ppsspp/Core/MIPS/ARM/ArmJit.cpp

739 lines
21 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "base/logging.h"
#include "Common/ChunkFile.h"
#include "Core/Reporting.h"
#include "Core/Config.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/Debugger/SymbolMap.h"
#include "Core/MemMap.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSCodeUtils.h"
#include "Core/MIPS/MIPSInt.h"
#include "Core/MIPS/MIPSTables.h"
#include "Core/HLE/ReplaceTables.h"
#include "Core/MIPS/ARM/ArmRegCache.h"
#include "Core/MIPS/ARM/ArmRegCacheFPU.h"
#include "ArmRegCache.h"
#include "ArmJit.h"
#include "CPUDetect.h"
#include "ext/disarm.h"
using namespace ArmJitConstants;
void DisassembleArm(const u8 *data, int size) {
char temp[256];
for (int i = 0; i < size; i += 4) {
const u32 *codePtr = (const u32 *)(data + i);
u32 inst = codePtr[0];
u32 next = (i < size - 4) ? codePtr[1] : 0;
// MAGIC SPECIAL CASE for MOVW/MOVT readability!
if ((inst & 0x0FF00000) == 0x03000000 && (next & 0x0FF00000) == 0x03400000) {
u32 low = ((inst & 0x000F0000) >> 4) | (inst & 0x0FFF);
u32 hi = ((next & 0x000F0000) >> 4) | (next & 0x0FFF);
int reg0 = (inst & 0x0000F000) >> 12;
int reg1 = (next & 0x0000F000) >> 12;
if (reg0 == reg1) {
sprintf(temp, "%08x MOV32 %s, %04x%04x", (u32)inst, ArmRegName(reg0), hi, low);
ILOG("A: %s", temp);
i += 4;
continue;
}
}
ArmDis((u32)codePtr, inst, temp, sizeof(temp), true);
ILOG("A: %s", temp);
}
}
namespace MIPSComp
{
using namespace ArmGen;
using namespace ArmJitConstants;
ArmJit::ArmJit(MIPSState *mips) : blocks(mips, this), gpr(mips, &js, &jo), fpr(mips, &js, &jo), mips_(mips) {
logBlocks = 0;
dontLogBlocks = 0;
blocks.Init();
gpr.SetEmitter(this);
fpr.SetEmitter(this);
AllocCodeSpace(1024 * 1024 * 16); // 32MB is the absolute max because that's what an ARM branch instruction can reach, backwards and forwards.
GenerateFixedCode();
js.startDefaultPrefix = mips_->HasDefaultPrefix();
}
ArmJit::~ArmJit() {
}
void ArmJit::DoState(PointerWrap &p)
{
auto s = p.Section("Jit", 1, 2);
if (!s)
return;
p.Do(js.startDefaultPrefix);
if (s >= 2) {
p.Do(js.hasSetRounding);
js.lastSetRounding = 0;
} else {
js.hasSetRounding = 1;
}
}
// This is here so the savestate matches between jit and non-jit.
void ArmJit::DoDummyState(PointerWrap &p)
{
auto s = p.Section("Jit", 1, 2);
if (!s)
return;
bool dummy = false;
p.Do(dummy);
if (s >= 2) {
dummy = true;
p.Do(dummy);
}
}
void ArmJit::FlushAll()
{
gpr.FlushAll();
fpr.FlushAll();
FlushPrefixV();
}
void ArmJit::FlushPrefixV()
{
if ((js.prefixSFlag & JitState::PREFIX_DIRTY) != 0) {
gpr.SetRegImm(SCRATCHREG1, js.prefixS);
STR(SCRATCHREG1, CTXREG, offsetof(MIPSState, vfpuCtrl[VFPU_CTRL_SPREFIX]));
js.prefixSFlag = (JitState::PrefixState) (js.prefixSFlag & ~JitState::PREFIX_DIRTY);
}
if ((js.prefixTFlag & JitState::PREFIX_DIRTY) != 0) {
gpr.SetRegImm(SCRATCHREG1, js.prefixT);
STR(SCRATCHREG1, CTXREG, offsetof(MIPSState, vfpuCtrl[VFPU_CTRL_TPREFIX]));
js.prefixTFlag = (JitState::PrefixState) (js.prefixTFlag & ~JitState::PREFIX_DIRTY);
}
if ((js.prefixDFlag & JitState::PREFIX_DIRTY) != 0) {
gpr.SetRegImm(SCRATCHREG1, js.prefixD);
STR(SCRATCHREG1, CTXREG, offsetof(MIPSState, vfpuCtrl[VFPU_CTRL_DPREFIX]));
js.prefixDFlag = (JitState::PrefixState) (js.prefixDFlag & ~JitState::PREFIX_DIRTY);
}
}
void ArmJit::ClearCache()
{
blocks.Clear();
ClearCodeSpace();
GenerateFixedCode();
}
void ArmJit::InvalidateCache()
{
blocks.Clear();
}
void ArmJit::InvalidateCacheAt(u32 em_address, int length)
{
blocks.InvalidateICache(em_address, length);
}
void ArmJit::EatInstruction(MIPSOpcode op) {
MIPSInfo info = MIPSGetInfo(op);
if (info & DELAYSLOT) {
ERROR_LOG_REPORT_ONCE(ateDelaySlot, JIT, "Ate a branch op.");
}
if (js.inDelaySlot) {
ERROR_LOG_REPORT_ONCE(ateInDelaySlot, JIT, "Ate an instruction inside a delay slot.");
}
js.numInstructions++;
js.compilerPC += 4;
js.downcountAmount += MIPSGetInstructionCycleEstimate(op);
}
void ArmJit::CompileDelaySlot(int flags)
{
// preserve flag around the delay slot! Maybe this is not always necessary on ARM where
// we can (mostly) control whether we set the flag or not. Of course, if someone puts an slt in to the
// delay slot, we're screwed.
if (flags & DELAYSLOT_SAFE)
MRS(R8); // Save flags register. R8 is preserved through function calls and is not allocated.
js.inDelaySlot = true;
MIPSOpcode op = Memory::Read_Opcode_JIT(js.compilerPC + 4);
MIPSCompileOp(op);
js.inDelaySlot = false;
if (flags & DELAYSLOT_FLUSH)
FlushAll();
if (flags & DELAYSLOT_SAFE)
_MSR(true, false, R8); // Restore flags register
}
void ArmJit::Compile(u32 em_address) {
if (GetSpaceLeft() < 0x10000 || blocks.IsFull()) {
ClearCache();
}
int block_num = blocks.AllocateBlock(em_address);
JitBlock *b = blocks.GetBlock(block_num);
DoJit(em_address, b);
blocks.FinalizeBlock(block_num, jo.enableBlocklink);
bool cleanSlate = false;
if (js.hasSetRounding && !js.lastSetRounding) {
WARN_LOG(JIT, "Detected rounding mode usage, rebuilding jit with checks");
// Won't loop, since hasSetRounding is only ever set to 1.
js.lastSetRounding = js.hasSetRounding;
cleanSlate = true;
}
// Drat. The VFPU hit an uneaten prefix at the end of a block.
if (js.startDefaultPrefix && js.MayHavePrefix()) {
WARN_LOG(JIT, "An uneaten prefix at end of block: %08x", js.compilerPC - 4);
js.LogPrefix();
// Let's try that one more time. We won't get back here because we toggled the value.
js.startDefaultPrefix = false;
cleanSlate = true;
}
if (cleanSlate) {
// Our assumptions are all wrong so it's clean-slate time.
ClearCache();
Compile(em_address);
}
}
void ArmJit::RunLoopUntil(u64 globalticks)
{
((void (*)())enterCode)();
}
const u8 *ArmJit::DoJit(u32 em_address, JitBlock *b)
{
js.cancel = false;
js.blockStart = js.compilerPC = mips_->pc;
js.lastContinuedPC = 0;
js.initialBlockSize = 0;
js.nextExit = 0;
js.downcountAmount = 0;
js.curBlock = b;
js.compiling = true;
js.inDelaySlot = false;
js.PrefixStart();
// We add a downcount flag check before the block, used when entering from a linked block.
// The last block decremented downcounter, and the flag should still be available.
// Got three variants here of where we position the code, needs detailed benchmarking.
FixupBranch bail;
if (jo.useBackJump) {
// Moves the MOVI2R and B *before* checkedEntry, and just branch backwards there.
// Speedup seems to be zero unfortunately but I guess it may vary from device to device.
// Not intrusive so keeping it around here to experiment with, may help on ARMv6 due to
// large/slow construction of 32-bit immediates?
JumpTarget backJump = GetCodePtr();
gpr.SetRegImm(R0, js.blockStart);
B((const void *)outerLoopPCInR0);
b->checkedEntry = GetCodePtr();
SetCC(CC_LT);
B(backJump);
SetCC(CC_AL);
} else if (jo.useForwardJump) {
b->checkedEntry = GetCodePtr();
SetCC(CC_LT);
bail = B();
SetCC(CC_AL);
} else {
b->checkedEntry = GetCodePtr();
SetCC(CC_LT);
gpr.SetRegImm(R0, js.blockStart);
B((const void *)outerLoopPCInR0);
SetCC(CC_AL);
}
b->normalEntry = GetCodePtr();
// TODO: this needs work
MIPSAnalyst::AnalysisResults analysis; // = MIPSAnalyst::Analyze(em_address);
gpr.Start(analysis);
fpr.Start(analysis);
int partialFlushOffset = 0;
js.numInstructions = 0;
while (js.compiling)
{
gpr.SetCompilerPC(js.compilerPC); // Let it know for log messages
MIPSOpcode inst = Memory::Read_Opcode_JIT(js.compilerPC);
//MIPSInfo info = MIPSGetInfo(inst);
//if (info & IS_VFPU) {
// logBlocks = 1;
//}
js.downcountAmount += MIPSGetInstructionCycleEstimate(inst);
MIPSCompileOp(inst);
js.compilerPC += 4;
js.numInstructions++;
#ifndef HAVE_ARMV7
if ((GetCodePtr() - b->checkedEntry - partialFlushOffset) > 3200)
{
// We need to prematurely flush as we are out of range
FixupBranch skip = B_CC(CC_AL);
FlushLitPool();
SetJumpTarget(skip);
partialFlushOffset = GetCodePtr() - b->checkedEntry;
}
#endif
// Safety check, in case we get a bunch of really large jit ops without a lot of branching.
if (GetSpaceLeft() < 0x800 || js.numInstructions >= JitBlockCache::MAX_BLOCK_INSTRUCTIONS)
{
FlushAll();
WriteExit(js.compilerPC, js.nextExit++);
js.compiling = false;
}
}
if (jo.useForwardJump) {
SetJumpTarget(bail);
gpr.SetRegImm(R0, js.blockStart);
B((const void *)outerLoopPCInR0);
}
FlushLitPool();
char temp[256];
if (logBlocks > 0 && dontLogBlocks == 0) {
INFO_LOG(JIT, "=============== mips ===============");
for (u32 cpc = em_address; cpc != js.compilerPC + 4; cpc += 4) {
MIPSDisAsm(Memory::Read_Opcode_JIT(cpc), cpc, temp, true);
INFO_LOG(JIT, "M: %08x %s", cpc, temp);
}
}
b->codeSize = GetCodePtr() - b->normalEntry;
if (logBlocks > 0 && dontLogBlocks == 0) {
INFO_LOG(JIT, "=============== ARM ===============");
DisassembleArm(b->normalEntry, GetCodePtr() - b->normalEntry);
}
if (logBlocks > 0)
logBlocks--;
if (dontLogBlocks > 0)
dontLogBlocks--;
// Don't forget to zap the newly written instructions in the instruction cache!
FlushIcache();
if (js.lastContinuedPC == 0)
b->originalSize = js.numInstructions;
else
{
// We continued at least once. Add the last proxy and set the originalSize correctly.
blocks.ProxyBlock(js.blockStart, js.lastContinuedPC, (js.compilerPC - js.lastContinuedPC) / sizeof(u32), GetCodePtr());
b->originalSize = js.initialBlockSize;
}
return b->normalEntry;
}
void ArmJit::AddContinuedBlock(u32 dest)
{
// The first block is the root block. When we continue, we create proxy blocks after that.
if (js.lastContinuedPC == 0)
js.initialBlockSize = js.numInstructions;
else
blocks.ProxyBlock(js.blockStart, js.lastContinuedPC, (js.compilerPC - js.lastContinuedPC) / sizeof(u32), GetCodePtr());
js.lastContinuedPC = dest;
}
bool ArmJit::DescribeCodePtr(const u8 *ptr, std::string &name)
{
// TODO: Not used by anything yet.
return false;
}
void ArmJit::Comp_RunBlock(MIPSOpcode op)
{
// This shouldn't be necessary, the dispatcher should catch us before we get here.
ERROR_LOG(JIT, "Comp_RunBlock should never be reached!");
}
bool ArmJit::ReplaceJalTo(u32 dest) {
#ifdef ARM
MIPSOpcode op(Memory::Read_Opcode_JIT(dest));
if (!MIPS_IS_REPLACEMENT(op.encoding))
return false;
int index = op.encoding & MIPS_EMUHACK_VALUE_MASK;
const ReplacementTableEntry *entry = GetReplacementFunc(index);
if (!entry) {
ERROR_LOG(HLE, "ReplaceJalTo: Invalid replacement op %08x at %08x", op.encoding, dest);
return false;
}
if (entry->flags & (REPFLAG_HOOKENTER | REPFLAG_HOOKEXIT | REPFLAG_DISABLED)) {
// If it's a hook, we can't replace the jal, we have to go inside the func.
return false;
}
// Warning - this might be bad if the code at the destination changes...
if (entry->flags & REPFLAG_ALLOWINLINE) {
// Jackpot! Just do it, no flushing. The code will be entirely inlined.
// First, compile the delay slot. It's unconditional so no issues.
CompileDelaySlot(DELAYSLOT_NICE);
// Technically, we should write the unused return address to RA, but meh.
MIPSReplaceFunc repl = entry->jitReplaceFunc;
int cycles = (this->*repl)();
js.downcountAmount += cycles;
} else {
gpr.SetImm(MIPS_REG_RA, js.compilerPC + 8);
CompileDelaySlot(DELAYSLOT_NICE);
FlushAll();
RestoreRoundingMode();
if (BLInRange((const void *)(entry->replaceFunc))) {
BL((const void *)(entry->replaceFunc));
} else {
MOVI2R(R0, (uintptr_t)entry->replaceFunc);
BL(R0);
}
ApplyRoundingMode();
WriteDownCountR(R0);
}
js.compilerPC += 4;
// No writing exits, keep going!
// Add a trigger so that if the inlined code changes, we invalidate this block.
blocks.ProxyBlock(js.blockStart, dest, symbolMap.GetFunctionSize(dest) / sizeof(u32), GetCodePtr());
#endif
return true;
}
void ArmJit::Comp_ReplacementFunc(MIPSOpcode op)
{
// We get here if we execute the first instruction of a replaced function. This means
// that we do need to return to RA.
// Inlined function calls (caught in jal) are handled differently.
int index = op.encoding & MIPS_EMUHACK_VALUE_MASK;
const ReplacementTableEntry *entry = GetReplacementFunc(index);
if (!entry) {
ERROR_LOG(HLE, "Invalid replacement op %08x", op.encoding);
return;
}
if (entry->flags & REPFLAG_DISABLED) {
MIPSCompileOp(Memory::Read_Instruction(js.compilerPC, true));
} else if (entry->jitReplaceFunc) {
MIPSReplaceFunc repl = entry->jitReplaceFunc;
int cycles = (this->*repl)();
if (entry->flags & (REPFLAG_HOOKENTER | REPFLAG_HOOKEXIT)) {
// Compile the original instruction at this address. We ignore cycles for hooks.
MIPSCompileOp(Memory::Read_Instruction(js.compilerPC, true));
} else {
FlushAll();
// Flushed, so R1 is safe.
LDR(R1, CTXREG, MIPS_REG_RA * 4);
js.downcountAmount += cycles;
WriteExitDestInR(R1);
js.compiling = false;
}
} else if (entry->replaceFunc) {
FlushAll();
RestoreRoundingMode();
gpr.SetRegImm(SCRATCHREG1, js.compilerPC);
MovToPC(SCRATCHREG1);
// Standard function call, nothing fancy.
// The function returns the number of cycles it took in EAX.
if (BLInRange((const void *)(entry->replaceFunc))) {
BL((const void *)(entry->replaceFunc));
} else {
MOVI2R(R0, (uintptr_t)entry->replaceFunc);
BL(R0);
}
if (entry->flags & (REPFLAG_HOOKENTER | REPFLAG_HOOKEXIT)) {
// Compile the original instruction at this address. We ignore cycles for hooks.
ApplyRoundingMode();
MIPSCompileOp(Memory::Read_Instruction(js.compilerPC, true));
} else {
ApplyRoundingMode();
LDR(R1, CTXREG, MIPS_REG_RA * 4);
WriteDownCountR(R0);
WriteExitDestInR(R1);
js.compiling = false;
}
} else {
ERROR_LOG(HLE, "Replacement function %s has neither jit nor regular impl", entry->name);
}
}
void ArmJit::Comp_Generic(MIPSOpcode op)
{
FlushAll();
MIPSInterpretFunc func = MIPSGetInterpretFunc(op);
if (func)
{
SaveDowncount();
// TODO: Perhaps keep the rounding mode for interp?
RestoreRoundingMode();
gpr.SetRegImm(SCRATCHREG1, js.compilerPC);
MovToPC(SCRATCHREG1);
gpr.SetRegImm(R0, op.encoding);
QuickCallFunction(R1, (void *)func);
ApplyRoundingMode();
RestoreDowncount();
}
const MIPSInfo info = MIPSGetInfo(op);
if ((info & IS_VFPU) != 0 && (info & VFPU_NO_PREFIX) == 0)
{
// If it does eat them, it'll happen in MIPSCompileOp().
if ((info & OUT_EAT_PREFIX) == 0)
js.PrefixUnknown();
}
}
void ArmJit::MovFromPC(ARMReg r) {
LDR(r, CTXREG, offsetof(MIPSState, pc));
}
void ArmJit::MovToPC(ARMReg r) {
STR(r, CTXREG, offsetof(MIPSState, pc));
}
void ArmJit::SaveDowncount() {
if (jo.downcountInRegister)
STR(DOWNCOUNTREG, CTXREG, offsetof(MIPSState, downcount));
}
void ArmJit::RestoreDowncount() {
if (jo.downcountInRegister)
LDR(DOWNCOUNTREG, CTXREG, offsetof(MIPSState, downcount));
}
void ArmJit::WriteDownCount(int offset) {
if (jo.downcountInRegister) {
int theDowncount = js.downcountAmount + offset;
Operand2 op2;
if (TryMakeOperand2(theDowncount, op2)) {
SUBS(DOWNCOUNTREG, DOWNCOUNTREG, op2);
} else {
// Should be fine to use R2 here, flushed the regcache anyway.
// If js.downcountAmount can be expressed as an Imm8, we don't need this anyway.
gpr.SetRegImm(R2, theDowncount);
SUBS(DOWNCOUNTREG, DOWNCOUNTREG, R2);
}
} else {
int theDowncount = js.downcountAmount + offset;
LDR(SCRATCHREG2, CTXREG, offsetof(MIPSState, downcount));
Operand2 op2;
if (TryMakeOperand2(theDowncount, op2)) {
SUBS(SCRATCHREG2, SCRATCHREG2, op2);
} else {
// Should be fine to use R2 here, flushed the regcache anyway.
// If js.downcountAmount can be expressed as an Imm8, we don't need this anyway.
gpr.SetRegImm(R2, theDowncount);
SUBS(SCRATCHREG2, SCRATCHREG2, R2);
}
STR(SCRATCHREG2, CTXREG, offsetof(MIPSState, downcount));
}
}
// Abuses R2
void ArmJit::WriteDownCountR(ARMReg reg) {
if (jo.downcountInRegister) {
SUBS(DOWNCOUNTREG, DOWNCOUNTREG, reg);
} else {
LDR(R2, CTXREG, offsetof(MIPSState, downcount));
SUBS(R2, R2, reg);
STR(R2, CTXREG, offsetof(MIPSState, downcount));
}
}
void ArmJit::RestoreRoundingMode(bool force) {
// If the game has never set an interesting rounding mode, we can safely skip this.
if (g_Config.bSetRoundingMode && (force || !g_Config.bForceFlushToZero || js.hasSetRounding)) {
VMRS(SCRATCHREG2);
// Assume we're always in round-to-nearest mode beforehand.
// Also on ARM, we're always in flush-to-zero in C++, so stay that way.
if (!g_Config.bForceFlushToZero) {
ORR(SCRATCHREG2, SCRATCHREG2, AssumeMakeOperand2(4 << 22));
}
BIC(SCRATCHREG2, SCRATCHREG2, AssumeMakeOperand2(3 << 22));
VMSR(SCRATCHREG2);
}
}
void ArmJit::ApplyRoundingMode(bool force) {
// NOTE: Must not destroy R0.
// If the game has never set an interesting rounding mode, we can safely skip this.
if (g_Config.bSetRoundingMode && (force || !g_Config.bForceFlushToZero || js.hasSetRounding)) {
LDR(SCRATCHREG2, CTXREG, offsetof(MIPSState, fcr31));
if (!g_Config.bForceFlushToZero) {
TST(SCRATCHREG2, AssumeMakeOperand2(1 << 24));
AND(SCRATCHREG2, SCRATCHREG2, Operand2(3));
SetCC(CC_NEQ);
ADD(SCRATCHREG2, SCRATCHREG2, Operand2(4));
SetCC(CC_AL);
// We can only skip if the rounding mode is zero and flush is set.
CMP(SCRATCHREG2, Operand2(4));
} else {
ANDS(SCRATCHREG2, SCRATCHREG2, Operand2(3));
}
// At this point, if it was zero, we can skip the rest.
FixupBranch skip = B_CC(CC_EQ);
PUSH(1, SCRATCHREG1);
// MIPS Rounding Mode: ARM Rounding Mode
// 0: Round nearest 0
// 1: Round to zero 3
// 2: Round up (ceil) 1
// 3: Round down (floor) 2
if (!g_Config.bForceFlushToZero) {
AND(SCRATCHREG1, SCRATCHREG2, Operand2(3));
CMP(SCRATCHREG1, Operand2(1));
} else {
CMP(SCRATCHREG2, Operand2(1));
}
SetCC(CC_EQ); ADD(SCRATCHREG2, SCRATCHREG2, Operand2(2));
SetCC(CC_GT); SUB(SCRATCHREG2, SCRATCHREG2, Operand2(1));
SetCC(CC_AL);
VMRS(SCRATCHREG1);
// Assume we're always in round-to-nearest mode beforehand.
if (!g_Config.bForceFlushToZero) {
// But we need to clear flush to zero in this case anyway.
BIC(SCRATCHREG1, SCRATCHREG1, AssumeMakeOperand2(7 << 22));
}
ORR(SCRATCHREG1, SCRATCHREG1, Operand2(SCRATCHREG2, ST_LSL, 22));
VMSR(SCRATCHREG1);
POP(1, SCRATCHREG1);
SetJumpTarget(skip);
}
}
void ArmJit::UpdateRoundingMode() {
// NOTE: Must not destory R0.
if (g_Config.bSetRoundingMode) {
LDR(SCRATCHREG2, CTXREG, offsetof(MIPSState, fcr31));
if (!g_Config.bForceFlushToZero) {
TST(SCRATCHREG2, AssumeMakeOperand2(1 << 24));
AND(SCRATCHREG2, SCRATCHREG2, Operand2(3));
SetCC(CC_NEQ);
ADD(SCRATCHREG2, SCRATCHREG2, Operand2(4));
SetCC(CC_AL);
// We can only skip if the rounding mode is zero and flush is set.
CMP(SCRATCHREG2, Operand2(4));
} else {
ANDS(SCRATCHREG2, SCRATCHREG2, Operand2(3));
}
FixupBranch skip = B_CC(CC_EQ);
PUSH(1, SCRATCHREG1);
MOVI2R(SCRATCHREG2, 1);
MOVP2R(SCRATCHREG1, &js.hasSetRounding);
STRB(SCRATCHREG2, SCRATCHREG1, 0);
POP(1, SCRATCHREG1);
SetJumpTarget(skip);
}
}
// IDEA - could have a WriteDualExit that takes two destinations and two condition flags,
// and just have conditional that set PC "twice". This only works when we fall back to dispatcher
// though, as we need to have the SUBS flag set in the end. So with block linking in the mix,
// I don't think this gives us that much benefit.
void ArmJit::WriteExit(u32 destination, int exit_num)
{
WriteDownCount();
//If nobody has taken care of this yet (this can be removed when all branches are done)
JitBlock *b = js.curBlock;
b->exitAddress[exit_num] = destination;
b->exitPtrs[exit_num] = GetWritableCodePtr();
// Link opportunity!
int block = blocks.GetBlockNumberFromStartAddress(destination);
if (block >= 0 && jo.enableBlocklink) {
// It exists! Joy of joy!
B(blocks.GetBlock(block)->checkedEntry);
b->linkStatus[exit_num] = true;
} else {
gpr.SetRegImm(R0, destination);
B((const void *)dispatcherPCInR0);
}
}
void ArmJit::WriteExitDestInR(ARMReg Reg)
{
MovToPC(Reg);
WriteDownCount();
// TODO: shouldn't need an indirect branch here...
B((const void *)dispatcher);
}
void ArmJit::WriteSyscallExit()
{
WriteDownCount();
B((const void *)dispatcherCheckCoreState);
}
void ArmJit::Comp_DoNothing(MIPSOpcode op) { }
#define _RS ((op>>21) & 0x1F)
#define _RT ((op>>16) & 0x1F)
#define _RD ((op>>11) & 0x1F)
#define _FS ((op>>11) & 0x1F)
#define _FT ((op>>16) & 0x1F)
#define _FD ((op>>6) & 0x1F)
#define _POS ((op>>6) & 0x1F)
#define _SIZE ((op>>11) & 0x1F)
//memory regions:
//
// 08-0A
// 48-4A
// 04-05
// 44-45
// mov eax, addrreg
// shr eax, 28
// mov eax, [table+eax]
// mov dreg, [eax+offreg]
}