth;
gstate_c.curTextureHeight = framebuffer->bufferHeight;
if (needsDepthXSwizzle) {
gstate_c.curTextureWidth = RoundUpToPowerOf2(gstate_c.curTextureWidth);
}
if ((gstate_c.curTextureXOffset == 0) != (fbInfo.xOffset == 0) || (gstate_c.curTextureYOffset == 0) != (fbInfo.yOffset == 0)) {
gstate_c.Dirty(DIRTY_FRAGMENTSHADER_STATE);
}
gstate_c.SetTextureIsBGRA(false);
gstate_c.curTextureXOffset = fbInfo.xOffset;
gstate_c.curTextureYOffset = fbInfo.yOffset;
u32 texW = (u32)gstate.getTextureWidth(0);
u32 texH = (u32)gstate.getTextureHeight(0);
gstate_c.SetNeedShaderTexclamp(gstate_c.curTextureWidth != texW || gstate_c.curTextureHeight != texH);
if (gstate_c.curTextureXOffset != 0 || gstate_c.curTextureYOffset != 0) {
gstate_c.SetNeedShaderTexclamp(true);
}
if (channel == RASTER_DEPTH) {
framebuffer->usageFlags |= FB_USAGE_COLOR_MIXED_DEPTH;
}
if (channel == RASTER_DEPTH && !gstate_c.Use(GPU_USE_DEPTH_TEXTURE)) {
WARN_LOG_ONCE(ndepthtex, G3D, "Depth textures not supported, not binding");
// Flag to bind a null texture if we can't support depth textures.
// Should only happen on old OpenGL.
nextFramebufferTexture_ = nullptr;
failedTexture_ = true;
} else {
nextFramebufferTexture_ = framebuffer;
nextFramebufferTextureChannel_ = channel;
}
nextTexture_ = nullptr;
} else {
if (framebuffer->fbo) {
framebuffer->fbo->Release();
framebuffer->fbo = nullptr;
}
Unbind();
gstate_c.SetNeedShaderTexclamp(false);
nextFramebufferTexture_ = nullptr;
nextTexture_ = nullptr;
}
gstate_c.SetTextureIs3D(false);
gstate_c.SetTextureIsArray(true);
nextNeedsRehash_ = false;
nextNeedsChange_ = false;
nextNeedsRebuild_ = false;
}
// Only looks for framebuffers.
bool TextureCacheCommon::SetOffsetTexture(u32 yOffset) {
if (!framebufferManager_->UseBufferedRendering()) {
return false;
}
u32 texaddr = gstate.getTextureAddress(0);
GETextureFormat fmt = gstate.getTextureFormat();
const u32 bpp = fmt == GE_TFMT_8888 ? 4 : 2;
const u32 texaddrOffset = yOffset * gstate.getTextureWidth(0) * bpp;
if (!Memory::IsValidAddress(texaddr) || !Memory::IsValidAddress(texaddr + texaddrOffset)) {
return false;
}
TextureDefinition def;
def.addr = texaddr;
def.format = fmt;
def.bufw = GetTextureBufw(0, texaddr, fmt);
def.dim = gstate.getTextureDimension(0);
AttachCandidate bestCandidate;
if (GetBestFramebufferCandidate(def, texaddrOffset, &bestCandidate)) {
SetTextureFramebuffer(bestCandidate);
return true;
} else {
return false;
}
}
bool TextureCacheCommon::GetCurrentFramebufferTextureDebug(GPUDebugBuffer &buffer, bool *isFramebuffer) {
if (!nextFramebufferTexture_)
return false;
*isFramebuffer = true;
VirtualFramebuffer *vfb = nextFramebufferTexture_;
u8 sf = vfb->renderScaleFactor;
int x = gstate_c.curTextureXOffset * sf;
int y = gstate_c.curTextureYOffset * sf;
int desiredW = gstate.getTextureWidth(0) * sf;
int desiredH = gstate.getTextureHeight(0) * sf;
int w = std::min(desiredW, vfb->bufferWidth * sf - x);
int h = std::min(desiredH, vfb->bufferHeight * sf - y);
bool retval;
if (nextFramebufferTextureChannel_ == RASTER_DEPTH) {
buffer.Allocate(desiredW, desiredH, GPU_DBG_FORMAT_FLOAT, false);
if (w < desiredW || h < desiredH)
buffer.ZeroBytes();
retval = draw_->CopyFramebufferToMemorySync(vfb->fbo, Draw::FB_DEPTH_BIT, x, y, w, h, Draw::DataFormat::D32F, buffer.GetData(), desiredW, "GetCurrentTextureDebug");
} else {
buffer.Allocate(desiredW, desiredH, GPU_DBG_FORMAT_8888, false);
if (w < desiredW || h < desiredH)
buffer.ZeroBytes();
retval = draw_->CopyFramebufferToMemorySync(vfb->fbo, Draw::FB_COLOR_BIT, x, y, w, h, Draw::DataFormat::R8G8B8A8_UNORM, buffer.GetData(), desiredW, "GetCurrentTextureDebug");
}
// Vulkan requires us to re-apply all dynamic state for each command buffer, and the above will cause us to start a new cmdbuf.
// So let's dirty the things that are involved in Vulkan dynamic state. Readbacks are not frequent so this won't hurt other backends.
gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE);
// We may have blitted to a temp FBO.
framebufferManager_->RebindFramebuffer("RebindFramebuffer - GetCurrentTextureDebug");
if (!retval)
ERROR_LOG(G3D, "Failed to get debug texture: copy to memory failed");
return retval;
}
void TextureCacheCommon::NotifyConfigChanged() {
int scaleFactor = g_Config.iTexScalingLevel;
if (!gstate_c.Use(GPU_USE_TEXTURE_NPOT)) {
// Reduce the scale factor to a power of two (e.g. 2 or 4) if textures must be a power of two.
// TODO: In addition we should probably remove these options from the UI in this case.
while ((scaleFactor & (scaleFactor - 1)) != 0) {
--scaleFactor;
}
}
// Just in case, small display with auto resolution or something.
if (scaleFactor <= 0) {
scaleFactor = 1;
}
standardScaleFactor_ = scaleFactor;
replacer_.NotifyConfigChanged();
}
void TextureCacheCommon::NotifyWriteFormattedFromMemory(u32 addr, int size, int width, GEBufferFormat fmt) {
addr &= 0x3FFFFFFF;
videos_.push_back({ addr, (u32)size, gpuStats.numFlips });
}
void TextureCacheCommon::LoadClut(u32 clutAddr, u32 loadBytes) {
if (loadBytes == 0) {
// Don't accidentally overwrite clutTotalBytes_ with a zero.
return;
}
_assert_(loadBytes <= 2048);
clutTotalBytes_ = loadBytes;
clutRenderAddress_ = 0xFFFFFFFF;
if (Memory::IsValidAddress(clutAddr)) {
if (Memory::IsVRAMAddress(clutAddr)) {
// Clear the uncached and mirror bits, etc. to match framebuffers.
const u32 clutLoadAddr = clutAddr & 0x041FFFFF;
const u32 clutLoadEnd = clutLoadAddr + loadBytes;
static const u32 MAX_CLUT_OFFSET = 4096;
clutRenderOffset_ = MAX_CLUT_OFFSET;
const std::vector<VirtualFramebuffer *> &framebuffers = framebufferManager_->Framebuffers();
u32 bestClutAddress = 0xFFFFFFFF;
VirtualFramebuffer *chosenFramebuffer = nullptr;
for (VirtualFramebuffer *framebuffer : framebuffers) {
// Let's not deal with divide by zero.
if (framebuffer->fb_stride == 0)
continue;
const u32 fb_address = framebuffer->fb_address;
const u32 fb_bpp = BufferFormatBytesPerPixel(framebuffer->fb_format);
int offset = clutLoadAddr - fb_address;
// Is this inside the framebuffer at all? Note that we only check the first line here, this should
// be changed.
bool matchRange = offset >= 0 && offset < (int)(framebuffer->fb_stride * fb_bpp);
if (matchRange) {
// And is it inside the rendered area? Sometimes games pack data in the margin between width and stride.
// If the framebuffer width was detected as 512, we're gonna assume it's really 480.
int fbMatchWidth = framebuffer->width;
if (fbMatchWidth == 512) {
fbMatchWidth = 480;
}
bool inMargin = ((offset / fb_bpp) % framebuffer->fb_stride) == fbMatchWidth;
// The offset check here means, in the context of the loop, that we'll pick
// the framebuffer with the smallest offset. This is yet another framebuffer matching
// loop with its own rules, eventually we'll probably want to do something
// more systematic.
if (matchRange && !inMargin && offset < (int)clutRenderOffset_) {
WARN_LOG_N_TIMES(clutfb, 5, G3D, "Detected LoadCLUT(%d bytes) from framebuffer %08x (%s), byte offset %d", loadBytes, fb_address, GeBufferFormatToString(framebuffer->fb_format), offset);
framebuffer->last_frame_clut = gpuStats.numFlips;
// Also mark used so it's not decimated.
framebuffer->last_frame_used = gpuStats.numFlips;
framebuffer->usageFlags |= FB_USAGE_CLUT;
bestClutAddress = framebuffer->fb_address;
clutRenderOffset_ = (u32)offset;
chosenFramebuffer = framebuffer;
if (offset == 0) {
// Not gonna find a better match according to the smallest-offset rule, so we'll go with this one.
break;
}
}
}
}
// To turn off dynamic CLUT (for demonstration or testing purposes), add "false &&" to this check.
if (chosenFramebuffer && chosenFramebuffer->fbo) {
clutRenderAddress_ = bestClutAddress;
if (!dynamicClutTemp_) {
Draw::FramebufferDesc desc{};
desc.width = 512;
desc.height = 1;
desc.depth = 1;
desc.z_stencil = false;
desc.numLayers = 1;
desc.multiSampleLevel = 0;
desc.tag = "dynamic_clut";
dynamicClutFbo_ = draw_->CreateFramebuffer(desc);
desc.tag = "dynamic_clut_temp";
dynamicClutTemp_ = draw_->CreateFramebuffer(desc);
}
// We'll need to copy from the offset.
const u32 fb_bpp = BufferFormatBytesPerPixel(chosenFramebuffer->fb_format);
const int totalPixelsOffset = clutRenderOffset_ / fb_bpp;
const int clutYOffset = totalPixelsOffset / chosenFramebuffer->fb_stride;
const int clutXOffset = totalPixelsOffset % chosenFramebuffer->fb_stride;
const int scale = chosenFramebuffer->renderScaleFactor;
// Copy the pixels to our temp clut, scaling down if needed and wrapping.
framebufferManager_->BlitUsingRaster(
chosenFramebuffer->fbo, clutXOffset * scale, clutYOffset * scale, (clutXOffset + 512.0f) * scale, (clutYOffset + 1.0f) * scale,
dynamicClutTemp_, 0.0f, 0.0f, 512.0f, 1.0f,
false, scale, framebufferManager_->Get2DPipeline(DRAW2D_COPY_COLOR_RECT2LIN), "copy_clut_to_temp");
framebufferManager_->RebindFramebuffer("after_copy_clut_to_temp");
clutRenderFormat_ = chosenFramebuffer->fb_format;
}
NotifyMemInfo(MemBlockFlags::ALLOC, clutAddr, loadBytes, "CLUT");
}
// It's possible for a game to load CLUT outside valid memory without crashing, should result in zeroes.
u32 bytes = Memory::ValidSize(clutAddr, loadBytes);
_assert_(bytes <= 2048);
bool performDownload = PSP_CoreParameter().compat.flags().AllowDownloadCLUT;
if (GPURecord::IsActive())
performDownload = true;
if (clutRenderAddress_ != 0xFFFFFFFF && performDownload) {
framebufferManager_->DownloadFramebufferForClut(clutRenderAddress_, clutRenderOffset_ + bytes);
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
} else {
// Here we could check for clutRenderAddress_ != 0xFFFFFFFF and zero the CLUT or something,
// but choosing not to for now. Though the results of loading the CLUT from RAM here is
// almost certainly going to be bogus.
#ifdef _M_SSE
if (bytes == loadBytes) {
const __m128i *source = (const __m128i *)Memory::GetPointerUnchecked(clutAddr);
__m128i *dest = (__m128i *)clutBufRaw_;
int numBlocks = bytes / 32;
for (int i = 0; i < numBlocks; i++, source += 2, dest += 2) {
__m128i data1 = _mm_loadu_si128(source);
__m128i data2 = _mm_loadu_si128(source + 1);
_mm_store_si128(dest, data1);
_mm_store_si128(dest + 1, data2);
}
} else {
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
}
#elif PPSSPP_ARCH(ARM_NEON)
if (bytes == loadBytes) {
const uint32_t *source = (const uint32_t *)Memory::GetPointerUnchecked(clutAddr);
uint32_t *dest = (uint32_t *)clutBufRaw_;
int numBlocks = bytes / 32;
for (int i = 0; i < numBlocks; i++, source += 8, dest += 8) {
uint32x4_t data1 = vld1q_u32(source);
uint32x4_t data2 = vld1q_u32(source + 4);
vst1q_u32(dest, data1);
vst1q_u32(dest + 4, data2);
}
} else {
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
}
#else
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
#endif
}
} else {
memset(clutBufRaw_, 0x00, loadBytes);
}
// Reload the clut next time.
clutLastFormat_ = 0xFFFFFFFF;
clutMaxBytes_ = std::max(clutMaxBytes_, loadBytes);
}
void TextureCacheCommon::UnswizzleFromMem(u32 *dest, u32 destPitch, const u8 *texptr, u32 bufw, u32 height, u32 bytesPerPixel) {
// Note: bufw is always aligned to 16 bytes, so rowWidth is always >= 16.
const u32 rowWidth = (bytesPerPixel > 0) ? (bufw * bytesPerPixel) : (bufw / 2);
// A visual mapping of unswizzling, where each letter is 16-byte and 8 letters is a block:
//
// ABCDEFGH IJKLMNOP
// ->
// AI
// BJ
// CK
// ...
//
// bxc is the number of blocks in the x direction, and byc the number in the y direction.
const int bxc = rowWidth / 16;
// The height is not always aligned to 8, but rounds up.
int byc = (height + 7) / 8;
DoUnswizzleTex16(texptr, dest, bxc, byc, destPitch);
}
bool TextureCacheCommon::GetCurrentClutBuffer(GPUDebugBuffer &buffer) {
const u32 bpp = gstate.getClutPaletteFormat() == GE_CMODE_32BIT_ABGR8888 ? 4 : 2;
const u32 pixels = 1024 / bpp;
buffer.Allocate(pixels, 1, (GEBufferFormat)gstate.getClutPaletteFormat());
memcpy(buffer.GetData(), clutBufRaw_, 1024);
return true;
}
// Host memory usage, not PSP memory usage.
u32 TextureCacheCommon::EstimateTexMemoryUsage(const TexCacheEntry *entry) {
const u16 dim = entry->dim;
// TODO: This does not take into account the HD remaster's larger textures.
const u8 dimW = ((dim >> 0) & 0xf);
const u8 dimH = ((dim >> 8) & 0xf);
u32 pixelSize = 2;
switch (entry->format) {
case GE_TFMT_CLUT4:
case GE_TFMT_CLUT8:
case GE_TFMT_CLUT16:
case GE_TFMT_CLUT32:
// We assume cluts always point to 8888 for simplicity.
pixelSize = 4;
break;
case GE_TFMT_4444:
case GE_TFMT_5551:
case GE_TFMT_5650:
break;
case GE_TFMT_8888:
case GE_TFMT_DXT1:
case GE_TFMT_DXT3:
case GE_TFMT_DXT5:
default:
pixelSize = 4;
break;
}
// This in other words multiplies by w and h.
return pixelSize << (dimW + dimH);
}
ReplacedTexture &TextureCacheCommon::FindReplacement(TexCacheEntry *entry, int &w, int &h, int &d) {
if (d != 1) {
// We don't yet support replacing 3D textures.
return replacer_.FindNone();
}
// Short circuit the non-enabled case.
// Otherwise, due to bReplaceTexturesAllowLate, we'll still spawn tasks looking for replacements
// that then won't be used.
if (!replacer_.Enabled()) {
return replacer_.FindNone();
}
// Allow some delay to reduce pop-in.
constexpr double MAX_BUDGET_PER_TEX = 0.25 / 60.0;
double replaceStart = time_now_d();
double budget = std::min(MAX_BUDGET_PER_TEX, replacementFrameBudget_ - replacementTimeThisFrame_);
u64 cachekey = replacer_.Enabled() ? entry->CacheKey() : 0;
ReplacedTexture &replaced = replacer_.FindReplacement(cachekey, entry->fullhash, w, h, budget);
if (replaced.IsReady(budget)) {
if (replaced.GetSize(0, w, h)) {
// Consider it already "scaled."
entry->status |= TexCacheEntry::STATUS_IS_SCALED;
}
// Remove the flag, even if it was invalid.
entry->status &= ~TexCacheEntry::STATUS_TO_REPLACE;
} else if (!replaced.IsInvalid()) {
entry->status |= TexCacheEntry::STATUS_TO_REPLACE;
}
replacementTimeThisFrame_ += time_now_d() - replaceStart;
return replaced;
}
// This is only used in the GLES backend, where we don't point these to video memory.
// So we shouldn't add a check for dstBuf != srcBuf, as long as the functions we call can handle that.
static void ReverseColors(void *dstBuf, const void *srcBuf, GETextureFormat fmt, int numPixels) {
switch (fmt) {
case GE_TFMT_4444:
ConvertRGBA4444ToABGR4444((u16 *)dstBuf, (const u16 *)srcBuf, numPixels);
break;
// Final Fantasy 2 uses this heavily in animated textures.
case GE_TFMT_5551:
ConvertRGBA5551ToABGR1555((u16 *)dstBuf, (const u16 *)srcBuf, numPixels);
break;
case GE_TFMT_5650:
ConvertRGB565ToBGR565((u16 *)dstBuf, (const u16 *)srcBuf, numPixels);
break;
default:
// No need to convert RGBA8888, right order already
if (dstBuf != srcBuf) {
memcpy(dstBuf, srcBuf, numPixels * sizeof(u32));
}
break;
}
}
static inline void ConvertFormatToRGBA8888(GETextureFormat format, u32 *dst, const u16 *src, u32 numPixels) {
switch (format) {
case GE_TFMT_4444:
ConvertRGBA4444ToRGBA8888(dst, src, numPixels);
break;
case GE_TFMT_5551:
ConvertRGBA5551ToRGBA8888(dst, src, numPixels);
break;
case GE_TFMT_5650:
ConvertRGB565ToRGBA8888(dst, src, numPixels);
break;
default:
_dbg_assert_msg_(false, "Incorrect texture format.");
break;
}
}
static inline void ConvertFormatToRGBA8888(GEPaletteFormat format, u32 *dst, const u16 *src, u32 numPixels) {
// The supported values are 1:1 identical.
ConvertFormatToRGBA8888(GETextureFormat(format), dst, src, numPixels);
}
template <typename DXTBlock, int n>
static CheckAlphaResult DecodeDXTBlocks(uint8_t *out, int outPitch, uint32_t texaddr, const uint8_t *texptr,
int w, int h, int bufw, bool reverseColors) {
int minw = std::min(bufw, w);
uint32_t *dst = (uint32_t *)out;
int outPitch32 = outPitch / sizeof(uint32_t);
const DXTBlock *src = (const DXTBlock *)texptr;
if (!Memory::IsValidRange(texaddr, (h / 4) * (bufw / 4) * sizeof(DXTBlock))) {
ERROR_LOG_REPORT(G3D, "DXT%d texture extends beyond valid RAM: %08x + %d x %d", n, texaddr, bufw, h);
uint32_t limited = Memory::ValidSize(texaddr, (h / 4) * (bufw / 4) * sizeof(DXTBlock));
// This might possibly be 0, but try to decode what we can (might even be how the PSP behaves.)
h = (((int)limited / sizeof(DXTBlock)) / (bufw / 4)) * 4;
}
u32 alphaSum = 1;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
int blockHeight = std::min(h - y, 4);
for (int x = 0; x < minw; x += 4) {
int blockWidth = std::min(minw - x, 4);
switch (n) {
case 1:
DecodeDXT1Block(dst + outPitch32 * y + x, (const DXT1Block *)src + blockIndex, outPitch32, blockWidth, blockHeight, &alphaSum);
break;
case 3:
DecodeDXT3Block(dst + outPitch32 * y + x, (const DXT3Block *)src + blockIndex, outPitch32, blockWidth, blockHeight);
break;
case 5:
DecodeDXT5Block(dst + outPitch32 * y + x, (const DXT5Block *)src + blockIndex, outPitch32, blockWidth, blockHeight);
break;
}
blockIndex++;
}
}
if (reverseColors) {
ReverseColors(out, out, GE_TFMT_8888, outPitch32 * h);
}
if (n == 1) {
return alphaSum == 1 ? CHECKALPHA_FULL : CHECKALPHA_ANY;
} else {
// Just report that we don't have full alpha, since these formats are made for that.
return CHECKALPHA_ANY;
}
}
inline u32 ClutFormatToFullAlpha(GEPaletteFormat fmt, bool reverseColors) {
switch (fmt) {
case GE_CMODE_16BIT_ABGR4444: return reverseColors ? 0x000F : 0xF000;
case GE_CMODE_16BIT_ABGR5551: return reverseColors ? 0x0001 : 0x8000;
case GE_CMODE_32BIT_ABGR8888: return 0xFF000000;
case GE_CMODE_16BIT_BGR5650: return 0;
default: return 0;
}
}
inline u32 TfmtRawToFullAlpha(GETextureFormat fmt) {
switch (fmt) {
case GE_TFMT_4444: return 0xF000;
case GE_TFMT_5551: return 0x8000;
case GE_TFMT_8888: return 0xFF000000;
case GE_TFMT_5650: return 0;
default: return 0;
}
}
// Used for converting CLUT4 to CLUT8.
// Could SIMD or whatever, though will hardly be a bottleneck.
static void Expand4To8Bits(u8 *dest, const u8 *src, int srcWidth) {
for (int i = 0; i < (srcWidth + 1) / 2; i++) {
u8 lower = src[i] & 0xF;
u8 upper = src[i] >> 4;
dest[i * 2] = lower;
dest[i * 2 + 1] = upper;
}
}
CheckAlphaResult TextureCacheCommon::DecodeTextureLevel(u8 *out, int outPitch, GETextureFormat format, GEPaletteFormat clutformat, uint32_t texaddr, int level, int bufw, TexDecodeFlags flags) {
u32 alphaSum = 0xFFFFFFFF;
u32 fullAlphaMask = 0x0;
bool expandTo32bit = (flags & TexDecodeFlags::EXPAND32) != 0;
bool reverseColors = (flags & TexDecodeFlags::REVERSE_COLORS) != 0;
bool toClut8 = (flags & TexDecodeFlags::TO_CLUT8) != 0;
if (toClut8 && format != GE_TFMT_CLUT8 && format != GE_TFMT_CLUT4) {
_dbg_assert_(false);
}
bool swizzled = gstate.isTextureSwizzled();
if ((texaddr & 0x00600000) != 0 && Memory::IsVRAMAddress(texaddr)) {
// This means it's in a mirror, possibly a swizzled mirror. Let's report.
WARN_LOG_REPORT_ONCE(texmirror, G3D, "Decoding texture from VRAM mirror at %08x swizzle=%d", texaddr, swizzled ? 1 : 0);
if ((texaddr & 0x00200000) == 0x00200000) {
// Technically 2 and 6 are slightly different, but this is better than nothing probably.
// We should only see this with depth textures anyway which we don't support uploading (yet).
swizzled = !swizzled;
}
// Note that (texaddr & 0x00600000) == 0x00600000 is very likely to be depth texturing.
}
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
const u8 *texptr = Memory::GetPointer(texaddr);
const uint32_t byteSize = (textureBitsPerPixel[format] * bufw * h) / 8;
char buf[128];
size_t len = snprintf(buf, sizeof(buf), "Tex_%08x_%dx%d_%s", texaddr, w, h, GeTextureFormatToString(format, clutformat));
NotifyMemInfo(MemBlockFlags::TEXTURE, texaddr, byteSize, buf, len);
switch (format) {
case GE_TFMT_CLUT4:
{
const bool mipmapShareClut = gstate.isClutSharedForMipmaps();
const int clutSharingOffset = mipmapShareClut ? 0 : level * 16;
if (swizzled) {
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw / 2, texptr, bufw, h, 0);
texptr = (u8 *)tmpTexBuf32_.data();
}
if (toClut8) {
// We just need to expand from 4 to 8 bits.
for (int y = 0; y < h; ++y) {
Expand4To8Bits((u8 *)out + outPitch * y, texptr + (bufw * y) / 2, w);
}
// We can't know anything about alpha.
return CHECKALPHA_ANY;
}
switch (clutformat) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
// The w > 1 check is to not need a case that handles a single pixel
// in DeIndexTexture4Optimal<u16>.
if (clutAlphaLinear_ && mipmapShareClut && !expandTo32bit && w >= 4) {
// We don't bother with fullalpha here (clutAlphaLinear_)
// Here, reverseColors means the CLUT is already reversed.
if (reverseColors) {
for (int y = 0; y < h; ++y) {
DeIndexTexture4Optimal((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clutAlphaLinearColor_);
}
} else {
for (int y = 0; y < h; ++y) {
DeIndexTexture4OptimalRev((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clutAlphaLinearColor_);
}
}
} else {
// Need to have the "un-reversed" (raw) CLUT here since we are using a generic conversion function.
if (expandTo32bit) {
// We simply expand the CLUT to 32-bit, then we deindex as usual. Probably the fastest way.
const u16 *clut = GetCurrentRawClut<u16>() + clutSharingOffset;
const int clutStart = gstate.getClutIndexStartPos();
if (gstate.getClutIndexShift() == 0 || gstate.getClutIndexMask() <= 16) {
ConvertFormatToRGBA8888(clutformat, expandClut_ + clutStart, clut + clutStart, 16);
} else {
// To be safe for shifts and wrap around, convert the entire CLUT.
ConvertFormatToRGBA8888(clutformat, expandClut_, clut, 512);
}
fullAlphaMask = 0xFF000000;
for (int y = 0; y < h; ++y) {
DeIndexTexture4<u32>((u32 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, expandClut_, &alphaSum);
}
} else {
// If we're reversing colors, the CLUT was already reversed, no special handling needed.
const u16 *clut = GetCurrentClut<u16>() + clutSharingOffset;
fullAlphaMask = ClutFormatToFullAlpha(clutformat, reverseColors);
for (int y = 0; y < h; ++y) {
DeIndexTexture4<u16>((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clut, &alphaSum);
}
}
}
if (clutformat == GE_CMODE_16BIT_BGR5650) {
// Our formula at the end of the function can't handle this cast so we return early.
return CHECKALPHA_FULL;
}
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
const u32 *clut = GetCurrentClut<u32>() + clutSharingOffset;
fullAlphaMask = 0xFF000000;
for (int y = 0; y < h; ++y) {
DeIndexTexture4<u32>((u32 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clut, &alphaSum);
}
}
break;
default:
ERROR_LOG_REPORT(G3D, "Unknown CLUT4 texture mode %d", gstate.getClutPaletteFormat());
return CHECKALPHA_ANY;
}
}
break;
case GE_TFMT_CLUT8:
if (toClut8) {
if (gstate.isTextureSwizzled()) {
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw, texptr, bufw, h, 1);
texptr = (u8 *)tmpTexBuf32_.data();
}
// After deswizzling, we are in the correct format and can just copy.
for (int y = 0; y < h; ++y) {
memcpy((u8 *)out + outPitch * y, texptr + (bufw * y), w);
}
// We can't know anything about alpha.
return CHECKALPHA_ANY;
}
return ReadIndexedTex(out, outPitch, level, texptr, 1, bufw, reverseColors, expandTo32bit);
case GE_TFMT_CLUT16:
return ReadIndexedTex(out, outPitch, level, texptr, 2, bufw, reverseColors, expandTo32bit);
case GE_TFMT_CLUT32:
return ReadIndexedTex(out, outPitch, level, texptr, 4, bufw, reverseColors, expandTo32bit);
case GE_TFMT_4444:
case GE_TFMT_5551:
case GE_TFMT_5650:
if (!swizzled) {
// Just a simple copy, we swizzle the color format.
fullAlphaMask = TfmtRawToFullAlpha(format);
if (expandTo32bit) {
// This is OK even if reverseColors is on, because it expands to the 8888 format which is the same in reverse mode.
for (int y = 0; y < h; ++y) {
CheckMask16((const u16 *)(texptr + bufw * sizeof(u16) * y), w, &alphaSum);
ConvertFormatToRGBA8888(format, (u32 *)(out + outPitch * y), (const u16 *)texptr + bufw * y, w);
}
} else if (reverseColors) {
// Just check the input's alpha to reuse code. TODO: make a specialized ReverseColors that checks as we go.
for (int y = 0; y < h; ++y) {
CheckMask16((const u16 *)(texptr + bufw * sizeof(u16) * y), w, &alphaSum);
ReverseColors(out + outPitch * y, texptr + bufw * sizeof(u16) * y, format, w);
}
} else {
for (int y = 0; y < h; ++y) {
CopyAndSumMask16((u16 *)(out + outPitch * y), (u16 *)(texptr + bufw * sizeof(u16) * y), w, &alphaSum);
}
}
} /* else if (h >= 8 && bufw <= w && !expandTo32bit) {
// TODO: Handle alpha mask. This will require special versions of UnswizzleFromMem to keep the optimization.
// Note: this is always safe since h must be a power of 2, so a multiple of 8.
UnswizzleFromMem((u32 *)out, outPitch, texptr, bufw, h, 2);
if (reverseColors) {
ReverseColors(out, out, format, h * outPitch / 2, useBGRA);
}
}*/ else {
// We don't have enough space for all rows in out, so use a temp buffer.
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw * 2, texptr, bufw, h, 2);
const u8 *unswizzled = (u8 *)tmpTexBuf32_.data();
fullAlphaMask = TfmtRawToFullAlpha(format);
if (expandTo32bit) {
// This is OK even if reverseColors is on, because it expands to the 8888 format which is the same in reverse mode.
// Just check the swizzled input's alpha to reuse code. TODO: make a specialized ConvertFormatToRGBA8888 that checks as we go.
for (int y = 0; y < h; ++y) {
CheckMask16((const u16 *)(unswizzled + bufw * sizeof(u16) * y), w, &alphaSum);
ConvertFormatToRGBA8888(format, (u32 *)(out + outPitch * y), (const u16 *)unswizzled + bufw * y, w);
}
} else if (reverseColors) {
// Just check the swizzled input's alpha to reuse code. TODO: make a specialized ReverseColors that checks as we go.
for (int y = 0; y < h; ++y) {
CheckMask16((const u16 *)(unswizzled + bufw * sizeof(u16) * y), w, &alphaSum);
ReverseColors(out + outPitch * y, unswizzled + bufw * sizeof(u16) * y, format, w);
}
} else {
for (int y = 0; y < h; ++y) {
CopyAndSumMask16((u16 *)(out + outPitch * y), (const u16 *)(unswizzled + bufw * sizeof(u16) * y), w, &alphaSum);
}
}
}
if (format == GE_TFMT_5650) {
return CHECKALPHA_FULL;
}
break;
case GE_TFMT_8888:
if (!swizzled) {
fullAlphaMask = TfmtRawToFullAlpha(format);
if (reverseColors) {
for (int y = 0; y < h; ++y) {
CheckMask32((const u32 *)(texptr + bufw * sizeof(u32) * y), w, &alphaSum);
ReverseColors(out + outPitch * y, texptr + bufw * sizeof(u32) * y, format, w);
}
} else {
for (int y = 0; y < h; ++y) {
CopyAndSumMask32((u32 *)(out + outPitch * y), (const u32 *)(texptr + bufw * sizeof(u32) * y), w, &alphaSum);
}
}
} /* else if (h >= 8 && bufw <= w) {
// TODO: Handle alpha mask
UnswizzleFromMem((u32 *)out, outPitch, texptr, bufw, h, 4);
if (reverseColors) {
ReverseColors(out, out, format, h * outPitch / 4, useBGRA);
}
}*/ else {
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw * 4, texptr, bufw, h, 4);
const u8 *unswizzled = (u8 *)tmpTexBuf32_.data();
fullAlphaMask = TfmtRawToFullAlpha(format);
if (reverseColors) {
for (int y = 0; y < h; ++y) {
CheckMask32((const u32 *)(unswizzled + bufw * sizeof(u32) * y), w, &alphaSum);
ReverseColors(out + outPitch * y, unswizzled + bufw * sizeof(u32) * y, format, w);
}
} else {
for (int y = 0; y < h; ++y) {
CopyAndSumMask32((u32 *)(out + outPitch * y), (const u32 *)(unswizzled + bufw * sizeof(u32) * y), w, &alphaSum);
}
}
}
break;
case GE_TFMT_DXT1:
return DecodeDXTBlocks<DXT1Block, 1>(out, outPitch, texaddr, texptr, w, h, bufw, reverseColors);
case GE_TFMT_DXT3:
return DecodeDXTBlocks<DXT3Block, 3>(out, outPitch, texaddr, texptr, w, h, bufw, reverseColors);
case GE_TFMT_DXT5:
return DecodeDXTBlocks<DXT5Block, 5>(out, outPitch, texaddr, texptr, w, h, bufw, reverseColors);
default:
ERROR_LOG_REPORT(G3D, "Unknown Texture Format %d!!!", format);
break;
}
return AlphaSumIsFull(alphaSum, fullAlphaMask) ? CHECKALPHA_FULL : CHECKALPHA_ANY;
}
CheckAlphaResult TextureCacheCommon::ReadIndexedTex(u8 *out, int outPitch, int level, const u8 *texptr, int bytesPerIndex, int bufw, bool reverseColors, bool expandTo32Bit) {
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
if (gstate.isTextureSwizzled()) {
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw * bytesPerIndex, texptr, bufw, h, bytesPerIndex);
texptr = (u8 *)tmpTexBuf32_.data();
}
// Misshitsu no Sacrifice has separate CLUT data, this is a hack to allow it.
// Normally separate CLUTs are not allowed for 8-bit or higher indices.
const bool mipmapShareClut = gstate.isClutSharedForMipmaps() || gstate.getClutLoadBlocks() != 0x40;
const int clutSharingOffset = mipmapShareClut ? 0 : (level & 1) * 256;
GEPaletteFormat palFormat = (GEPaletteFormat)gstate.getClutPaletteFormat();
const u16 *clut16 = (const u16 *)clutBuf_ + clutSharingOffset;
const u32 *clut32 = (const u32 *)clutBuf_ + clutSharingOffset;
if (expandTo32Bit && palFormat != GE_CMODE_32BIT_ABGR8888) {
const u16 *clut16raw = (const u16 *)clutBufRaw_ + clutSharingOffset;
// It's possible to access the latter half of the CLUT using the start pos.
const int clutStart = gstate.getClutIndexStartPos();
if (clutStart > 256) {
// Access wraps around when start + index goes over.
ConvertFormatToRGBA8888(GEPaletteFormat(palFormat), expandClut_, clut16raw, 512);
} else {
ConvertFormatToRGBA8888(GEPaletteFormat(palFormat), expandClut_ + clutStart, clut16raw + clutStart, 256);
}
clut32 = expandClut_;
palFormat = GE_CMODE_32BIT_ABGR8888;
}
u32 alphaSum = 0xFFFFFFFF;
u32 fullAlphaMask = ClutFormatToFullAlpha(palFormat, reverseColors);
switch (palFormat) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
switch (bytesPerIndex) {
case 1:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u16 *)(out + outPitch * y), (const u8 *)texptr + bufw * y, w, clut16, &alphaSum);
}
break;
case 2:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u16 *)(out + outPitch * y), (const u16_le *)texptr + bufw * y, w, clut16, &alphaSum);
}
break;
case 4:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u16 *)(out + outPitch * y), (const u32_le *)texptr + bufw * y, w, clut16, &alphaSum);
}
break;
}
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
switch (bytesPerIndex) {
case 1:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u32 *)(out + outPitch * y), (const u8 *)texptr + bufw * y, w, clut32, &alphaSum);
}
break;
case 2:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u32 *)(out + outPitch * y), (const u16_le *)texptr + bufw * y, w, clut32, &alphaSum);
}
break;
case 4:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u32 *)(out + outPitch * y), (const u32_le *)texptr + bufw * y, w, clut32, &alphaSum);
}
break;
}
}
break;
default:
ERROR_LOG_REPORT(G3D, "Unhandled clut texture mode %d!!!", gstate.getClutPaletteFormat());
break;
}
if (palFormat == GE_CMODE_16BIT_BGR5650) {
return CHECKALPHA_FULL;
} else {
return AlphaSumIsFull(alphaSum, fullAlphaMask) ? CHECKALPHA_FULL : CHECKALPHA_ANY;
}
}
void TextureCacheCommon::ApplyTexture() {
TexCacheEntry *entry = nextTexture_;
if (!entry) {
// Maybe we bound a framebuffer?
InvalidateLastTexture();
if (failedTexture_) {
// Backends should handle this by binding a black texture with 0 alpha.
BindTexture(nullptr);
} else if (nextFramebufferTexture_) {
// ApplyTextureFrameBuffer is responsible for setting SetTextureFullAlpha.
ApplyTextureFramebuffer(nextFramebufferTexture_, gstate.getTextureFormat(), nextFramebufferTextureChannel_);
nextFramebufferTexture_ = nullptr;
}
// We don't set the 3D texture state here or anything else, on some backends (?)
// a nextTexture_ of nullptr means keep the current texture.
return;
}
nextTexture_ = nullptr;
UpdateMaxSeenV(entry, gstate.isModeThrough());
if (nextNeedsRebuild_) {
// Regardless of hash fails or otherwise, if this is a video, mark it frequently changing.
// This prevents temporary scaling perf hits on the first second of video.
if (IsVideo(entry->addr)) {
entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
if (nextNeedsRehash_) {
PROFILE_THIS_SCOPE("texhash");
// Update the hash on the texture.
int w = gstate.getTextureWidth(0);
int h = gstate.getTextureHeight(0);
entry->fullhash = QuickTexHash(replacer_, entry->addr, entry->bufw, w, h, GETextureFormat(entry->format), entry);
// TODO: Here we could check the secondary cache; maybe the texture is in there?
// We would need to abort the build if so.
}
if (nextNeedsChange_) {
// This texture existed previously, let's handle the change.
HandleTextureChange(entry, nextChangeReason_, false, true);
}
// We actually build afterward (shared with rehash rebuild.)
} else if (nextNeedsRehash_) {
// Okay, this matched and didn't change - but let's check the hash. Maybe it will change.
bool doDelete = true;
if (!CheckFullHash(entry, doDelete)) {
HandleTextureChange(entry, "hash fail", true, doDelete);
nextNeedsRebuild_ = true;
} else if (nextTexture_ != nullptr) {
// The secondary cache may choose an entry from its storage by setting nextTexture_.
// This means we should set that, instead of our previous entry.
entry = nextTexture_;
nextTexture_ = nullptr;
UpdateMaxSeenV(entry, gstate.isModeThrough());
}
}
// Okay, now actually rebuild the texture if needed.
if (nextNeedsRebuild_) {
_assert_(!entry->texturePtr);
BuildTexture(entry);
InvalidateLastTexture();
}
if (entry->status & TexCacheEntry::STATUS_CLUT_GPU) {
// Special process.
ApplyTextureDepal(entry);
entry->lastFrame = gpuStats.numFlips;
gstate_c.SetTextureFullAlpha(false);
gstate_c.SetTextureIs3D(false);
gstate_c.SetTextureIsArray(false);
} else {
entry->lastFrame = gpuStats.numFlips;
BindTexture(entry);
gstate_c.SetTextureFullAlpha(entry->GetAlphaStatus() == TexCacheEntry::STATUS_ALPHA_FULL);
gstate_c.SetTextureIs3D((entry->status & TexCacheEntry::STATUS_3D) != 0);
gstate_c.SetTextureIsArray(false);
}
}
static bool CanDepalettize(GETextureFormat texFormat, GEBufferFormat bufferFormat) {
if (IsClutFormat(texFormat)) {
switch (bufferFormat) {
case GE_FORMAT_4444:
case GE_FORMAT_565:
case GE_FORMAT_5551:
case GE_FORMAT_DEPTH16:
if (texFormat == GE_TFMT_CLUT16) {
return true;
}
break;
case GE_FORMAT_8888:
if (texFormat == GE_TFMT_CLUT32 || texFormat == GE_TFMT_CLUT8) { // clut8 takes a special depal mode.
return true;
}
break;
case GE_FORMAT_CLUT8:
case GE_FORMAT_INVALID:
// Shouldn't happen here.
return false;
}
WARN_LOG(G3D, "Invalid CLUT/framebuffer combination: %s vs %s", GeTextureFormatToString(texFormat), GeBufferFormatToString(bufferFormat));
return false;
} else if (texFormat == GE_TFMT_5650 && bufferFormat == GE_FORMAT_DEPTH16) {
// We can also "depal" 565 format, this is used to read depth buffers as 565 on occasion (#15491).
return true;
}
return false;
}
// If the palette is detected as a smooth ramp, we can interpolate for higher color precision.
// But we only do it if the mask/shift exactly matches a color channel, else something different might be going
// on and we definitely don't want to interpolate.
// Great enhancement for Test Drive.
static bool CanUseSmoothDepal(const GPUgstate &gstate, GEBufferFormat framebufferFormat, int rampLength) {
if (gstate.getClutIndexStartPos() == 0 &&
gstate.getClutIndexMask() < rampLength) {
switch (framebufferFormat) {
case GE_FORMAT_565:
if (gstate.getClutIndexShift() == 0 || gstate.getClutIndexShift() == 11) {
return gstate.getClutIndexMask() == 0x1F;
} else if (gstate.getClutIndexShift() == 5) {
return gstate.getClutIndexMask() == 0x3F;
}
break;
case GE_FORMAT_5551:
if (gstate.getClutIndexShift() == 0 || gstate.getClutIndexShift() == 5 || gstate.getClutIndexShift() == 10) {
return gstate.getClutIndexMask() == 0x1F;
}
break;
default:
// No uses for the other formats yet, add if needed.
break;
}
}
return false;
}
void TextureCacheCommon::ApplyTextureFramebuffer(VirtualFramebuffer *framebuffer, GETextureFormat texFormat, RasterChannel channel) {
Draw2DPipeline *textureShader = nullptr;
uint32_t clutMode = gstate.clutformat & 0xFFFFFF;
bool depth = channel == RASTER_DEPTH;
bool need_depalettize = CanDepalettize(texFormat, depth ? GE_FORMAT_DEPTH16 : framebuffer->fb_format);
// Shader depal is not supported during 3D texturing or depth texturing, and requires 32-bit integer instructions in the shader.
bool useShaderDepal = framebufferManager_->GetCurrentRenderVFB() != framebuffer &&
!depth && clutRenderAddress_ == 0xFFFFFFFF &&
!gstate_c.curTextureIs3D &&
draw_->GetShaderLanguageDesc().bitwiseOps;
switch (draw_->GetShaderLanguageDesc().shaderLanguage) {
case ShaderLanguage::HLSL_D3D9:
useShaderDepal = false;
break;
case ShaderLanguage::GLSL_1xx:
// Force off for now, in case <= GLSL 1.20 or GLES 2, which don't support switch-case.
useShaderDepal = false;
break;
default:
break;
}
const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat();
ClutTexture clutTexture{};
bool smoothedDepal = false;
u32 depthUpperBits = 0;
if (need_depalettize) {
if (clutRenderAddress_ == 0xFFFFFFFF) {
clutTexture = textureShaderCache_->GetClutTexture(clutFormat, clutHash_, clutBufRaw_);
smoothedDepal = CanUseSmoothDepal(gstate, framebuffer->fb_format, clutTexture.rampLength);
} else {
// The CLUT texture is dynamic, it's the framebuffer pointed to by clutRenderAddress.
// Instead of texturing directly from that, we copy to a temporary CLUT texture.
GEBufferFormat expectedCLUTBufferFormat = (GEBufferFormat)clutFormat;
// OK, figure out what format we want our framebuffer in, so it can be reinterpreted if needed.
// If no reinterpretation is needed, we'll automatically just get a copy shader.
float scaleFactorX = 1.0f;
Draw2DPipeline *reinterpret = framebufferManager_->GetReinterpretPipeline(clutRenderFormat_, expectedCLUTBufferFormat, &scaleFactorX);
framebufferManager_->BlitUsingRaster(dynamicClutTemp_, 0.0f, 0.0f, 512.0f, 1.0f, dynamicClutFbo_, 0.0f, 0.0f, scaleFactorX * 512.0f, 1.0f, false, 1.0f, reinterpret, "reinterpret_clut");
}
if (useShaderDepal) {
// Very icky conflation here of native and thin3d rendering. This will need careful work per backend in BindAsClutTexture.
BindAsClutTexture(clutTexture.texture, smoothedDepal);
framebufferManager_->BindFramebufferAsColorTexture(0, framebuffer, BINDFBCOLOR_MAY_COPY_WITH_UV | BINDFBCOLOR_APPLY_TEX_OFFSET, Draw::ALL_LAYERS);
// Vulkan needs to do some extra work here to pick out the native handle from Draw.
BoundFramebufferTexture();
SamplerCacheKey samplerKey = GetFramebufferSamplingParams(framebuffer->bufferWidth, framebuffer->bufferHeight);
samplerKey.magFilt = false;
samplerKey.minFilt = false;
samplerKey.mipEnable = false;
ApplySamplingParams(samplerKey);
ShaderDepalMode mode = ShaderDepalMode::NORMAL;
if (texFormat == GE_TFMT_CLUT8 && framebuffer->fb_format == GE_FORMAT_8888) {
mode = ShaderDepalMode::CLUT8_8888;
smoothedDepal = false; // just in case
} else if (smoothedDepal) {
mode = ShaderDepalMode::SMOOTHED;
}
gstate_c.Dirty(DIRTY_DEPAL);
gstate_c.SetUseShaderDepal(mode);
gstate_c.depalFramebufferFormat = framebuffer->fb_format;
const u32 bytesPerColor = clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16);
const u32 clutTotalColors = clutMaxBytes_ / bytesPerColor;
CheckAlphaResult alphaStatus = CheckCLUTAlpha((const uint8_t *)clutBufRaw_, clutFormat, clutTotalColors);
gstate_c.SetTextureFullAlpha(alphaStatus == CHECKALPHA_FULL);
draw_->Invalidate(InvalidationFlags::CACHED_RENDER_STATE);
InvalidateLastTexture();
return;
}
depthUpperBits = (depth && framebuffer->fb_format == GE_FORMAT_8888) ? ((gstate.getTextureAddress(0) & 0x600000) >> 20) : 0;
textureShader = textureShaderCache_->GetDepalettizeShader(clutMode, texFormat, depth ? GE_FORMAT_DEPTH16 : framebuffer->fb_format, smoothedDepal, depthUpperBits);
gstate_c.SetUseShaderDepal(ShaderDepalMode::OFF);
}
if (textureShader) {
bool needsDepthXSwizzle = depthUpperBits == 2;
int depalWidth = framebuffer->renderWidth;
int texWidth = framebuffer->width;
if (needsDepthXSwizzle) {
texWidth = RoundUpToPowerOf2(framebuffer->width);
depalWidth = texWidth * framebuffer->renderScaleFactor;
gstate_c.Dirty(DIRTY_UVSCALEOFFSET);
}
// If min is not < max, then we don't have values (wasn't set during decode.)
const KnownVertexBounds &bounds = gstate_c.vertBounds;
float u1 = 0.0f;
float v1 = 0.0f;
float u2 = depalWidth;
float v2 = framebuffer->renderHeight;
if (bounds.minV < bounds.maxV) {
u1 = (bounds.minU + gstate_c.curTextureXOffset) * framebuffer->renderScaleFactor;
v1 = (bounds.minV + gstate_c.curTextureYOffset) * framebuffer->renderScaleFactor;
u2 = (bounds.maxU + gstate_c.curTextureXOffset) * framebuffer->renderScaleFactor;
v2 = (bounds.maxV + gstate_c.curTextureYOffset) * framebuffer->renderScaleFactor;
// We need to reapply the texture next time since we cropped UV.
gstate_c.Dirty(DIRTY_TEXTURE_PARAMS);
}
Draw::Framebuffer *depalFBO = framebufferManager_->GetTempFBO(TempFBO::DEPAL, depalWidth, framebuffer->renderHeight);
draw_->BindTexture(0, nullptr);
draw_->BindTexture(1, nullptr);
draw_->BindFramebufferAsRenderTarget(depalFBO, { Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE }, "Depal");
draw_->InvalidateFramebuffer(Draw::FB_INVALIDATION_STORE, Draw::FB_DEPTH_BIT | Draw::FB_STENCIL_BIT);
draw_->SetScissorRect(u1, v1, u2 - u1, v2 - v1);
Draw::Viewport vp{ 0.0f, 0.0f, (float)depalWidth, (float)framebuffer->renderHeight, 0.0f, 1.0f };
draw_->SetViewports(1, &vp);
draw_->BindFramebufferAsTexture(framebuffer->fbo, 0, depth ? Draw::FB_DEPTH_BIT : Draw::FB_COLOR_BIT, Draw::ALL_LAYERS);
if (clutRenderAddress_ == 0xFFFFFFFF) {
draw_->BindTexture(1, clutTexture.texture);
} else {
draw_->BindFramebufferAsTexture(dynamicClutFbo_, 1, Draw::FB_COLOR_BIT, 0);
}
Draw::SamplerState *nearest = textureShaderCache_->GetSampler(false);
Draw::SamplerState *clutSampler = textureShaderCache_->GetSampler(smoothedDepal);
draw_->BindSamplerStates(0, 1, &nearest);
draw_->BindSamplerStates(1, 1, &clutSampler);
draw2D_->Blit(textureShader, u1, v1, u2, v2, u1, v1, u2, v2, framebuffer->renderWidth, framebuffer->renderHeight, depalWidth, framebuffer->renderHeight, false, framebuffer->renderScaleFactor);
gpuStats.numDepal++;
gstate_c.curTextureWidth = texWidth;
draw_->BindTexture(0, nullptr);
framebufferManager_->RebindFramebuffer("ApplyTextureFramebuffer");
draw_->BindFramebufferAsTexture(depalFBO, 0, Draw::FB_COLOR_BIT, Draw::ALL_LAYERS);
BoundFramebufferTexture();
const u32 bytesPerColor = clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16);
const u32 clutTotalColors = clutMaxBytes_ / bytesPerColor;
CheckAlphaResult alphaStatus = CheckCLUTAlpha((const uint8_t *)clutBufRaw_, clutFormat, clutTotalColors);
gstate_c.SetTextureFullAlpha(alphaStatus == CHECKALPHA_FULL);
draw_->Invalidate(InvalidationFlags::CACHED_RENDER_STATE);
shaderManager_->DirtyLastShader();
} else {
framebufferManager_->RebindFramebuffer("ApplyTextureFramebuffer");
framebufferManager_->BindFramebufferAsColorTexture(0, framebuffer, BINDFBCOLOR_MAY_COPY_WITH_UV | BINDFBCOLOR_APPLY_TEX_OFFSET, Draw::ALL_LAYERS);
BoundFramebufferTexture();
gstate_c.SetUseShaderDepal(ShaderDepalMode::OFF);
gstate_c.SetTextureFullAlpha(gstate.getTextureFormat() == GE_TFMT_5650);
}
SamplerCacheKey samplerKey = GetFramebufferSamplingParams(framebuffer->bufferWidth, framebuffer->bufferHeight);
ApplySamplingParams(samplerKey);
// Since we've drawn using thin3d, might need these.
gstate_c.Dirty(DIRTY_ALL_RENDER_STATE);
}
// Applies depal to a normal (non-framebuffer) texture, pre-decoded to CLUT8 format.
void TextureCacheCommon::ApplyTextureDepal(TexCacheEntry *entry) {
uint32_t clutMode = gstate.clutformat & 0xFFFFFF;
switch (entry->format) {
case GE_TFMT_CLUT4:
case GE_TFMT_CLUT8:
break; // These are OK
default:
_dbg_assert_(false);
return;
}
const GEPaletteFormat clutFormat = gstate.getClutPaletteFormat();
u32 depthUpperBits = 0;
// The CLUT texture is dynamic, it's the framebuffer pointed to by clutRenderAddress.
// Instead of texturing directly from that, we copy to a temporary CLUT texture.
GEBufferFormat expectedCLUTBufferFormat = (GEBufferFormat)clutFormat; // All entries from clutFormat correspond directly to buffer formats.
// OK, figure out what format we want our framebuffer in, so it can be reinterpreted if needed.
// If no reinterpretation is needed, we'll automatically just get a copy shader.
float scaleFactorX = 1.0f;
Draw2DPipeline *reinterpret = framebufferManager_->GetReinterpretPipeline(clutRenderFormat_, expectedCLUTBufferFormat, &scaleFactorX);
framebufferManager_->BlitUsingRaster(
dynamicClutTemp_, 0.0f, 0.0f, 512.0f, 1.0f, dynamicClutFbo_, 0.0f, 0.0f, scaleFactorX * 512.0f, 1.0f, false, 1.0f, reinterpret, "reinterpret_clut");
Draw2DPipeline *textureShader = textureShaderCache_->GetDepalettizeShader(clutMode, GE_TFMT_CLUT8, GE_FORMAT_CLUT8, false, 0);
gstate_c.SetUseShaderDepal(ShaderDepalMode::OFF);
int texWidth = gstate.getTextureWidth(0);
int texHeight = gstate.getTextureHeight(0);
// If min is not < max, then we don't have values (wasn't set during decode.)
const KnownVertexBounds &bounds = gstate_c.vertBounds;
float u1 = 0.0f;
float v1 = 0.0f;
float u2 = texWidth;
float v2 = texHeight;
if (bounds.minV < bounds.maxV) {
// These are already in pixel coords! Doesn't seem like we should multiply by texwidth/height.
u1 = bounds.minU + gstate_c.curTextureXOffset;
v1 = bounds.minV + gstate_c.curTextureYOffset;
u2 = bounds.maxU + gstate_c.curTextureXOffset + 1.0f;
v2 = bounds.maxV + gstate_c.curTextureYOffset + 1.0f;
// We need to reapply the texture next time since we cropped UV.
gstate_c.Dirty(DIRTY_TEXTURE_PARAMS);
}
Draw::Framebuffer *depalFBO = framebufferManager_->GetTempFBO(TempFBO::DEPAL, texWidth, texHeight);
draw_->BindTexture(0, nullptr);
draw_->BindTexture(1, nullptr);
draw_->BindFramebufferAsRenderTarget(depalFBO, { Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE, Draw::RPAction::DONT_CARE }, "Depal");
draw_->InvalidateFramebuffer(Draw::FB_INVALIDATION_STORE, Draw::FB_DEPTH_BIT | Draw::FB_STENCIL_BIT);
draw_->SetScissorRect(u1, v1, u2 - u1, v2 - v1);
Draw::Viewport vp{ 0.0f, 0.0f, (float)texWidth, (float)texHeight, 0.0f, 1.0f };
draw_->SetViewports(1, &vp);
draw_->BindNativeTexture(0, GetNativeTextureView(entry));
draw_->BindFramebufferAsTexture(dynamicClutFbo_, 1, Draw::FB_COLOR_BIT, 0);
Draw::SamplerState *nearest = textureShaderCache_->GetSampler(false);
Draw::SamplerState *clutSampler = textureShaderCache_->GetSampler(false);
draw_->BindSamplerStates(0, 1, &nearest);
draw_->BindSamplerStates(1, 1, &clutSampler);
draw2D_->Blit(textureShader, u1, v1, u2, v2, u1, v1, u2, v2, texWidth, texHeight, texWidth, texHeight, false, 1);
gpuStats.numDepal++;
gstate_c.curTextureWidth = texWidth;
draw_->BindTexture(0, nullptr);
framebufferManager_->RebindFramebuffer("ApplyTextureFramebuffer");
draw_->BindFramebufferAsTexture(depalFBO, 0, Draw::FB_COLOR_BIT, 0);
BoundFramebufferTexture();
const u32 bytesPerColor = clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16);
const u32 clutTotalColors = clutMaxBytes_ / bytesPerColor;
// We don't know about alpha at all.
gstate_c.SetTextureFullAlpha(false);
draw_->Invalidate(InvalidationFlags::CACHED_RENDER_STATE);
shaderManager_->DirtyLastShader();
SamplerCacheKey samplerKey = GetFramebufferSamplingParams(texWidth, texHeight);
ApplySamplingParams(samplerKey);
// Since we've drawn using thin3d, might need these.
gstate_c.Dirty(DIRTY_ALL_RENDER_STATE);
}
void TextureCacheCommon::Clear(bool delete_them) {
textureShaderCache_->Clear();
ForgetLastTexture();
for (TexCache::iterator iter = cache_.begin(); iter != cache_.end(); ++iter) {
ReleaseTexture(iter->second.get(), delete_them);
}
// In case the setting was changed, we ALWAYS clear the secondary cache (enabled or not.)
for (TexCache::iterator iter = secondCache_.begin(); iter != secondCache_.end(); ++iter) {
ReleaseTexture(iter->second.get(), delete_them);
}
if (cache_.size() + secondCache_.size()) {
INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)(cache_.size() + secondCache_.size()));
cache_.clear();
secondCache_.clear();
cacheSizeEstimate_ = 0;
secondCacheSizeEstimate_ = 0;
}
videos_.clear();
if (dynamicClutFbo_) {
dynamicClutFbo_->Release();
dynamicClutFbo_ = nullptr;
}
if (dynamicClutTemp_) {
dynamicClutTemp_->Release();
dynamicClutTemp_ = nullptr;
}
}
void TextureCacheCommon::DeleteTexture(TexCache::iterator it) {
ReleaseTexture(it->second.get(), true);
cacheSizeEstimate_ -= EstimateTexMemoryUsage(it->second.get());
cache_.erase(it);
}
bool TextureCacheCommon::CheckFullHash(TexCacheEntry *entry, bool &doDelete) {
int w = gstate.getTextureWidth(0);
int h = gstate.getTextureHeight(0);
bool isVideo = IsVideo(entry->addr);
// Don't even check the texture, just assume it has changed.
if (isVideo && g_Config.bTextureBackoffCache) {
// Attempt to ensure the hash doesn't incorrectly match in if the video stops.
entry->fullhash = (entry->fullhash + 0xA535A535) * 11 + (entry->fullhash & 4);
return false;
}
u32 fullhash;
{
PROFILE_THIS_SCOPE("texhash");
fullhash = QuickTexHash(replacer_, entry->addr, entry->bufw, w, h, GETextureFormat(entry->format), entry);
}
if (fullhash == entry->fullhash) {
if (g_Config.bTextureBackoffCache && !isVideo) {
if (entry->GetHashStatus() != TexCacheEntry::STATUS_HASHING && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) {
// Reset to STATUS_HASHING.
entry->SetHashStatus(TexCacheEntry::STATUS_HASHING);
entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
} else if (entry->numFrames > TEXCACHE_FRAME_CHANGE_FREQUENT_REGAIN_TRUST) {
entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
return true;
}
// Don't give up just yet. Let's try the secondary cache if it's been invalidated before.
if (PSP_CoreParameter().compat.flags().SecondaryTextureCache) {
// Don't forget this one was unreliable (in case we match a secondary entry.)
entry->status |= TexCacheEntry::STATUS_UNRELIABLE;
// If it's failed a bunch of times, then the second cache is just wasting time and VRAM.
// In that case, skip.
if (entry->numInvalidated > 2 && entry->numInvalidated < 128 && !lowMemoryMode_) {
// We have a new hash: look for that hash in the secondary cache.
u64 secondKey = fullhash | (u64)entry->cluthash << 32;
TexCache::iterator secondIter = secondCache_.find(secondKey);
if (secondIter != secondCache_.end()) {
// Found it, but does it match our current params? If not, abort.
TexCacheEntry *secondEntry = secondIter->second.get();
if (secondEntry->Matches(entry->dim, entry->format, entry->maxLevel)) {
// Reset the numInvalidated value lower, we got a match.
if (entry->numInvalidated > 8) {
--entry->numInvalidated;
}
// Now just use our archived texture, instead of entry.
nextTexture_ = secondEntry;
return true;
}
} else {
// It wasn't found, so we're about to throw away the entry and rebuild a texture.
// Let's save this in the secondary cache in case it gets used again.
secondKey = entry->fullhash | ((u64)entry->cluthash << 32);
secondCacheSizeEstimate_ += EstimateTexMemoryUsage(entry);
// If the entry already exists in the secondary texture cache, drop it nicely.
auto oldIter = secondCache_.find(secondKey);
if (oldIter != secondCache_.end()) {
ReleaseTexture(oldIter->second.get(), true);
}
// Archive the entire texture entry as is, since we'll use its params if it is seen again.
// We keep parameters on the current entry, since we are STILL building a new texture here.
secondCache_[secondKey].reset(new TexCacheEntry(*entry));
// Make sure we don't delete the texture we just archived.
entry->texturePtr = nullptr;
doDelete = false;
}
}
}
// We know it failed, so update the full hash right away.
entry->fullhash = fullhash;
return false;
}
void TextureCacheCommon::Invalidate(u32 addr, int size, GPUInvalidationType type) {
// They could invalidate inside the texture, let's just give a bit of leeway.
// TODO: Keep track of the largest texture size in bytes, and use that instead of this
// humongous unrealistic value.
const int LARGEST_TEXTURE_SIZE = 512 * 512 * 4;
addr &= 0x3FFFFFFF;
const u32 addr_end = addr + size;
if (type == GPU_INVALIDATE_ALL) {
// This is an active signal from the game that something in the texture cache may have changed.
gstate_c.Dirty(DIRTY_TEXTURE_IMAGE);
} else {
// Do a quick check to see if the current texture could potentially be in range.
const u32 currentAddr = gstate.getTextureAddress(0);
// TODO: This can be made tighter.
if (addr_end >= currentAddr && addr < currentAddr + LARGEST_TEXTURE_SIZE) {
gstate_c.Dirty(DIRTY_TEXTURE_IMAGE);
}
}
// If we're hashing every use, without backoff, then this isn't needed.
if (!g_Config.bTextureBackoffCache && type != GPU_INVALIDATE_FORCE) {
return;
}
const u64 startKey = (u64)(addr - LARGEST_TEXTURE_SIZE) << 32;
u64 endKey = (u64)(addr + size + LARGEST_TEXTURE_SIZE) << 32;
if (endKey < startKey) {
endKey = (u64)-1;
}
for (TexCache::iterator iter = cache_.lower_bound(startKey), end = cache_.upper_bound(endKey); iter != end; ++iter) {
auto &entry = iter->second;
u32 texAddr = entry->addr;
u32 texEnd = entry->addr + entry->sizeInRAM;
// Quick check for overlap. Yes the check is right.
if (addr < texEnd && addr_end > texAddr) {
if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
entry->SetHashStatus(TexCacheEntry::STATUS_HASHING);
}
if (type == GPU_INVALIDATE_FORCE) {
// Just random values to force the hash not to match.
entry->fullhash = (entry->fullhash ^ 0x12345678) + 13;
entry->minihash = (entry->minihash ^ 0x89ABCDEF) + 89;
}
if (type != GPU_INVALIDATE_ALL) {
gpuStats.numTextureInvalidations++;
// Start it over from 0 (unless it's safe.)
entry->numFrames = type == GPU_INVALIDATE_SAFE ? 256 : 0;
if (type == GPU_INVALIDATE_SAFE) {
u32 diff = gpuStats.numFlips - entry->lastFrame;
// We still need to mark if the texture is frequently changing, even if it's safely changing.
if (diff < TEXCACHE_FRAME_CHANGE_FREQUENT) {
entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
}
entry->framesUntilNextFullHash = 0;
} else {
entry->invalidHint++;
}
}
}
}
void TextureCacheCommon::InvalidateAll(GPUInvalidationType /*unused*/) {
// If we're hashing every use, without backoff, then this isn't needed.
if (!g_Config.bTextureBackoffCache) {
return;
}
if (timesInvalidatedAllThisFrame_ > 5) {
return;
}
timesInvalidatedAllThisFrame_++;
for (TexCache::iterator iter = cache_.begin(), end = cache_.end(); iter != end; ++iter) {
if (iter->second->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
iter->second->SetHashStatus(TexCacheEntry::STATUS_HASHING);
}
iter->second->invalidHint++;
}
}
void TextureCacheCommon::ClearNextFrame() {
clearCacheNextFrame_ = true;
}
std::string AttachCandidate::ToString() const {
return StringFromFormat("[%s seq:%d rel:%d C:%08x/%d(%s) Z:%08x/%d X:%d Y:%d reint: %s]",
this->channel == RASTER_COLOR ? "COLOR" : "DEPTH",
this->channel == RASTER_COLOR ? this->fb->colorBindSeq : this->fb->depthBindSeq,
this->relevancy,
this->fb->fb_address, this->fb->fb_stride, GeBufferFormatToString(this->fb->fb_format),
this->fb->z_address, this->fb->z_stride,
this->match.xOffset, this->match.yOffset, this->match.reinterpret ? "true" : "false");
}
bool TextureCacheCommon::PrepareBuildTexture(BuildTexturePlan &plan, TexCacheEntry *entry) {
gpuStats.numTexturesDecoded++;
// For the estimate, we assume cluts always point to 8888 for simplicity.
cacheSizeEstimate_ += EstimateTexMemoryUsage(entry);
plan.badMipSizes = false;
// maxLevel here is the max level to upload. Not the count.
plan.levelsToLoad = entry->maxLevel + 1;
for (int i = 0; i < plan.levelsToLoad; i++) {
// If encountering levels pointing to nothing, adjust max level.
u32 levelTexaddr = gstate.getTextureAddress(i);
if (!Memory::IsValidAddress(levelTexaddr)) {
plan.levelsToLoad = i;
break;
}
// If size reaches 1, stop, and override maxlevel.
int tw = gstate.getTextureWidth(i);
int th = gstate.getTextureHeight(i);
if (tw == 1 || th == 1) {
plan.levelsToLoad = i + 1; // next level is assumed to be invalid
break;
}
if (i > 0) {
int lastW = gstate.getTextureWidth(i - 1);
int lastH = gstate.getTextureHeight(i - 1);
if (gstate_c.Use(GPU_USE_TEXTURE_LOD_CONTROL)) {
if (tw != 1 && tw != (lastW >> 1))
plan.badMipSizes = true;
else if (th != 1 && th != (lastH >> 1))
plan.badMipSizes = true;
}
}
}
plan.scaleFactor = standardScaleFactor_;
plan.depth = 1;
// Rachet down scale factor in low-memory mode.
// TODO: I think really we should just turn it off?
if (lowMemoryMode_ && !plan.hardwareScaling) {
// Keep it even, though, just in case of npot troubles.
plan.scaleFactor = plan.scaleFactor > 4 ? 4 : (plan.scaleFactor > 2 ? 2 : 1);
}
bool isFakeMipmapChange = IsFakeMipmapChange();
if (plan.badMipSizes) {
// Check for pure 3D texture.
int tw = gstate.getTextureWidth(0);
int th = gstate.getTextureHeight(0);
bool pure3D = true;
if (!isFakeMipmapChange) {
for (int i = 0; i < plan.levelsToLoad; i++) {
if (gstate.getTextureWidth(i) != gstate.getTextureWidth(0) || gstate.getTextureHeight(i) != gstate.getTextureHeight(0)) {
pure3D = false;
break;
}
}
} else {
pure3D = false;
}
if (pure3D && draw_->GetDeviceCaps().texture3DSupported) {
plan.depth = plan.levelsToLoad;
plan.scaleFactor = 1;
}
plan.levelsToLoad = 1;
plan.levelsToCreate = 1;
}
if (plan.hardwareScaling) {
plan.scaleFactor = shaderScaleFactor_;
}
// We generate missing mipmaps from maxLevel+1 up to this level. maxLevel can get overwritten below
// such as when using replacement textures - but let's keep the same amount of levels for generation.
// Not all backends will generate mipmaps, and in GL we can't really control the number of levels.
plan.levelsToCreate = plan.levelsToLoad;
plan.w = gstate.getTextureWidth(0);
plan.h = gstate.getTextureHeight(0);
bool isPPGETexture = entry->addr > 0x05000000 && entry->addr < PSP_GetKernelMemoryEnd();
// Don't scale the PPGe texture.
if (isPPGETexture) {
plan.scaleFactor = 1;
}
if (PSP_CoreParameter().compat.flags().ForceLowerResolutionForEffectsOn && gstate.FrameBufStride() < 0x1E0) {
// A bit of an esoteric workaround - force off upscaling for static textures that participate directly in small-resolution framebuffer effects.
// This fixes the water in Outrun/DiRT 2 with upscaling enabled.
plan.scaleFactor = 1;
}
if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) != 0 && plan.scaleFactor != 1 && plan.slowScaler) {
// Remember for later that we /wanted/ to scale this texture.
entry->status |= TexCacheEntry::STATUS_TO_SCALE;
plan.scaleFactor = 1;
}
if (plan.scaleFactor != 1) {
if (texelsScaledThisFrame_ >= TEXCACHE_MAX_TEXELS_SCALED && plan.slowScaler) {
entry->status |= TexCacheEntry::STATUS_TO_SCALE;
plan.scaleFactor = 1;
} else {
entry->status &= ~TexCacheEntry::STATUS_TO_SCALE;
entry->status |= TexCacheEntry::STATUS_IS_SCALED;
texelsScaledThisFrame_ += plan.w * plan.h;
}
}
plan.isVideo = IsVideo(entry->addr);
// TODO: Support reading actual mip levels for upscaled images, instead of just generating them.
// Maybe can just remove this check?
if (plan.scaleFactor > 1) {
plan.levelsToLoad = 1;
bool enableVideoUpscaling = false;
if (!enableVideoUpscaling && plan.isVideo) {
plan.scaleFactor = 1;
plan.levelsToCreate = 1;
}
}
bool canReplace = !isPPGETexture;
if (entry->status & TexCacheEntry::TexStatus::STATUS_CLUT_GPU) {
_dbg_assert_(entry->format == GE_TFMT_CLUT4 || entry->format == GE_TFMT_CLUT8);
plan.decodeToClut8 = true;
// We only support 1 mip level when doing CLUT on GPU for now.
// Supporting more would be possible, just not very interesting until we need it.
plan.levelsToCreate = 1;
plan.levelsToLoad = 1;
plan.maxPossibleLevels = 1;
plan.scaleFactor = 1;
plan.saveTexture = false; // Can't yet save these properly.
canReplace = false;
} else {
plan.decodeToClut8 = false;
}
if (canReplace) {
plan.replaced = &FindReplacement(entry, plan.w, plan.h, plan.depth);
plan.replaceValid = plan.replaced->Valid();
} else {
plan.replaced = &replacer_.FindNone();
plan.replaceValid = false;
}
// NOTE! Last chance to change scale factor here!
plan.saveTexture = false;
if (plan.replaceValid) {
// We're replacing, so we won't scale.
plan.scaleFactor = 1;
plan.levelsToLoad = plan.replaced->NumLevels();
plan.levelsToCreate = std::min(plan.levelsToLoad, plan.levelsToCreate);
plan.badMipSizes = false;
// But, we still need to create the texture at a larger size.
plan.replaced->GetSize(0, plan.createW, plan.createH);
} else {
if (replacer_.Enabled() && !plan.replaceValid && plan.depth == 1 && canReplace) {
ReplacedTextureDecodeInfo replacedInfo;
// TODO: Do we handle the race where a replacement becomes valid AFTER this but before we save?
replacedInfo.cachekey = entry->CacheKey();
replacedInfo.hash = entry->fullhash;
replacedInfo.addr = entry->addr;
replacedInfo.isVideo = plan.isVideo;
replacedInfo.isFinal = (entry->status & TexCacheEntry::STATUS_TO_SCALE) == 0;
replacedInfo.scaleFactor = plan.scaleFactor;
replacedInfo.fmt = Draw::DataFormat::R8G8B8A8_UNORM;
plan.saveTexture = replacer_.WillSave(replacedInfo);
}
plan.createW = plan.w * plan.scaleFactor;
plan.createH = plan.h * plan.scaleFactor;
}
// Always load base level texture here
plan.baseLevelSrc = 0;
if (isFakeMipmapChange) {
// NOTE: Since the level is not part of the cache key, we assume it never changes.
plan.baseLevelSrc = std::max(0, gstate.getTexLevelOffset16() / 16);
plan.levelsToCreate = 1;
plan.levelsToLoad = 1;
// Make sure we already decided not to do a 3D texture above.
_dbg_assert_(plan.depth == 1);
}
if (plan.isVideo || plan.depth != 1 || plan.decodeToClut8) {
plan.maxPossibleLevels = 1;
} else {
plan.maxPossibleLevels = log2i(std::min(plan.createW, plan.createH)) + 1;
}
if (plan.levelsToCreate == 1) {
entry->status |= TexCacheEntry::STATUS_NO_MIPS;
} else {
entry->status &= ~TexCacheEntry::STATUS_NO_MIPS;
}
// Will be filled in again during decode.
entry->status &= ~TexCacheEntry::STATUS_ALPHA_MASK;
return true;
}
void TextureCacheCommon::LoadTextureLevel(TexCacheEntry &entry, uint8_t *data, int stride, BuildTexturePlan &plan, int srcLevel, Draw::DataFormat dstFmt, TexDecodeFlags texDecFlags) {
int w = gstate.getTextureWidth(srcLevel);
int h = gstate.getTextureHeight(srcLevel);
PROFILE_THIS_SCOPE("decodetex");
if (plan.replaceValid && plan.replaced->GetSize(srcLevel, w, h)) {
double replaceStart = time_now_d();
plan.replaced->Load(srcLevel, data, stride);
replacementTimeThisFrame_ += time_now_d() - replaceStart;
} else {
GETextureFormat tfmt = (GETextureFormat)entry.format;
GEPaletteFormat clutformat = gstate.getClutPaletteFormat();
u32 texaddr = gstate.getTextureAddress(srcLevel);
int bufw = GetTextureBufw(srcLevel, texaddr, tfmt);
u32 *pixelData;
int decPitch;
if (plan.scaleFactor > 1) {
tmpTexBufRearrange_.resize(std::max(bufw, w) * h);
pixelData = tmpTexBufRearrange_.data();
// We want to end up with a neatly packed texture for scaling.
decPitch = w * 4;
} else {
pixelData = (u32 *)data;
decPitch = stride;
}
if (!gstate_c.Use(GPU_USE_16BIT_FORMATS) || dstFmt == Draw::DataFormat::R8G8B8A8_UNORM) {
texDecFlags |= TexDecodeFlags::EXPAND32;
}
if (entry.status & TexCacheEntry::STATUS_CLUT_GPU) {
texDecFlags |= TexDecodeFlags::TO_CLUT8;
}
CheckAlphaResult alphaResult = DecodeTextureLevel((u8 *)pixelData, decPitch, tfmt, clutformat, texaddr, srcLevel, bufw, texDecFlags);
entry.SetAlphaStatus(alphaResult, srcLevel);
if (plan.scaleFactor > 1) {
// Note that this updates w and h!
scaler_.ScaleAlways((u32 *)data, pixelData, w, h, plan.scaleFactor);
pixelData = (u32 *)data;
decPitch = w * 4;
if (decPitch != stride) {
// Rearrange in place to match the requested pitch.
// (it can only be larger than w * bpp, and a match is likely.)
// Note! This is bad because it reads the mapped memory! TODO: Look into if DX9 does this right.
for (int y = h - 1; y >= 0; --y) {
memcpy((u8 *)data + stride * y, (u8 *)data + decPitch * y, w * 4);
}
decPitch = stride;
}
}
if (replacer_.Enabled() && plan.replaced->IsInvalid()) {
ReplacedTextureDecodeInfo replacedInfo;
replacedInfo.cachekey = entry.CacheKey();
replacedInfo.hash = entry.fullhash;
replacedInfo.addr = entry.addr;
replacedInfo.isVideo = IsVideo(entry.addr);
replacedInfo.isFinal = (entry.status & TexCacheEntry::STATUS_TO_SCALE) == 0;
replacedInfo.scaleFactor = plan.scaleFactor;
replacedInfo.fmt = dstFmt;
// NOTE: Reading the decoded texture here may be very slow, if we just wrote it to write-combined memory.
replacer_.NotifyTextureDecoded(replacedInfo, pixelData, decPitch, srcLevel, w, h);
}
}
}
CheckAlphaResult TextureCacheCommon::CheckCLUTAlpha(const uint8_t *pixelData, GEPaletteFormat clutFormat, int w) {
switch (clutFormat) {
case GE_CMODE_16BIT_ABGR4444:
return CheckAlpha16((const u16 *)pixelData, w, 0xF000);
case GE_CMODE_16BIT_ABGR5551:
return CheckAlpha16((const u16 *)pixelData, w, 0x8000);
case GE_CMODE_16BIT_BGR5650:
// Never has any alpha.
return CHECKALPHA_FULL;
default:
return CheckAlpha32((const u32 *)pixelData, w, 0xFF000000);
}
}
void TextureCacheCommon::StartFrame() {
textureShaderCache_->Decimate();
}