ppsspp/GPU/Common/VertexDecoderArm64.cpp
Henrik Rydgård bca83c0baf Buildfix
2023-12-19 14:44:21 +01:00

782 lines
28 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#if PPSSPP_ARCH(ARM64)
#include "Common/CPUDetect.h"
#include "Common/Log.h"
#include "Core/Config.h"
#include "Common/Arm64Emitter.h"
#include "Core/MIPS/JitCommon/JitCommon.h"
#include "GPU/GPUState.h"
#include "GPU/Common/VertexDecoderCommon.h"
alignas(16) static float bones[16 * 8]; // First four are kept in registers
using namespace Arm64Gen;
// Pointers, X regs (X0 - X17 safe to use.)
static const ARM64Reg srcReg = X0;
static const ARM64Reg dstReg = X1;
static const ARM64Reg counterReg = W2;
static const ARM64Reg uvScaleReg = X3;
static const ARM64Reg tempReg1 = W3;
static const ARM64Reg tempRegPtr = X3;
static const ARM64Reg tempReg2 = W4;
static const ARM64Reg tempReg3 = W5;
static const ARM64Reg scratchReg = W6;
static const ARM64Reg scratchReg64 = X6;
static const ARM64Reg scratchReg2 = W7;
static const ARM64Reg scratchReg3 = W8;
static const ARM64Reg alphaNonFullReg = W12;
static const ARM64Reg boundsMinUReg = W13;
static const ARM64Reg boundsMinVReg = W14;
static const ARM64Reg boundsMaxUReg = W15;
static const ARM64Reg boundsMaxVReg = W16;
static const ARM64Reg fpScratchReg = S4;
static const ARM64Reg fpScratchReg2 = S5;
static const ARM64Reg fpScratchReg3 = S6;
static const ARM64Reg fpScratchReg4 = S7;
static const ARM64Reg neonScratchRegD = D2;
static const ARM64Reg neonScratchRegQ = Q2;
static const ARM64Reg neonScratchReg2D = D3;
static const ARM64Reg neonScratchReg2Q = Q3;
static const ARM64Reg neonUVScaleReg = D0;
static const ARM64Reg neonUVOffsetReg = D1;
static const ARM64Reg src[2] = {S2, S3};
static const ARM64Reg srcD = D2;
static const ARM64Reg srcQ = Q2;
static const ARM64Reg srcNEON = Q8;
static const ARM64Reg accNEON = Q9;
static const ARM64Reg neonWeightRegsQ[2] = { Q3, Q2 }; // reverse order to prevent clash with neonScratchReg in Jit_WeightsU*Skin.
// Q4-Q7 is the generated matrix that we multiply things by.
// Q8,Q9 are accumulators/scratch for matrix mul.
// Q10, Q11 are more scratch for matrix mul.
// Q16+ are free-for-all for matrices. In 16 registers, we can fit 4 4x4 matrices.
static const JitLookup jitLookup[] = {
{&VertexDecoder::Step_WeightsU8, &VertexDecoderJitCache::Jit_WeightsU8},
{&VertexDecoder::Step_WeightsU16, &VertexDecoderJitCache::Jit_WeightsU16},
{&VertexDecoder::Step_WeightsFloat, &VertexDecoderJitCache::Jit_WeightsFloat},
{&VertexDecoder::Step_WeightsU8Skin, &VertexDecoderJitCache::Jit_WeightsU8Skin},
{&VertexDecoder::Step_WeightsU16Skin, &VertexDecoderJitCache::Jit_WeightsU16Skin},
{&VertexDecoder::Step_WeightsFloatSkin, &VertexDecoderJitCache::Jit_WeightsFloatSkin},
{&VertexDecoder::Step_TcFloat, &VertexDecoderJitCache::Jit_TcFloat},
{&VertexDecoder::Step_TcU8ToFloat, &VertexDecoderJitCache::Jit_TcU8ToFloat},
{&VertexDecoder::Step_TcU16ToFloat, &VertexDecoderJitCache::Jit_TcU16ToFloat},
{&VertexDecoder::Step_TcU8Prescale, &VertexDecoderJitCache::Jit_TcU8Prescale},
{&VertexDecoder::Step_TcU16Prescale, &VertexDecoderJitCache::Jit_TcU16Prescale},
{&VertexDecoder::Step_TcFloatPrescale, &VertexDecoderJitCache::Jit_TcFloatPrescale},
{&VertexDecoder::Step_TcFloatThrough, &VertexDecoderJitCache::Jit_TcFloatThrough},
{&VertexDecoder::Step_TcU16ThroughToFloat, &VertexDecoderJitCache::Jit_TcU16ThroughToFloat},
{&VertexDecoder::Step_NormalS8, &VertexDecoderJitCache::Jit_NormalS8},
{&VertexDecoder::Step_NormalS16, &VertexDecoderJitCache::Jit_NormalS16},
{&VertexDecoder::Step_NormalFloat, &VertexDecoderJitCache::Jit_NormalFloat},
{&VertexDecoder::Step_NormalS8Skin, &VertexDecoderJitCache::Jit_NormalS8Skin},
{&VertexDecoder::Step_NormalS16Skin, &VertexDecoderJitCache::Jit_NormalS16Skin},
{&VertexDecoder::Step_NormalFloatSkin, &VertexDecoderJitCache::Jit_NormalFloatSkin},
{&VertexDecoder::Step_Color8888, &VertexDecoderJitCache::Jit_Color8888},
{&VertexDecoder::Step_Color4444, &VertexDecoderJitCache::Jit_Color4444},
{&VertexDecoder::Step_Color565, &VertexDecoderJitCache::Jit_Color565},
{&VertexDecoder::Step_Color5551, &VertexDecoderJitCache::Jit_Color5551},
{&VertexDecoder::Step_PosS8Through, &VertexDecoderJitCache::Jit_PosS8Through},
{&VertexDecoder::Step_PosS16Through, &VertexDecoderJitCache::Jit_PosS16Through},
{&VertexDecoder::Step_PosFloatThrough, &VertexDecoderJitCache::Jit_PosFloatThrough},
{&VertexDecoder::Step_PosS8, &VertexDecoderJitCache::Jit_PosS8},
{&VertexDecoder::Step_PosS16, &VertexDecoderJitCache::Jit_PosS16},
{&VertexDecoder::Step_PosFloat, &VertexDecoderJitCache::Jit_PosFloat},
{&VertexDecoder::Step_PosS8Skin, &VertexDecoderJitCache::Jit_PosS8Skin},
{&VertexDecoder::Step_PosS16Skin, &VertexDecoderJitCache::Jit_PosS16Skin},
{&VertexDecoder::Step_PosFloatSkin, &VertexDecoderJitCache::Jit_PosFloatSkin},
/*
{&VertexDecoder::Step_NormalS8Morph, &VertexDecoderJitCache::Jit_NormalS8Morph},
{&VertexDecoder::Step_NormalS16Morph, &VertexDecoderJitCache::Jit_NormalS16Morph},
{&VertexDecoder::Step_NormalFloatMorph, &VertexDecoderJitCache::Jit_NormalFloatMorph},
{&VertexDecoder::Step_PosS8Morph, &VertexDecoderJitCache::Jit_PosS8Morph},
{&VertexDecoder::Step_PosS16Morph, &VertexDecoderJitCache::Jit_PosS16Morph},
{&VertexDecoder::Step_PosFloatMorph, &VertexDecoderJitCache::Jit_PosFloatMorph},
{&VertexDecoder::Step_Color8888Morph, &VertexDecoderJitCache::Jit_Color8888Morph},
{&VertexDecoder::Step_Color4444Morph, &VertexDecoderJitCache::Jit_Color4444Morph},
{&VertexDecoder::Step_Color565Morph, &VertexDecoderJitCache::Jit_Color565Morph},
{&VertexDecoder::Step_Color5551Morph, &VertexDecoderJitCache::Jit_Color5551Morph},
*/
};
JittedVertexDecoder VertexDecoderJitCache::Compile(const VertexDecoder &dec, int32_t *jittedSize) {
dec_ = &dec;
BeginWrite(4096);
const u8 *start = AlignCode16();
bool prescaleStep = false;
bool skinning = false;
bool updateTexBounds = false;
bool log = false;
// Look for prescaled texcoord steps
for (int i = 0; i < dec.numSteps_; i++) {
if (dec.steps_[i] == &VertexDecoder::Step_TcU8Prescale ||
dec.steps_[i] == &VertexDecoder::Step_TcU16Prescale ||
dec.steps_[i] == &VertexDecoder::Step_TcFloatPrescale) {
prescaleStep = true;
}
if (dec.steps_[i] == &VertexDecoder::Step_WeightsU8Skin ||
dec.steps_[i] == &VertexDecoder::Step_WeightsU16Skin ||
dec.steps_[i] == &VertexDecoder::Step_WeightsFloatSkin) {
skinning = true;
}
if (dec.steps_[i] == &VertexDecoder::Step_TcU16ThroughToFloat) {
updateTexBounds = true;
}
}
// Not used below, but useful for logging.
(void)skinning;
// if (skinning) log = true;
bool updateFullAlpha = dec.col;
if (updateFullAlpha && (dec.VertexType() & GE_VTYPE_COL_MASK) == GE_VTYPE_COL_565)
updateFullAlpha = false;
// GPRs 0-15 do not need to be saved.
// We don't use any higher GPRs than 16. So:
uint64_t regs_to_save = updateTexBounds ? 1 << 16 : 0;
// We only need to save Q8-Q15 if skinning is used.
uint64_t regs_to_save_fp = dec.skinInDecode ? Arm64Gen::ALL_CALLEE_SAVED_FP : 0;
// Only bother making stack space and setting up FP if there are saved regs.
if (regs_to_save || regs_to_save_fp)
fp.ABI_PushRegisters(regs_to_save, regs_to_save_fp);
// Keep the scale/offset in a few fp registers if we need it.
if (prescaleStep) {
fp.LDP(64, INDEX_SIGNED, neonUVScaleReg, neonUVOffsetReg, X3, 0);
}
// Add code to convert matrices to 4x4.
// Later we might want to do this when the matrices are loaded instead.
if (dec.skinInDecode) {
// Copying from R3 to R4
MOVP2R(X3, gstate.boneMatrix);
// This is only used with more than 4 weights, and points to the first of them.
if (dec.nweights > 4)
MOVP2R(X4, &bones[16 * 4]);
// Construct a mask to zero out the top lane with.
fp.MVNI(32, Q3, 0);
fp.MOVI(32, Q4, 0);
fp.EXT(Q3, Q3, Q4, 4);
for (int i = 0; i < dec.nweights; i++) {
// This loads Q4,Q5,Q6 with 12 floats and increases X3, all in one go.
fp.LD1(32, 3, INDEX_POST, Q4, X3);
// Now sort those floats into 4 regs: ABCD EFGH IJKL -> ABC0 DEF0 GHI0 JKL0.
// Go backwards to avoid overwriting.
fp.EXT(Q7, Q6, Q6, 4); // I[JKLI]JKL
fp.EXT(Q6, Q5, Q6, 8); // EF[GHIJ]KL
fp.EXT(Q5, Q4, Q5, 12); // ABC[DEFG]H
ARM64Reg matrixRow[4]{ Q4, Q5, Q6, Q7 };
// First four matrices are in registers Q16+.
if (i < 4) {
for (int w = 0; w < 4; ++w)
matrixRow[w] = (ARM64Reg)(Q16 + i * 4 + w);
}
// Zero out the top lane of each one with the mask created above.
fp.AND(matrixRow[0], Q4, Q3);
fp.AND(matrixRow[1], Q5, Q3);
fp.AND(matrixRow[2], Q6, Q3);
fp.AND(matrixRow[3], Q7, Q3);
if (i >= 4)
fp.ST1(32, 4, INDEX_POST, matrixRow[0], X4);
}
}
if (updateFullAlpha) {
// This ends up non-zero if alpha is not full.
// Often we just ORN into it.
MOVI2R(alphaNonFullReg, 0);
}
if (updateTexBounds) {
MOVP2R(scratchReg64, &gstate_c.vertBounds.minU);
LDRH(INDEX_UNSIGNED, boundsMinUReg, scratchReg64, offsetof(KnownVertexBounds, minU));
LDRH(INDEX_UNSIGNED, boundsMaxUReg, scratchReg64, offsetof(KnownVertexBounds, maxU));
LDRH(INDEX_UNSIGNED, boundsMinVReg, scratchReg64, offsetof(KnownVertexBounds, minV));
LDRH(INDEX_UNSIGNED, boundsMaxVReg, scratchReg64, offsetof(KnownVertexBounds, maxV));
}
const u8 *loopStart = NopAlignCode16();
for (int i = 0; i < dec.numSteps_; i++) {
if (!CompileStep(dec, i)) {
EndWrite();
// Reset the code ptr (effectively undoing what we generated) and return zero to indicate that we failed.
ResetCodePtr(GetOffset(start));
char temp[1024] = {0};
dec.ToString(temp, true);
ERROR_LOG(G3D, "Could not compile vertex decoder, failed at step %d: %s", i, temp);
return nullptr;
}
}
ADDI2R(srcReg, srcReg, dec.VertexSize(), scratchReg);
ADDI2R(dstReg, dstReg, dec.decFmt.stride, scratchReg);
SUBS(counterReg, counterReg, 1);
B(CC_NEQ, loopStart);
if (updateFullAlpha) {
FixupBranch skip = CBZ(alphaNonFullReg);
MOVP2R(tempRegPtr, &gstate_c.vertexFullAlpha);
STRB(INDEX_UNSIGNED, WZR, tempRegPtr, 0);
SetJumpTarget(skip);
}
if (updateTexBounds) {
MOVP2R(scratchReg64, &gstate_c.vertBounds.minU);
STRH(INDEX_UNSIGNED, boundsMinUReg, scratchReg64, offsetof(KnownVertexBounds, minU));
STRH(INDEX_UNSIGNED, boundsMaxUReg, scratchReg64, offsetof(KnownVertexBounds, maxU));
STRH(INDEX_UNSIGNED, boundsMinVReg, scratchReg64, offsetof(KnownVertexBounds, minV));
STRH(INDEX_UNSIGNED, boundsMaxVReg, scratchReg64, offsetof(KnownVertexBounds, maxV));
}
if (regs_to_save || regs_to_save_fp)
fp.ABI_PopRegisters(regs_to_save, regs_to_save_fp);
RET();
FlushIcache();
if (log) {
char temp[1024] = { 0 };
dec.ToString(temp, true);
INFO_LOG(JIT, "=== %s (%d bytes) ===", temp, (int)(GetCodePtr() - start));
std::vector<std::string> lines = DisassembleArm64(start, (int)(GetCodePtr() - start));
for (auto line : lines) {
INFO_LOG(JIT, "%s", line.c_str());
}
INFO_LOG(JIT, "==========");
}
*jittedSize = (int)(GetCodePtr() - start);
EndWrite();
return (JittedVertexDecoder)start;
}
bool VertexDecoderJitCache::CompileStep(const VertexDecoder &dec, int step) {
// See if we find a matching JIT function
for (size_t i = 0; i < ARRAY_SIZE(jitLookup); i++) {
if (dec.steps_[step] == jitLookup[i].func) {
((*this).*jitLookup[i].jitFunc)();
return true;
}
}
return false;
}
void VertexDecoderJitCache::Jit_ApplyWeights() {
// We construct a matrix in Q4-Q7
if (dec_->nweights > 4) {
MOVP2R(scratchReg64, bones + 16 * 4);
}
for (int i = 0; i < dec_->nweights; i++) {
switch (i) {
case 0:
fp.FMUL(32, Q4, Q16, neonWeightRegsQ[0], 0);
fp.FMUL(32, Q5, Q17, neonWeightRegsQ[0], 0);
fp.FMUL(32, Q6, Q18, neonWeightRegsQ[0], 0);
fp.FMUL(32, Q7, Q19, neonWeightRegsQ[0], 0);
break;
case 1:
fp.FMLA(32, Q4, Q20, neonWeightRegsQ[0], 1);
fp.FMLA(32, Q5, Q21, neonWeightRegsQ[0], 1);
fp.FMLA(32, Q6, Q22, neonWeightRegsQ[0], 1);
fp.FMLA(32, Q7, Q23, neonWeightRegsQ[0], 1);
break;
case 2:
fp.FMLA(32, Q4, Q24, neonWeightRegsQ[0], 2);
fp.FMLA(32, Q5, Q25, neonWeightRegsQ[0], 2);
fp.FMLA(32, Q6, Q26, neonWeightRegsQ[0], 2);
fp.FMLA(32, Q7, Q27, neonWeightRegsQ[0], 2);
break;
case 3:
fp.FMLA(32, Q4, Q28, neonWeightRegsQ[0], 3);
fp.FMLA(32, Q5, Q29, neonWeightRegsQ[0], 3);
fp.FMLA(32, Q6, Q30, neonWeightRegsQ[0], 3);
fp.FMLA(32, Q7, Q31, neonWeightRegsQ[0], 3);
break;
default:
// Matrices 4+ need to be loaded from memory.
fp.LD1(32, 4, INDEX_POST, Q8, scratchReg64);
fp.FMLA(32, Q4, Q8, neonWeightRegsQ[i >> 2], i & 3);
fp.FMLA(32, Q5, Q9, neonWeightRegsQ[i >> 2], i & 3);
fp.FMLA(32, Q6, Q10, neonWeightRegsQ[i >> 2], i & 3);
fp.FMLA(32, Q7, Q11, neonWeightRegsQ[i >> 2], i & 3);
break;
}
}
}
void VertexDecoderJitCache::Jit_WeightsU8() {
// Basic implementation - a byte at a time. TODO: Optimize
int j;
for (j = 0; j < dec_->nweights; j++) {
LDRB(INDEX_UNSIGNED, tempReg1, srcReg, dec_->weightoff + j);
STRB(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.w0off + j);
}
while (j & 3) {
STRB(INDEX_UNSIGNED, WZR, dstReg, dec_->decFmt.w0off + j);
j++;
}
}
void VertexDecoderJitCache::Jit_WeightsU16() {
// Basic implementation - a short at a time. TODO: Optimize
int j;
for (j = 0; j < dec_->nweights; j++) {
LDRH(INDEX_UNSIGNED, tempReg1, srcReg, dec_->weightoff + j * 2);
STRH(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.w0off + j * 2);
}
while (j & 3) {
STRH(INDEX_UNSIGNED, WZR, dstReg, dec_->decFmt.w0off + j * 2);
j++;
}
}
void VertexDecoderJitCache::Jit_WeightsFloat() {
int j;
for (j = 0; j < dec_->nweights; j++) {
LDR(INDEX_UNSIGNED, tempReg1, srcReg, dec_->weightoff + j * 4);
STR(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.w0off + j * 4);
}
while (j & 3) { // Zero additional weights rounding up to 4.
STR(INDEX_UNSIGNED, WZR, dstReg, dec_->decFmt.w0off + j * 4);
j++;
}
}
void VertexDecoderJitCache::Jit_WeightsU8Skin() {
// Weight is first so srcReg is correct.
switch (dec_->nweights) {
case 1: fp.LDR(8, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0); break;
case 2: fp.LDR(16, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0); break;
default:
// For 3, we over read, for over 4, we read more later.
fp.LDR(32, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0);
break;
}
fp.UXTL(8, neonScratchRegQ, neonScratchRegD);
fp.UXTL(16, neonScratchRegQ, neonScratchRegD);
fp.UCVTF(32, neonWeightRegsQ[0], neonScratchRegQ, 7);
if (dec_->nweights > 4) {
switch (dec_->nweights) {
case 5: fp.LDR(8, INDEX_UNSIGNED, neonScratchRegD, srcReg, 4); break;
case 6: fp.LDR(16, INDEX_UNSIGNED, neonScratchRegD, srcReg, 4); break;
case 7:
case 8:
fp.LDR(32, INDEX_UNSIGNED, neonScratchRegD, srcReg, 4);
break;
}
fp.UXTL(8, neonScratchRegQ, neonScratchRegD);
fp.UXTL(16, neonScratchRegQ, neonScratchRegD);
fp.UCVTF(32, neonWeightRegsQ[1], neonScratchRegQ, 7);
}
Jit_ApplyWeights();
}
void VertexDecoderJitCache::Jit_WeightsU16Skin() {
switch (dec_->nweights) {
case 1: fp.LDR(16, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0); break;
case 2: fp.LDR(32, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0); break;
default:
// For 3, we over read, for over 4, we read more later.
fp.LDR(64, INDEX_UNSIGNED, neonScratchRegD, srcReg, 0);
break;
}
fp.UXTL(16, neonScratchRegQ, neonScratchRegD);
fp.UCVTF(32, neonWeightRegsQ[0], neonScratchRegQ, 15);
if (dec_->nweights > 4) {
switch (dec_->nweights) {
case 5: fp.LDR(16, INDEX_UNSIGNED, neonScratchRegD, srcReg, 8); break;
case 6: fp.LDR(32, INDEX_UNSIGNED, neonScratchRegD, srcReg, 8); break;
case 7:
case 8:
fp.LDR(64, INDEX_UNSIGNED, neonScratchRegD, srcReg, 8);
break;
}
fp.UXTL(16, neonScratchRegQ, neonScratchRegD);
fp.UCVTF(32, neonWeightRegsQ[1], neonScratchRegQ, 15);
}
Jit_ApplyWeights();
}
void VertexDecoderJitCache::Jit_WeightsFloatSkin() {
switch (dec_->nweights) {
case 1:
fp.LDR(32, INDEX_UNSIGNED, neonWeightRegsQ[0], srcReg, 0);
break;
case 2:
fp.LDR(64, INDEX_UNSIGNED, neonWeightRegsQ[0], srcReg, 0);
break;
case 3:
case 4:
fp.LDR(128, INDEX_UNSIGNED, neonWeightRegsQ[0], srcReg, 0);
break;
case 5:
fp.LDR(128, INDEX_UNSIGNED, neonWeightRegsQ[0], srcReg, 0);
fp.LDR(32, INDEX_UNSIGNED, neonWeightRegsQ[1], srcReg, 16);
break;
case 6:
fp.LDR(128, INDEX_UNSIGNED, neonWeightRegsQ[0], srcReg, 0);
fp.LDR(64, INDEX_UNSIGNED, neonWeightRegsQ[1], srcReg, 16);
break;
case 7:
case 8:
fp.LDP(128, INDEX_SIGNED, neonWeightRegsQ[0], neonWeightRegsQ[1], srcReg, 0);
break;
}
Jit_ApplyWeights();
}
void VertexDecoderJitCache::Jit_Color8888() {
LDR(INDEX_UNSIGNED, tempReg1, srcReg, dec_->coloff);
// Or any non-set bits into alphaNonFullReg. This way it's non-zero if not full.
ORN(alphaNonFullReg, alphaNonFullReg, tempReg1, ArithOption(tempReg1, ST_ASR, 24));
STR(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.c0off);
}
void VertexDecoderJitCache::Jit_Color4444() {
LDRH(INDEX_UNSIGNED, tempReg1, srcReg, dec_->coloff);
// Spread out the components.
ANDI2R(tempReg2, tempReg1, 0x000F, scratchReg);
ANDI2R(tempReg3, tempReg1, 0x00F0, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 4));
ANDI2R(tempReg3, tempReg1, 0x0F00, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 8));
ANDI2R(tempReg3, tempReg1, 0xF000, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 12));
// And expand to 8 bits.
ORR(tempReg1, tempReg2, tempReg2, ArithOption(tempReg2, ST_LSL, 4));
// Or any non-set bits into alphaNonFullReg. This way it's non-zero if not full.
ORN(alphaNonFullReg, alphaNonFullReg, tempReg1, ArithOption(tempReg1, ST_ASR, 24));
STR(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.c0off);
}
void VertexDecoderJitCache::Jit_Color565() {
LDRH(INDEX_UNSIGNED, tempReg1, srcReg, dec_->coloff);
// Spread out R and B first. This puts them in 0x001F001F.
ANDI2R(tempReg2, tempReg1, 0x001F, scratchReg);
ANDI2R(tempReg3, tempReg1, 0xF800, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 5));
// Expand 5 -> 8.
LSL(tempReg3, tempReg2, 3);
ORR(tempReg2, tempReg3, tempReg2, ArithOption(tempReg2, ST_LSR, 2));
ANDI2R(tempReg2, tempReg2, 0xFFFF00FF, scratchReg);
// Now finally G. We start by shoving it into a wall.
LSR(tempReg1, tempReg1, 5);
ANDI2R(tempReg1, tempReg1, 0x003F, scratchReg);
LSL(tempReg3, tempReg1, 2);
// Don't worry, shifts into a wall.
ORR(tempReg3, tempReg3, tempReg1, ArithOption(tempReg1, ST_LSR, 4));
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 8));
// Add in full alpha. No need to update alphaNonFullReg.
ORRI2R(tempReg1, tempReg2, 0xFF000000, scratchReg);
STR(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.c0off);
}
void VertexDecoderJitCache::Jit_Color5551() {
LDRSH(INDEX_UNSIGNED, tempReg1, srcReg, dec_->coloff);
ANDI2R(tempReg2, tempReg1, 0x001F, scratchReg);
ANDI2R(tempReg3, tempReg1, 0x03E0, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 3));
ANDI2R(tempReg3, tempReg1, 0x7C00, scratchReg);
ORR(tempReg2, tempReg2, tempReg3, ArithOption(tempReg3, ST_LSL, 6));
// Expand 5 -> 8.
LSR(tempReg3, tempReg2, 2);
// Clean up the bits that were shifted right.
ANDI2R(tempReg3, tempReg3, ~0x000000F8);
ANDI2R(tempReg3, tempReg3, ~0x0000F800);
ORR(tempReg2, tempReg3, tempReg2, ArithOption(tempReg2, ST_LSL, 3));
// Now we just need alpha. Since we loaded as signed, it'll be extended.
ANDI2R(tempReg1, tempReg1, 0xFF000000, scratchReg);
ORR(tempReg2, tempReg2, tempReg1);
// Or any non-set bits into alphaNonFullReg. This way it's non-zero if not full.
ORN(alphaNonFullReg, alphaNonFullReg, tempReg1, ArithOption(tempReg1, ST_ASR, 24));
STR(INDEX_UNSIGNED, tempReg2, dstReg, dec_->decFmt.c0off);
}
void VertexDecoderJitCache::Jit_TcU16ThroughToFloat() {
LDRH(INDEX_UNSIGNED, tempReg1, srcReg, dec_->tcoff);
LDRH(INDEX_UNSIGNED, tempReg2, srcReg, dec_->tcoff + 2);
auto updateSide = [&](ARM64Reg src, CCFlags cc, ARM64Reg dst) {
CMP(src, dst);
CSEL(dst, src, dst, cc);
};
updateSide(tempReg1, CC_LT, boundsMinUReg);
updateSide(tempReg1, CC_GT, boundsMaxUReg);
updateSide(tempReg2, CC_LT, boundsMinVReg);
updateSide(tempReg2, CC_GT, boundsMaxVReg);
fp.LDUR(32, neonScratchRegD, srcReg, dec_->tcoff);
fp.UXTL(16, neonScratchRegQ, neonScratchRegD); // Widen to 32-bit
fp.UCVTF(32, neonScratchRegD, neonScratchRegD);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcFloatThrough() {
LDP(INDEX_SIGNED, tempReg1, tempReg2, srcReg, dec_->tcoff);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcFloat() {
LDP(INDEX_SIGNED, tempReg1, tempReg2, srcReg, dec_->tcoff);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcU8Prescale() {
fp.LDUR(16, neonScratchReg2D, srcReg, dec_->tcoff);
fp.UXTL(8, neonScratchReg2Q, neonScratchReg2D); // Widen to 16-bit
fp.UXTL(16, neonScratchReg2Q, neonScratchReg2D); // Widen to 32-bit
fp.UCVTF(32, neonScratchReg2D, neonScratchReg2D, 7);
fp.MOV(neonScratchRegD, neonUVOffsetReg);
fp.FMLA(32, neonScratchRegD, neonScratchReg2D, neonUVScaleReg);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcU8ToFloat() {
fp.LDUR(16, neonScratchRegD, srcReg, dec_->tcoff);
fp.UXTL(8, neonScratchRegQ, neonScratchRegD); // Widen to 16-bit
fp.UXTL(16, neonScratchRegQ, neonScratchRegD); // Widen to 32-bit
fp.UCVTF(32, neonScratchRegD, neonScratchRegD, 7);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcU16Prescale() {
fp.LDUR(32, neonScratchReg2D, srcReg, dec_->tcoff);
fp.UXTL(16, neonScratchReg2Q, neonScratchReg2D); // Widen to 32-bit
fp.UCVTF(32, neonScratchReg2D, neonScratchReg2D, 15);
fp.MOV(neonScratchRegD, neonUVOffsetReg);
fp.FMLA(32, neonScratchRegD, neonScratchReg2D, neonUVScaleReg);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcU16ToFloat() {
fp.LDUR(32, neonScratchRegD, srcReg, dec_->tcoff);
fp.UXTL(16, neonScratchRegQ, neonScratchRegD); // Widen to 32-bit
fp.UCVTF(32, neonScratchRegD, neonScratchRegD, 15);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_TcFloatPrescale() {
fp.LDUR(64, neonScratchReg2D, srcReg, dec_->tcoff);
fp.MOV(neonScratchRegD, neonUVOffsetReg);
fp.FMLA(32, neonScratchRegD, neonScratchReg2D, neonUVScaleReg);
fp.STUR(64, neonScratchRegD, dstReg, dec_->decFmt.uvoff);
}
void VertexDecoderJitCache::Jit_PosS8() {
Jit_AnyS8ToFloat(dec_->posoff);
fp.STUR(128, srcQ, dstReg, dec_->decFmt.posoff);
}
void VertexDecoderJitCache::Jit_PosS16() {
Jit_AnyS16ToFloat(dec_->posoff);
fp.STUR(128, srcQ, dstReg, dec_->decFmt.posoff);
}
void VertexDecoderJitCache::Jit_PosFloat() {
// Only need to copy 12 bytes, but copying 16 should be okay (and is faster.)
if ((dec_->posoff & 7) == 0 && (dec_->decFmt.posoff & 7) == 0) {
LDP(INDEX_SIGNED, EncodeRegTo64(tempReg1), EncodeRegTo64(tempReg2), srcReg, dec_->posoff);
STP(INDEX_SIGNED, EncodeRegTo64(tempReg1), EncodeRegTo64(tempReg2), dstReg, dec_->decFmt.posoff);
} else {
LDP(INDEX_SIGNED, tempReg1, tempReg2, srcReg, dec_->posoff);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.posoff);
LDR(INDEX_UNSIGNED, tempReg3, srcReg, dec_->posoff + 8);
STR(INDEX_UNSIGNED, tempReg3, dstReg, dec_->decFmt.posoff + 8);
}
}
void VertexDecoderJitCache::Jit_PosS8Through() {
// 8-bit positions in throughmode always decode to 0, depth included.
STR(INDEX_UNSIGNED, WZR, dstReg, dec_->decFmt.posoff);
STR(INDEX_UNSIGNED, WZR, dstReg, dec_->decFmt.posoff + 4);
STR(INDEX_UNSIGNED, WZR, dstReg, dec_->decFmt.posoff + 8);
}
void VertexDecoderJitCache::Jit_PosS16Through() {
// Start with X and Y (which is signed.)
fp.LDUR(32, src[0], srcReg, dec_->posoff);
fp.SXTL(16, srcD, src[0]);
fp.SCVTF(32, srcD, srcD);
fp.STUR(64, src[0], dstReg, dec_->decFmt.posoff);
// Now load in Z (which is unsigned.)
LDRH(INDEX_UNSIGNED, tempReg3, srcReg, dec_->posoff + 4);
fp.SCVTF(src[1], tempReg3);
STR(INDEX_UNSIGNED, src[1], dstReg, dec_->decFmt.posoff + 8);
}
void VertexDecoderJitCache::Jit_PosFloatThrough() {
// Instead of just copying 12 bytes, we copy 8 and clamp Z.
if ((dec_->posoff & 7) == 0 && (dec_->decFmt.posoff & 7) == 0) {
LDR(INDEX_UNSIGNED, EncodeRegTo64(tempReg1), srcReg, dec_->posoff);
STR(INDEX_UNSIGNED, EncodeRegTo64(tempReg1), dstReg, dec_->decFmt.posoff);
} else {
LDP(INDEX_SIGNED, tempReg1, tempReg2, srcReg, dec_->posoff);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.posoff);
}
fp.LDUR(32, neonScratchRegD, srcReg, dec_->posoff + 8);
fp.FCVTZU(32, neonScratchRegD, neonScratchRegD);
// Narrow to 16 bit, saturating meanwhile.
fp.UQXTN(16, neonScratchRegD, neonScratchRegD);
fp.UXTL(16, neonScratchRegD, neonScratchRegD);
fp.UCVTF(32, neonScratchRegD, neonScratchRegD);
fp.STUR(32, neonScratchRegD, dstReg, dec_->decFmt.posoff + 8);
}
void VertexDecoderJitCache::Jit_NormalS8() {
LDURH(tempReg1, srcReg, dec_->nrmoff);
LDRB(INDEX_UNSIGNED, tempReg3, srcReg, dec_->nrmoff + 2);
ORR(tempReg1, tempReg1, tempReg3, ArithOption(tempReg3, ST_LSL, 16));
STR(INDEX_UNSIGNED, tempReg1, dstReg, dec_->decFmt.nrmoff);
}
// Copy 6 bytes and then 2 zeroes.
void VertexDecoderJitCache::Jit_NormalS16() {
// NOTE: Not LDRH, we just copy the raw bytes here.
LDUR(tempReg1, srcReg, dec_->nrmoff);
LDRH(INDEX_UNSIGNED, tempReg2, srcReg, dec_->nrmoff + 4);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.nrmoff);
}
void VertexDecoderJitCache::Jit_NormalFloat() {
// Only need to copy 12 bytes, but copying 16 should be okay (and is faster.)
if ((dec_->nrmoff & 7) == 0 && (dec_->decFmt.nrmoff & 7) == 0) {
LDP(INDEX_SIGNED, EncodeRegTo64(tempReg1), EncodeRegTo64(tempReg2), srcReg, dec_->nrmoff);
STP(INDEX_SIGNED, EncodeRegTo64(tempReg1), EncodeRegTo64(tempReg2), dstReg, dec_->decFmt.nrmoff);
} else {
LDP(INDEX_SIGNED, tempReg1, tempReg2, srcReg, dec_->nrmoff);
STP(INDEX_SIGNED, tempReg1, tempReg2, dstReg, dec_->decFmt.nrmoff);
LDR(INDEX_UNSIGNED, tempReg3, srcReg, dec_->nrmoff + 8);
STR(INDEX_UNSIGNED, tempReg3, dstReg, dec_->decFmt.nrmoff + 8);
}
}
void VertexDecoderJitCache::Jit_NormalS8Skin() {
Jit_AnyS8ToFloat(dec_->nrmoff);
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
void VertexDecoderJitCache::Jit_NormalS16Skin() {
Jit_AnyS16ToFloat(dec_->nrmoff);
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
void VertexDecoderJitCache::Jit_NormalFloatSkin() {
fp.LDUR(128, srcQ, srcReg, dec_->nrmoff);
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
void VertexDecoderJitCache::Jit_PosS8Skin() {
Jit_AnyS8ToFloat(dec_->posoff);
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_PosS16Skin() {
Jit_AnyS16ToFloat(dec_->posoff);
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_PosFloatSkin() {
fp.LDUR(128, srcQ, srcReg, dec_->posoff);
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_AnyS8ToFloat(int srcoff) {
fp.LDUR(32, src[0], srcReg, srcoff);
fp.SXTL(8, srcD, src[0]);
fp.SXTL(16, srcQ, srcD);
fp.SCVTF(32, srcQ, srcQ, 7);
}
void VertexDecoderJitCache::Jit_AnyS16ToFloat(int srcoff) {
fp.LDUR(64, src[0], srcReg, srcoff);
fp.SXTL(16, srcQ, srcD);
fp.SCVTF(32, srcQ, srcQ, 15);
}
void VertexDecoderJitCache::Jit_WriteMatrixMul(int outOff, bool pos) {
// Multiply srcQ with the matrix sitting in Q4-Q7.
fp.FMUL(32, accNEON, Q4, srcQ, 0);
fp.FMLA(32, accNEON, Q5, srcQ, 1);
fp.FMLA(32, accNEON, Q6, srcQ, 2);
if (pos) {
fp.FADD(32, accNEON, accNEON, Q7);
}
fp.STUR(128, accNEON, dstReg, outOff);
}
#endif // PPSSPP_ARCH(ARM64)