ppsspp/GPU/Vulkan/FramebufferVulkan.cpp
2016-05-01 08:53:48 -07:00

1705 lines
59 KiB
C++

// Copyright (c) 2015- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <set>
#include <algorithm>
#include "profiler/profiler.h"
#include "base/timeutil.h"
#include "math/lin/matrix4x4.h"
#include "Common/Vulkan/VulkanContext.h"
#include "Common/Vulkan/VulkanMemory.h"
#include "Common/Vulkan/VulkanImage.h"
#include "Common/ColorConv.h"
#include "Core/Host.h"
#include "Core/MemMap.h"
#include "Core/Config.h"
#include "Core/System.h"
#include "Core/Reporting.h"
#include "Core/HLE/sceDisplay.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#include "GPU/Common/PostShader.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Common/FramebufferCommon.h"
#include "GPU/Debugger/Stepping.h"
#include "GPU/GPUInterface.h"
#include "GPU/GPUState.h"
#include "Common/Vulkan/VulkanImage.h"
#include "GPU/Vulkan/FramebufferVulkan.h"
#include "GPU/Vulkan/DrawEngineVulkan.h"
#include "GPU/Vulkan/TextureCacheVulkan.h"
#include "GPU/Vulkan/ShaderManagerVulkan.h"
#include "GPU/Vulkan/VulkanUtil.h"
#include "UI/OnScreenDisplay.h"
const VkFormat framebufFormat = VK_FORMAT_R8G8B8A8_UNORM;
static const char tex_fs[] = R"(#version 400
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
layout (binding = 0) uniform sampler2D sampler0;
layout (location = 0) in vec2 v_texcoord0;
layout (location = 0) out vec4 fragColor;
void main() {
fragColor = texture(sampler0, v_texcoord0);
}
)";
static const char tex_vs[] = R"(#version 400
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
layout (location = 0) in vec3 a_position;
layout (location = 1) in vec2 a_texcoord0;
layout (location = 0) out vec2 v_texcoord0;
void main() {
v_texcoord0 = a_texcoord0;
gl_Position = vec4(a_position, 1.0);
}
)";
void ConvertFromRGBA8888_Vulkan(u8 *dst, const u8 *src, u32 dstStride, u32 srcStride, u32 width, u32 height, GEBufferFormat format);
FramebufferManagerVulkan::FramebufferManagerVulkan(VulkanContext *vulkan) :
vulkan_(vulkan),
drawPixelsTex_(nullptr),
drawPixelsTexFormat_(GE_FORMAT_INVALID),
convBuf_(nullptr),
convBufSize_(0),
textureCache_(nullptr),
shaderManager_(nullptr),
resized_(false),
pixelBufObj_(nullptr),
currentPBO_(0),
curFrame_(0),
pipelineBasicTex_(VK_NULL_HANDLE),
pipelinePostShader_(VK_NULL_HANDLE),
vulkan2D_(vulkan) {
// Create a bunch of render pass objects, for normal rendering with a depth buffer,
// with and without pre-clearing of both depth/stencil and color, so 4 combos.
VkAttachmentDescription attachments[2] = {};
attachments[0].format = framebufFormat;
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[0].flags = 0;
attachments[1].format = vulkan_->GetDeviceInfo().preferredDepthStencilFormat;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].flags = 0;
VkAttachmentReference color_reference = {};
color_reference.attachment = 0;
color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depth_reference = {};
depth_reference.attachment = 1;
depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = NULL;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_reference;
subpass.pResolveAttachments = NULL;
subpass.pDepthStencilAttachment = &depth_reference;
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = NULL;
VkRenderPassCreateInfo rp = { VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
rp.attachmentCount = 2;
rp.pAttachments = attachments;
rp.subpassCount = 1;
rp.pSubpasses = &subpass;
rp.dependencyCount = 0;
rp.pDependencies = NULL;
// TODO: Maybe LOAD_OP_DONT_CARE makes sense in some situations. Additionally,
// there is often no need to store the depth buffer afterwards, although hard to know up front.
vkCreateRenderPass(vulkan_->GetDevice(), &rp, nullptr, &rpLoadColorLoadDepth_);
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
vkCreateRenderPass(vulkan_->GetDevice(), &rp, nullptr, &rpClearColorLoadDepth_);
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
vkCreateRenderPass(vulkan_->GetDevice(), &rp, nullptr, &rpClearColorClearDepth_);
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
vkCreateRenderPass(vulkan_->GetDevice(), &rp, nullptr, &rpLoadColorClearDepth_);
// Initialize framedata
for (int i = 0; i < 2; i++) {
VkCommandPoolCreateInfo cp = { VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO };
cp.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT;
cp.queueFamilyIndex = vulkan_->GetGraphicsQueueFamilyIndex();
VkResult res = vkCreateCommandPool(vulkan_->GetDevice(), &cp, nullptr, &frameData_[i].cmdPool_);
assert(res == VK_SUCCESS);
frameData_[i].push_ = new VulkanPushBuffer(vulkan_, 64 * 1024);
}
pipelineCache2D_ = vulkan_->CreatePipelineCache();
std::string fs_errors, vs_errors;
fsBasicTex_ = CompileShaderModule(vulkan_, VK_SHADER_STAGE_FRAGMENT_BIT, tex_fs, &fs_errors);
vsBasicTex_ = CompileShaderModule(vulkan_, VK_SHADER_STAGE_VERTEX_BIT, tex_vs, &vs_errors);
assert(fsBasicTex_ != VK_NULL_HANDLE);
assert(vsBasicTex_ != VK_NULL_HANDLE);
pipelineBasicTex_ = vulkan2D_.GetPipeline(pipelineCache2D_, rpClearColorClearDepth_, vsBasicTex_, fsBasicTex_);
VkSamplerCreateInfo samp = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO };
samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.magFilter = VK_FILTER_NEAREST;
samp.minFilter = VK_FILTER_NEAREST;
VkResult res = vkCreateSampler(vulkan_->GetDevice(), &samp, nullptr, &nearestSampler_);
assert(res == VK_SUCCESS);
samp.magFilter = VK_FILTER_LINEAR;
samp.minFilter = VK_FILTER_LINEAR;
res = vkCreateSampler(vulkan_->GetDevice(), &samp, nullptr, &linearSampler_);
assert(res == VK_SUCCESS);
}
FramebufferManagerVulkan::~FramebufferManagerVulkan() {
delete[] convBuf_;
vulkan_->Delete().QueueDeleteRenderPass(rpLoadColorLoadDepth_);
vulkan_->Delete().QueueDeleteRenderPass(rpClearColorLoadDepth_);
vulkan_->Delete().QueueDeleteRenderPass(rpClearColorClearDepth_);
vulkan_->Delete().QueueDeleteRenderPass(rpLoadColorClearDepth_);
for (int i = 0; i < 2; i++) {
if (frameData_[i].numCommandBuffers_ > 0) {
vkFreeCommandBuffers(vulkan_->GetDevice(), frameData_[i].cmdPool_, frameData_[i].numCommandBuffers_, frameData_[i].commandBuffers_);
}
vkDestroyCommandPool(vulkan_->GetDevice(), frameData_[i].cmdPool_, nullptr);
frameData_[i].push_->Destroy(vulkan_);
delete frameData_[i].push_;
}
delete drawPixelsTex_;
vulkan_->Delete().QueueDeleteShaderModule(fsBasicTex_);
vulkan_->Delete().QueueDeleteShaderModule(vsBasicTex_);
vulkan_->Delete().QueueDeleteSampler(linearSampler_);
vulkan_->Delete().QueueDeleteSampler(nearestSampler_);
vulkan_->Delete().QueueDeletePipeline(pipelineBasicTex_);
if (pipelinePostShader_ != VK_NULL_HANDLE)
vulkan_->Delete().QueueDeletePipeline(pipelinePostShader_);
vulkan_->Delete().QueueDeletePipelineCache(pipelineCache2D_);
}
void FramebufferManagerVulkan::NotifyClear(bool clearColor, bool clearAlpha, bool clearDepth, uint32_t color, float depth) {
if (!useBufferedRendering_) {
float x, y, w, h;
CenterDisplayOutputRect(&x, &y, &w, &h, 480.0f, 272.0f, (float)pixelWidth_, (float)pixelHeight_, ROTATION_LOCKED_HORIZONTAL);
VkClearValue colorValue, depthValue;
colorValue.color.float32[0] = (color & 0xFF) * (1.0f / 255.0f);
colorValue.color.float32[1] = ((color >> 8) & 0xFF) * (1.0f / 255.0f);
colorValue.color.float32[2] = ((color >> 16) & 0xFF) * (1.0f / 255.0f);
colorValue.color.float32[3] = ((color >> 24) & 0xFF) * (1.0f / 255.0f);
depthValue.depthStencil.depth = depth;
depthValue.depthStencil.stencil = (color >> 24) & 0xFF;
VkClearRect rect;
rect.baseArrayLayer = 0;
rect.layerCount = 1;
rect.rect.offset.x = x;
rect.rect.offset.y = y;
rect.rect.extent.width = w;
rect.rect.extent.height = h;
int count = 0;
VkClearAttachment attach[2];
// The Clear detection takes care of doing a regular draw instead if separate masking
// of color and alpha is needed, so we can just treat them as the same.
if (clearColor || clearAlpha) {
attach[count].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
attach[count].clearValue = colorValue;
attach[count].colorAttachment = 0;
count++;
}
if (clearDepth) {
attach[count].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
attach[count].clearValue = depthValue;
attach[count].colorAttachment = 0;
count++;
}
vkCmdClearAttachments(curCmd_, count, attach, 1, &rect);
if (clearColor || clearAlpha) {
SetColorUpdated(gstate_c.skipDrawReason);
}
if (clearDepth) {
SetDepthUpdated();
}
} else {
// TODO: Clever render pass magic.
}
}
void FramebufferManagerVulkan::DoNotifyDraw() {
}
void FramebufferManagerVulkan::UpdatePostShaderUniforms(int bufferWidth, int bufferHeight, int renderWidth, int renderHeight) {
float u_delta = 1.0f / renderWidth;
float v_delta = 1.0f / renderHeight;
float u_pixel_delta = u_delta;
float v_pixel_delta = v_delta;
if (postShaderAtOutputResolution_) {
float x, y, w, h;
CenterDisplayOutputRect(&x, &y, &w, &h, 480.0f, 272.0f, (float)pixelWidth_, (float)pixelHeight_, ROTATION_LOCKED_HORIZONTAL);
u_pixel_delta = (1.0f / w) * (480.0f / bufferWidth);
v_pixel_delta = (1.0f / h) * (272.0f / bufferHeight);
}
postUniforms_.texelDelta[0] = u_delta;
postUniforms_.texelDelta[1] = v_delta;
postUniforms_.pixelDelta[0] = u_pixel_delta;
postUniforms_.pixelDelta[1] = v_pixel_delta;
int flipCount = __DisplayGetFlipCount();
int vCount = __DisplayGetVCount();
float time[4] = { time_now(), (vCount % 60) * 1.0f / 60.0f, (float)vCount, (float)(flipCount % 60) };
memcpy(postUniforms_.time, time, 4 * sizeof(float));
}
void FramebufferManagerVulkan::Init() {
FramebufferManagerCommon::Init();
// Workaround for upscaling shaders where we force x1 resolution without saving it
resized_ = true;
}
VulkanTexture *FramebufferManagerVulkan::MakePixelTexture(const u8 *srcPixels, GEBufferFormat srcPixelFormat, int srcStride, int width, int height) {
if (drawPixelsTex_ && (drawPixelsTexFormat_ != srcPixelFormat || drawPixelsTex_->GetWidth() != width || drawPixelsTex_->GetHeight() != height)) {
delete drawPixelsTex_;
drawPixelsTex_ = nullptr;
}
if (!drawPixelsTex_) {
drawPixelsTex_ = new VulkanTexture(vulkan_);
drawPixelsTex_->CreateDirect(width, height, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT);
// Initialize backbuffer texture for DrawPixels
drawPixelsTexFormat_ = srcPixelFormat;
}
// TODO: We can just change the texture format and flip some bits around instead of this.
// Could share code with the texture cache perhaps.
const uint8_t *data = srcPixels;
if (srcPixelFormat != GE_FORMAT_8888 || srcStride != width) {
u32 neededSize = width * height * 4;
if (!convBuf_ || convBufSize_ < neededSize) {
delete[] convBuf_;
convBuf_ = new u8[neededSize];
convBufSize_ = neededSize;
}
data = convBuf_;
for (int y = 0; y < height; y++) {
switch (srcPixelFormat) {
case GE_FORMAT_565:
{
const u16 *src = (const u16 *)srcPixels + srcStride * y;
u8 *dst = convBuf_ + 4 * width * y;
ConvertRGBA565ToRGBA8888((u32 *)dst, src, width);
}
break;
case GE_FORMAT_5551:
{
const u16 *src = (const u16 *)srcPixels + srcStride * y;
u8 *dst = convBuf_ + 4 * width * y;
ConvertRGBA5551ToRGBA8888((u32 *)dst, src, width);
}
break;
case GE_FORMAT_4444:
{
const u16 *src = (const u16 *)srcPixels + srcStride * y;
u8 *dst = convBuf_ + 4 * width * y;
ConvertRGBA4444ToRGBA8888((u32 *)dst, src, width);
}
break;
case GE_FORMAT_8888:
{
const u8 *src = srcPixels + srcStride * 4 * y;
u8 *dst = convBuf_ + 4 * width * y;
memcpy(dst, src, 4 * width);
}
break;
case GE_FORMAT_INVALID:
_dbg_assert_msg_(G3D, false, "Invalid pixelFormat passed to DrawPixels().");
break;
}
}
}
VkBuffer buffer;
size_t offset = frameData_[curFrame_].push_->Push(data, width * height * 4, &buffer);
drawPixelsTex_->UploadMip(0, width, height, buffer, (uint32_t)offset, width);
drawPixelsTex_->EndCreate();
return drawPixelsTex_;
}
void FramebufferManagerVulkan::DrawPixels(VirtualFramebuffer *vfb, int dstX, int dstY, const u8 *srcPixels, GEBufferFormat srcPixelFormat, int srcStride, int width, int height) {
VkViewport vp;
vp.minDepth = 0.0;
vp.maxDepth = 1.0;
if (useBufferedRendering_ && vfb && vfb->fbo_vk) {
vp.x = 0;
vp.y = 0;
vp.width = vfb->renderWidth;
vp.height = vfb->renderHeight;
} else {
CenterDisplayOutputRect(&vp.x, &vp.y, &vp.width, &vp.height, 480.0f, 272.0f, (float)pixelWidth_, (float)pixelHeight_, ROTATION_LOCKED_HORIZONTAL);
}
// TODO: Don't use the viewport mechanism for this.
vkCmdSetViewport(curCmd_, 0, 1, &vp);
VulkanTexture *pixelTex = MakePixelTexture(srcPixels, srcPixelFormat, srcStride, width, height);
DrawTexture(pixelTex, dstX, dstY, width, height, vfb->bufferWidth, vfb->bufferHeight, 0.0f, 0.0f, 1.0f, 1.0f, pipelineBasicTex_, ROTATION_LOCKED_HORIZONTAL);
textureCache_->ForgetLastTexture();
}
void FramebufferManagerVulkan::DrawFramebufferToOutput(const u8 *srcPixels, GEBufferFormat srcPixelFormat, int srcStride, bool applyPostShader) {
VulkanTexture *pixelTex = MakePixelTexture(srcPixels, srcPixelFormat, srcStride, 512, 272);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, g_Config.iTexFiltering == TEX_FILTER_NEAREST ? GL_NEAREST : GL_LINEAR);
// This might draw directly at the backbuffer (if so, applyPostShader is set) so if there's a post shader, we need to apply it here.
// Should try to unify this path with the regular path somehow, but this simple solution works for most of the post shaders
// (it always runs at output resolution so FXAA may look odd).
float x, y, w, h;
int uvRotation = (g_Config.iRenderingMode != FB_NON_BUFFERED_MODE) ? g_Config.iInternalScreenRotation : ROTATION_LOCKED_HORIZONTAL;
CenterDisplayOutputRect(&x, &y, &w, &h, 480.0f, 272.0f, (float)pixelWidth_, (float)pixelHeight_, uvRotation);
if (applyPostShader) {
// Might've changed if the shader was just changed to Off.
if (usePostShader_) {
UpdatePostShaderUniforms(480, 272, renderWidth_, renderHeight_);
}
}
float u0 = 0.0f, u1 = 480.0f / 512.0f;
float v0 = 0.0f, v1 = 1.0f;
VkPipeline postShaderProgram_ = VK_NULL_HANDLE;
struct CardboardSettings cardboardSettings;
GetCardboardSettings(&cardboardSettings);
// TODO: Don't use the viewport mechanism for this.
VkViewport vp;
vp.minDepth = 0.0f;
vp.maxDepth = 1.0f;
if (cardboardSettings.enabled) {
// Left Eye Image
vp.x = cardboardSettings.leftEyeXPosition;
vp.y = cardboardSettings.screenYPosition;
vp.width = cardboardSettings.screenWidth;
vp.height = cardboardSettings.screenHeight;
vkCmdSetViewport(curCmd_, 0, 1, &vp);
if (applyPostShader && usePostShader_ && useBufferedRendering_) {
DrawTexture(pixelTex, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, postShaderProgram_, ROTATION_LOCKED_HORIZONTAL);
} else {
DrawTexture(pixelTex, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, pipelineBasicTex_, ROTATION_LOCKED_HORIZONTAL);
}
// Right Eye Image
vp.x = cardboardSettings.rightEyeXPosition;
vkCmdSetViewport(curCmd_, 0, 1, &vp);
if (applyPostShader && usePostShader_ && useBufferedRendering_) {
DrawTexture(pixelTex, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, postShaderProgram_, ROTATION_LOCKED_HORIZONTAL);
} else {
DrawTexture(pixelTex, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, pipelineBasicTex_, ROTATION_LOCKED_HORIZONTAL);
}
} else {
// Fullscreen Image
vp.x = 0.0f;
vp.y = 0.0f;
vp.width = pixelWidth_;
vp.height = pixelHeight_;
vkCmdSetViewport(curCmd_, 0, 1, &vp);
if (applyPostShader && usePostShader_ && useBufferedRendering_) {
DrawTexture(pixelTex, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, postShaderProgram_, uvRotation);
} else {
DrawTexture(pixelTex, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, pipelineBasicTex_, uvRotation);
}
}
}
// x, y, w, h are relative coordinates against destW/destH, which is not very intuitive.
void FramebufferManagerVulkan::DrawTexture(VulkanTexture *texture, float x, float y, float w, float h, float destW, float destH, float u0, float v0, float u1, float v1, VkPipeline pipeline, int uvRotation) {
if (!texture)
return;
float texCoords[8] = {
u0,v0,
u1,v0,
u1,v1,
u0,v1,
};
if (uvRotation != ROTATION_LOCKED_HORIZONTAL) {
float temp[8];
int rotation = 0;
switch (uvRotation) {
case ROTATION_LOCKED_HORIZONTAL180: rotation = 4; break;
case ROTATION_LOCKED_VERTICAL: rotation = 2; break;
case ROTATION_LOCKED_VERTICAL180: rotation = 6; break;
}
for (int i = 0; i < 8; i++) {
temp[i] = texCoords[(i + rotation) & 7];
}
memcpy(texCoords, temp, sizeof(temp));
}
Vulkan2D::Vertex vtx[4] = {
{x,y,0,texCoords[0],texCoords[1]},
{x + w,y,0,texCoords[2],texCoords[3]},
{x,y + h,0,texCoords[6],texCoords[7] },
{x + w,y + h,0,texCoords[4],texCoords[5] },
};
float invDestW = 1.0f / (destW * 0.5f);
float invDestH = 1.0f / (destH * 0.5f);
for (int i = 0; i < 4; i++) {
vtx[i].x = vtx[i].x * invDestW - 1.0f;
vtx[i].y = vtx[i].y * invDestH - 1.0f;
}
VulkanPushBuffer *push = frameData_[curFrame_].push_;
VkCommandBuffer cmd = curCmd_;
// TODO: Choose linear or nearest appropriately, see GL impl.
vulkan2D_.BindDescriptorSet(cmd, texture->GetImageView(), linearSampler_);
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkBuffer vbuffer;
VkDeviceSize offset = push->Push(vtx, sizeof(vtx), &vbuffer);
vkCmdBindVertexBuffers(cmd, 0, 1, &vbuffer, &offset);
vkCmdDraw(cmd, 4, 1, 0, 0);
}
void FramebufferManagerVulkan::DestroyFramebuf(VirtualFramebuffer *v) {
textureCache_->NotifyFramebuffer(v->fb_address, v, NOTIFY_FB_DESTROYED);
if (v->fbo_vk) {
delete v->fbo_vk;
v->fbo_vk = 0;
}
// Wipe some pointers
if (currentRenderVfb_ == v)
currentRenderVfb_ = 0;
if (displayFramebuf_ == v)
displayFramebuf_ = 0;
if (prevDisplayFramebuf_ == v)
prevDisplayFramebuf_ = 0;
if (prevPrevDisplayFramebuf_ == v)
prevPrevDisplayFramebuf_ = 0;
delete v;
}
void FramebufferManagerVulkan::RebindFramebuffer() {
// Switch command buffer?
}
void FramebufferManagerVulkan::ResizeFramebufFBO(VirtualFramebuffer *vfb, u16 w, u16 h, bool force) {
return;
/*
VirtualFramebuffer old = *vfb;
if (force) {
vfb->bufferWidth = w;
vfb->bufferHeight = h;
} else {
if (vfb->bufferWidth >= w && vfb->bufferHeight >= h) {
return;
}
// In case it gets thin and wide, don't resize down either side.
vfb->bufferWidth = std::max(vfb->bufferWidth, w);
vfb->bufferHeight = std::max(vfb->bufferHeight, h);
}
SetRenderSize(vfb);
bool trueColor = g_Config.bTrueColor;
if (hackForce04154000Download_ && vfb->fb_address == 0x00154000) {
trueColor = true;
}
if (trueColor) {
vfb->colorDepth = VK_FBO_8888;
} else {
switch (vfb->format) {
case GE_FORMAT_4444:
vfb->colorDepth = VK_FBO_4444;
break;
case GE_FORMAT_5551:
vfb->colorDepth = VK_FBO_5551;
break;
case GE_FORMAT_565:
vfb->colorDepth = VK_FBO_565;
break;
case GE_FORMAT_8888:
default:
vfb->colorDepth = VK_FBO_8888;
break;
}
}
textureCache_->ForgetLastTexture();
if (!useBufferedRendering_) {
if (vfb->fbo_vk) {
delete vfb->fbo_vk;
vfb->fbo_vk = 0;
}
return;
}
vfb->fbo_vk = new VulkanFBO();
// bo_create(vfb->renderWidth, vfb->renderHeight, 1, true, (FBOColorDepth)vfb->colorDepth);
if (old.fbo_vk) {
INFO_LOG(SCEGE, "Resizing FBO for %08x : %i x %i x %i", vfb->fb_address, w, h, vfb->format);
if (vfb->fbo_vk) {
/// fbo_bind_as_render_target(vfb->fbo_vk);
ClearBuffer();
if (!g_Config.bDisableSlowFramebufEffects) {
BlitFramebuffer(vfb, 0, 0, &old, 0, 0, std::min(vfb->bufferWidth, vfb->width), std::min(vfb->height, vfb->bufferHeight), 0);
}
}
delete old.fbo_vk;
if (vfb->fbo_vk) {
// fbo_bind_as_render_target(vfb->fbo_vk);
}
}
if (!vfb->fbo_vk) {
ERROR_LOG(SCEGE, "Error creating FBO! %i x %i", vfb->renderWidth, vfb->renderHeight);
}
*/
}
void FramebufferManagerVulkan::NotifyRenderFramebufferCreated(VirtualFramebuffer *vfb) {
if (!useBufferedRendering_) {
// Let's ignore rendering to targets that have not (yet) been displayed.
gstate_c.skipDrawReason |= SKIPDRAW_NON_DISPLAYED_FB;
}
textureCache_->NotifyFramebuffer(vfb->fb_address, vfb, NOTIFY_FB_CREATED);
// ugly...
if ((gstate_c.curRTWidth != vfb->width || gstate_c.curRTHeight != vfb->height) && shaderManager_) {
shaderManager_->DirtyUniform(DIRTY_PROJMATRIX);
}
}
void FramebufferManagerVulkan::NotifyRenderFramebufferSwitched(VirtualFramebuffer *prevVfb, VirtualFramebuffer *vfb, bool isClearingDepth) {
if (ShouldDownloadFramebuffer(vfb) && !vfb->memoryUpdated) {
ReadFramebufferToMemory(vfb, true, 0, 0, vfb->width, vfb->height);
}
textureCache_->ForgetLastTexture();
if (useBufferedRendering_) {
if (vfb->fbo_vk) {
// vfb->fbo_vk->GetColorImageView();
}
} else {
if (vfb->fbo_vk) {
// wtf? This should only happen very briefly when toggling bBufferedRendering
textureCache_->NotifyFramebuffer(vfb->fb_address, vfb, NOTIFY_FB_DESTROYED);
delete vfb->fbo_vk;
vfb->fbo_vk = nullptr;
}
// Let's ignore rendering to targets that have not (yet) been displayed.
if (vfb->usageFlags & FB_USAGE_DISPLAYED_FRAMEBUFFER) {
gstate_c.skipDrawReason &= ~SKIPDRAW_NON_DISPLAYED_FB;
} else {
gstate_c.skipDrawReason |= SKIPDRAW_NON_DISPLAYED_FB;
}
}
textureCache_->NotifyFramebuffer(vfb->fb_address, vfb, NOTIFY_FB_UPDATED);
// Copy depth pixel value from the read framebuffer to the draw framebuffer
if (prevVfb && !g_Config.bDisableSlowFramebufEffects) {
if (!prevVfb->fbo_vk || !vfb->fbo_vk || !useBufferedRendering_ || !prevVfb->depthUpdated || isClearingDepth) {
// If depth wasn't updated, then we're at least "two degrees" away from the data.
// This is an optimization: it probably doesn't need to be copied in this case.
} else {
BlitFramebufferDepth(prevVfb, vfb);
}
}
if (vfb->drawnFormat != vfb->format) {
// TODO: Might ultimately combine this with the resize step in DoSetRenderFrameBuffer().
ReformatFramebufferFrom(vfb, vfb->drawnFormat);
}
// ugly...
if ((gstate_c.curRTWidth != vfb->width || gstate_c.curRTHeight != vfb->height) && shaderManager_) {
shaderManager_->DirtyUniform(DIRTY_PROJMATRIX);
}
}
void FramebufferManagerVulkan::NotifyRenderFramebufferUpdated(VirtualFramebuffer *vfb, bool vfbFormatChanged) {
if (vfbFormatChanged) {
textureCache_->NotifyFramebuffer(vfb->fb_address, vfb, NOTIFY_FB_UPDATED);
if (vfb->drawnFormat != vfb->format) {
ReformatFramebufferFrom(vfb, vfb->drawnFormat);
}
}
// ugly...
if ((gstate_c.curRTWidth != vfb->width || gstate_c.curRTHeight != vfb->height) && shaderManager_) {
shaderManager_->DirtyUniform(DIRTY_PROJMATRIX);
}
}
bool FramebufferManagerVulkan::NotifyStencilUpload(u32 addr, int size, bool skipZero) {
// In Vulkan we should be able to simply copy the stencil data directly to a stencil buffer without
// messing about with bitplane textures and the like.
return false;
}
int FramebufferManagerVulkan::GetLineWidth() {
if (g_Config.iInternalResolution == 0) {
return std::max(1, (int)(renderWidth_ / 480));
} else {
return g_Config.iInternalResolution;
}
}
void FramebufferManagerVulkan::ReformatFramebufferFrom(VirtualFramebuffer *vfb, GEBufferFormat old) {
if (!useBufferedRendering_ || !vfb->fbo_vk) {
return;
}
/*
fbo_bind_as_render_target(vfb->fbo);
// Technically, we should at this point re-interpret the bytes of the old format to the new.
// That might get tricky, and could cause unnecessary slowness in some games.
// For now, we just clear alpha/stencil from 565, which fixes shadow issues in Kingdom Hearts.
// (it uses 565 to write zeros to the buffer, than 4444 to actually render the shadow.)
//
// The best way to do this may ultimately be to create a new FBO (combine with any resize?)
// and blit with a shader to that, then replace the FBO on vfb. Stencil would still be complex
// to exactly reproduce in 4444 and 8888 formats.
if (old == GE_FORMAT_565) {
// TODO: Clear to black, set stencil to 0, don't touch depth (or maybe zap depth).
}
RebindFramebuffer();
*/
}
void FramebufferManagerVulkan::BlitFramebufferDepth(VirtualFramebuffer *src, VirtualFramebuffer *dst) {
if (src->z_address == dst->z_address &&
src->z_stride != 0 && dst->z_stride != 0 &&
src->renderWidth == dst->renderWidth &&
src->renderHeight == dst->renderHeight) {
// TODO: Let's only do this if not clearing depth.
VkImageCopy region = {};
region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
region.extent = { dst->renderWidth, dst->renderHeight, 1 };
region.extent.depth = 1;
// vkCmdCopyImage(curCmd_, src->fbo_vk->GetDepthStencil()->GetImage(), VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
// dst->fbo_vk->GetDepthStencil()->GetImage(), VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, 1, &region);
// If we set dst->depthUpdated here, our optimization above would be pointless.
}
}
VulkanTexture *FramebufferManagerVulkan::GetFramebufferColor(u32 fbRawAddress, VirtualFramebuffer *framebuffer, int flags) {
if (framebuffer == NULL) {
framebuffer = currentRenderVfb_;
}
if (!framebuffer->fbo_vk || !useBufferedRendering_) {
gstate_c.skipDrawReason |= SKIPDRAW_BAD_FB_TEXTURE;
return nullptr;
}
// currentRenderVfb_ will always be set when this is called, except from the GE debugger.
// Let's just not bother with the copy in that case.
bool skipCopy = (flags & BINDFBCOLOR_MAY_COPY) == 0;
if (GPUStepping::IsStepping() || g_Config.bDisableSlowFramebufEffects) {
skipCopy = true;
}
if (!skipCopy && currentRenderVfb_ && framebuffer->fb_address == fbRawAddress) {
// TODO: Enable the below code
return framebuffer->fbo_vk->GetColor();
/*
// TODO: Maybe merge with bvfbs_? Not sure if those could be packing, and they're created at a different size.
VulkanFBO *renderCopy = GetTempFBO(framebuffer->renderWidth, framebuffer->renderHeight, (FBOColorDepth)framebuffer->colorDepth);
if (renderCopy) {
VirtualFramebuffer copyInfo = *framebuffer;
copyInfo.fbo_vk = renderCopy;
int x = 0;
int y = 0;
int w = framebuffer->drawnWidth;
int h = framebuffer->drawnHeight;
// If max is not > min, we probably could not detect it. Skip.
// See the vertex decoder, where this is updated.
if ((flags & BINDFBCOLOR_MAY_COPY_WITH_UV) == BINDFBCOLOR_MAY_COPY_WITH_UV && gstate_c.vertBounds.maxU > gstate_c.vertBounds.minU) {
x = gstate_c.vertBounds.minU;
y = gstate_c.vertBounds.minV;
w = gstate_c.vertBounds.maxU - x;
h = gstate_c.vertBounds.maxV - y;
// If we bound a framebuffer, apply the byte offset as pixels to the copy too.
if (flags & BINDFBCOLOR_APPLY_TEX_OFFSET) {
x += gstate_c.curTextureXOffset;
y += gstate_c.curTextureYOffset;
}
}
BlitFramebuffer(&copyInfo, x, y, framebuffer, x, y, w, h, 0);
return nullptr; // fbo_bind_color_as_texture(renderCopy, 0);
} else {
return framebuffer->fbo_vk->GetColor();
}
*/
} else {
return framebuffer->fbo_vk->GetColor();
}
}
struct CardboardSettings * FramebufferManagerVulkan::GetCardboardSettings(struct CardboardSettings * cardboardSettings) {
cardboardSettings->enabled = false;
return nullptr;
}
void FramebufferManagerVulkan::CopyDisplayToOutput() {
// This is where we should collect all the renderpasses from this frame,
// sort them in order according to texturing dependencies, and enqueue
// them on the Vulkan context.
// Then, we will simply perform a blit of the currently displayed framebuffer to the backbuffer.
// If there's no extra graphics to draw like framerate counters or controls,
// then in theory, we can even avoid starting up a render pass at all for the backbuffer (!). not sure if that
// is worth the needed refactoring trouble though.
// fbo_unbind();
currentRenderVfb_ = 0;
if (useBufferedRendering_) {
// TODO: Clear here. Although it will be done through the surface pass instead..
}
if (displayFramebufPtr_ == 0) {
DEBUG_LOG(SCEGE, "Display disabled, displaying only black");
// No framebuffer to display! Clear to black.
ClearBuffer();
return;
}
u32 offsetX = 0;
u32 offsetY = 0;
VirtualFramebuffer *vfb = GetVFBAt(displayFramebufPtr_);
if (!vfb) {
// Let's search for a framebuf within this range.
// TODO: Let's keep an interval_map or something of the memory contents.
const u32 addr = (displayFramebufPtr_ & 0x03FFFFFF) | 0x04000000;
for (size_t i = 0; i < vfbs_.size(); ++i) {
VirtualFramebuffer *v = vfbs_[i];
const u32 v_addr = (v->fb_address & 0x03FFFFFF) | 0x04000000;
const u32 v_size = FramebufferByteSize(v);
if (addr >= v_addr && addr < v_addr + v_size) {
const u32 dstBpp = v->format == GE_FORMAT_8888 ? 4 : 2;
const u32 v_offsetX = ((addr - v_addr) / dstBpp) % v->fb_stride;
const u32 v_offsetY = ((addr - v_addr) / dstBpp) / v->fb_stride;
// We have enough space there for the display, right?
if (v_offsetX + 480 > (u32)v->fb_stride || v->bufferHeight < v_offsetY + 272) {
continue;
}
// Check for the closest one.
if (offsetY == 0 || offsetY > v_offsetY) {
offsetX = v_offsetX;
offsetY = v_offsetY;
vfb = v;
}
}
}
if (vfb) {
// Okay, we found one above.
INFO_LOG_REPORT_ONCE(displayoffset, HLE, "Rendering from framebuf with offset %08x -> %08x+%dx%d", addr, vfb->fb_address, offsetX, offsetY);
}
}
if (vfb && vfb->format != displayFormat_) {
if (vfb->last_frame_render + FBO_OLD_AGE < gpuStats.numFlips) {
// The game probably switched formats on us.
vfb->format = displayFormat_;
} else {
vfb = 0;
}
}
if (!vfb) {
if (Memory::IsValidAddress(displayFramebufPtr_)) {
// The game is displaying something directly from RAM. In GTA, it's decoded video.
// First check that it's not a known RAM copy of a VRAM framebuffer though, as in MotoGP
for (auto iter = knownFramebufferRAMCopies_.begin(); iter != knownFramebufferRAMCopies_.end(); ++iter) {
if (iter->second == displayFramebufPtr_) {
vfb = GetVFBAt(iter->first);
}
}
if (!vfb) {
// Just a pointer to plain memory to draw. We should create a framebuffer, then draw to it.
DrawFramebufferToOutput(Memory::GetPointer(displayFramebufPtr_), displayFormat_, displayStride_, true);
return;
}
} else {
DEBUG_LOG(SCEGE, "Found no FBO to display! displayFBPtr = %08x", displayFramebufPtr_);
// No framebuffer to display! Clear to black.
ClearBuffer();
return;
}
}
vfb->usageFlags |= FB_USAGE_DISPLAYED_FRAMEBUFFER;
vfb->last_frame_displayed = gpuStats.numFlips;
vfb->dirtyAfterDisplay = false;
vfb->reallyDirtyAfterDisplay = false;
if (prevDisplayFramebuf_ != displayFramebuf_) {
prevPrevDisplayFramebuf_ = prevDisplayFramebuf_;
}
if (displayFramebuf_ != vfb) {
prevDisplayFramebuf_ = displayFramebuf_;
}
displayFramebuf_ = vfb;
if (vfb->fbo_vk) {
struct CardboardSettings cardboardSettings;
GetCardboardSettings(&cardboardSettings);
DEBUG_LOG(SCEGE, "Displaying FBO %08x", vfb->fb_address);
// We should not be in a renderpass here so can just copy.
// GLuint colorTexture = fbo_get_color_texture(vfb->fbo_vk);
VulkanTexture *colorTexture = vfb->fbo_vk->GetColor();
int uvRotation = (g_Config.iRenderingMode != FB_NON_BUFFERED_MODE) ? g_Config.iInternalScreenRotation : ROTATION_LOCKED_HORIZONTAL;
// Output coordinates
float x, y, w, h;
CenterDisplayOutputRect(&x, &y, &w, &h, 480.0f, 272.0f, (float)pixelWidth_, (float)pixelHeight_, uvRotation);
// TODO ES3: Use glInvalidateFramebuffer to discard depth/stencil data at the end of frame.
float u0 = offsetX / (float)vfb->bufferWidth;
float v0 = offsetY / (float)vfb->bufferHeight;
float u1 = (480.0f + offsetX) / (float)vfb->bufferWidth;
float v1 = (272.0f + offsetY) / (float)vfb->bufferHeight;
VkViewport vp;
vp.minDepth = 0.0f;
vp.maxDepth = 1.0f;
if (!usePostShader_) {
if (cardboardSettings.enabled) {
// Left Eye Image
vp.x = cardboardSettings.leftEyeXPosition;
vp.y = cardboardSettings.screenYPosition;
vp.width = cardboardSettings.screenWidth;
vp.height = cardboardSettings.screenHeight;
vkCmdSetViewport(curCmd_, 0, 1, &vp);
DrawTexture(colorTexture, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, pipelineBasicTex_, ROTATION_LOCKED_HORIZONTAL);
vp.x = cardboardSettings.rightEyeXPosition;
vkCmdSetViewport(curCmd_, 0, 1, &vp);
DrawTexture(colorTexture, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, pipelineBasicTex_, ROTATION_LOCKED_HORIZONTAL);
} else {
// Fullscreen Image
// glstate.viewport.set(0, 0, pixelWidth_, pixelHeight_);
vp.x = 0.0f;
vp.y = 0.0f;
vp.width = pixelWidth_;
vp.height = pixelHeight_;
vkCmdSetViewport(curCmd_, 0, 1, &vp);
DrawTexture(colorTexture, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, pipelineBasicTex_, uvRotation);
}
} else if (usePostShader_ && !postShaderAtOutputResolution_) {
// An additional pass, post-processing shader to the extra FBO.
/*
fbo_bind_as_render_target(extraFBOs_[0]);
int fbo_w, fbo_h;
fbo_get_dimensions(extraFBOs_[0], &fbo_w, &fbo_h);
glstate.viewport.set(0, 0, fbo_w, fbo_h);
shaderManager_->DirtyLastShader(); // dirty lastShader_
glsl_bind(postShaderProgram_);
UpdatePostShaderUniforms(vfb->bufferWidth, vfb->bufferHeight, renderWidth_, renderHeight_);
DrawActiveTexture(colorTexture, 0, 0, fbo_w, fbo_h, fbo_w, fbo_h, 0.0f, 0.0f, 1.0f, 1.0f, postShaderProgram_, ROTATION_LOCKED_HORIZONTAL);
fbo_unbind();
*/
// Use the extra FBO, with applied post-processing shader, as a texture.
// fbo_bind_color_as_texture(extraFBOs_[0], 0);
// colorTexture = fbo_get_color_texture(extraFBOs_[0]);
if (g_Config.bEnableCardboard) {
// Left Eye Image
// glstate.viewport.set(cardboardSettings.leftEyeXPosition, cardboardSettings.screenYPosition, cardboardSettings.screenWidth, cardboardSettings.screenHeight);
// DrawActiveTexture(colorTexture, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, nullptr, ROTATION_LOCKED_HORIZONTAL);
// Right Eye Image
// glstate.viewport.set(cardboardSettings.rightEyeXPosition, cardboardSettings.screenYPosition, cardboardSettings.screenWidth, cardboardSettings.screenHeight);
// DrawActiveTexture(colorTexture, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, nullptr, ROTATION_LOCKED_HORIZONTAL);
} else {
// Fullscreen Image
// glstate.viewport.set(0, 0, pixelWidth_, pixelHeight_);
// DrawActiveTexture(colorTexture, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, nullptr, uvRotation);
}
} else {
// shaderManager_->DirtyLastShader(); // dirty lastShader_
// glsl_bind(postShaderProgram_);
UpdatePostShaderUniforms(vfb->bufferWidth, vfb->bufferHeight, vfb->renderWidth, vfb->renderHeight);
if (g_Config.bEnableCardboard) {
// Left Eye Image
// glstate.viewport.set(cardboardSettings.leftEyeXPosition, cardboardSettings.screenYPosition, cardboardSettings.screenWidth, cardboardSettings.screenHeight);
// DrawActiveTexture(colorTexture, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, nullptr, ROTATION_LOCKED_HORIZONTAL);
// Right Eye Image
// glstate.viewport.set(cardboardSettings.rightEyeXPosition, cardboardSettings.screenYPosition, cardboardSettings.screenWidth, cardboardSettings.screenHeight);
// DrawActiveTexture(colorTexture, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, nullptr, ROTATION_LOCKED_HORIZONTAL);
} else {
// Fullscreen Image
// glstate.viewport.set(0, 0, pixelWidth_, pixelHeight_);
// DrawActiveTexture(colorTexture, x, y, w, h, (float)pixelWidth_, (float)pixelHeight_, u0, v0, u1, v1, postShaderProgram_, uvRotation);
}
}
}
}
void FramebufferManagerVulkan::ReadFramebufferToMemory(VirtualFramebuffer *vfb, bool sync, int x, int y, int w, int h) {
PROFILE_THIS_SCOPE("gpu-readback");
if (sync) {
// flush async just in case when we go for synchronous update
// Doesn't actually pack when sent a null argument.
PackFramebufferAsync_(nullptr);
}
if (vfb) {
// We'll pseudo-blit framebuffers here to get a resized version of vfb.
VirtualFramebuffer *nvfb = FindDownloadTempBuffer(vfb);
OptimizeDownloadRange(vfb, x, y, w, h);
BlitFramebuffer(nvfb, x, y, vfb, x, y, w, h, 0);
// PackFramebufferSync_() - Synchronous pixel data transfer using glReadPixels
// PackFramebufferAsync_() - Asynchronous pixel data transfer using glReadPixels with PBOs
// TODO: Can we fall back to sync without these?
if (!sync) {
PackFramebufferAsync_(nvfb);
} else {
PackFramebufferSync_(nvfb, x, y, w, h);
}
textureCache_->ForgetLastTexture();
RebindFramebuffer();
}
}
void FramebufferManagerVulkan::DownloadFramebufferForClut(u32 fb_address, u32 loadBytes) {
PROFILE_THIS_SCOPE("gpu-readback");
// Flush async just in case.
PackFramebufferAsync_(nullptr);
VirtualFramebuffer *vfb = GetVFBAt(fb_address);
if (vfb && vfb->fb_stride != 0) {
const u32 bpp = vfb->drawnFormat == GE_FORMAT_8888 ? 4 : 2;
int x = 0;
int y = 0;
int pixels = loadBytes / bpp;
// The height will be 1 for each stride or part thereof.
int w = std::min(pixels % vfb->fb_stride, (int)vfb->width);
int h = std::min((pixels + vfb->fb_stride - 1) / vfb->fb_stride, (int)vfb->height);
// No need to download if we already have it.
if (!vfb->memoryUpdated && vfb->clutUpdatedBytes < loadBytes) {
// We intentionally don't call OptimizeDownloadRange() here - we don't want to over download.
// CLUT framebuffers are often incorrectly estimated in size.
if (x == 0 && y == 0 && w == vfb->width && h == vfb->height) {
vfb->memoryUpdated = true;
}
vfb->clutUpdatedBytes = loadBytes;
// We'll pseudo-blit framebuffers here to get a resized version of vfb.
VirtualFramebuffer *nvfb = FindDownloadTempBuffer(vfb);
BlitFramebuffer(nvfb, x, y, vfb, x, y, w, h, 0);
PackFramebufferSync_(nvfb, x, y, w, h);
textureCache_->ForgetLastTexture();
RebindFramebuffer();
}
}
}
bool FramebufferManagerVulkan::CreateDownloadTempBuffer(VirtualFramebuffer *nvfb) {
// When updating VRAM, it need to be exact format.
if (!gstate_c.Supports(GPU_PREFER_CPU_DOWNLOAD)) {
switch (nvfb->format) {
case GE_FORMAT_4444:
nvfb->colorDepth = VK_FBO_4444;
break;
case GE_FORMAT_5551:
nvfb->colorDepth = VK_FBO_5551;
break;
case GE_FORMAT_565:
nvfb->colorDepth = VK_FBO_565;
break;
case GE_FORMAT_8888:
default:
nvfb->colorDepth = VK_FBO_8888;
break;
}
}
/*
nvfb->fbo = fbo_create(nvfb->width, nvfb->height, 1, false, (FBOColorDepth)nvfb->colorDepth);
if (!(nvfb->fbo)) {
ERROR_LOG(SCEGE, "Error creating FBO! %i x %i", nvfb->renderWidth, nvfb->renderHeight);
return false;
}
fbo_bind_as_render_target(nvfb->fbo);
ClearBuffer();
glDisable(GL_DITHER);
*/
return true;
}
void FramebufferManagerVulkan::UpdateDownloadTempBuffer(VirtualFramebuffer *nvfb) {
_assert_msg_(G3D, nvfb->fbo, "Expecting a valid nvfb in UpdateDownloadTempBuffer");
// Discard the previous contents of this buffer where possible.
/*
if (gl_extensions.GLES3 && glInvalidateFramebuffer != nullptr) {
fbo_bind_as_render_target(nvfb->fbo);
GLenum attachments[3] = { GL_COLOR_ATTACHMENT0, GL_STENCIL_ATTACHMENT, GL_DEPTH_ATTACHMENT };
glInvalidateFramebuffer(GL_FRAMEBUFFER, 3, attachments);
} else if (gl_extensions.IsGLES) {
fbo_bind_as_render_target(nvfb->fbo);
ClearBuffer();
}
*/
}
void FramebufferManagerVulkan::BlitFramebuffer(VirtualFramebuffer *dst, int dstX, int dstY, VirtualFramebuffer *src, int srcX, int srcY, int w, int h, int bpp) {
if (!dst->fbo || !src->fbo || !useBufferedRendering_) {
// This can happen if they recently switched from non-buffered.
return;
}
// NOTE: There may be cases (like within a renderpass) where we want to
// not use a blit.
bool useBlit = true;
float srcXFactor = useBlit ? (float)src->renderWidth / (float)src->bufferWidth : 1.0f;
float srcYFactor = useBlit ? (float)src->renderHeight / (float)src->bufferHeight : 1.0f;
const int srcBpp = src->format == GE_FORMAT_8888 ? 4 : 2;
if (srcBpp != bpp && bpp != 0) {
srcXFactor = (srcXFactor * bpp) / srcBpp;
}
int srcX1 = srcX * srcXFactor;
int srcX2 = (srcX + w) * srcXFactor;
int srcY1 = srcY * srcYFactor;
int srcY2 = (srcY + h) * srcYFactor;
float dstXFactor = useBlit ? (float)dst->renderWidth / (float)dst->bufferWidth : 1.0f;
float dstYFactor = useBlit ? (float)dst->renderHeight / (float)dst->bufferHeight : 1.0f;
const int dstBpp = dst->format == GE_FORMAT_8888 ? 4 : 2;
if (dstBpp != bpp && bpp != 0) {
dstXFactor = (dstXFactor * bpp) / dstBpp;
}
int dstX1 = dstX * dstXFactor;
int dstX2 = (dstX + w) * dstXFactor;
int dstY1 = dstY * dstYFactor;
int dstY2 = (dstY + h) * dstYFactor;
if (src == dst && srcX == dstX && srcY == dstY) {
// Let's just skip a copy where the destination is equal to the source.
WARN_LOG_REPORT_ONCE(blitSame, G3D, "Skipped blit with equal dst and src");
return;
}
// glBlitFramebuffer can clip, but glCopyImageSubData is more restricted.
// In case the src goes outside, we just skip the optimization in that case.
const bool sameSize = dstX2 - dstX1 == srcX2 - srcX1 && dstY2 - dstY1 == srcY2 - srcY1;
const bool sameDepth = dst->colorDepth == src->colorDepth;
const bool srcInsideBounds = srcX2 <= src->renderWidth && srcY2 <= src->renderHeight;
const bool dstInsideBounds = dstX2 <= dst->renderWidth && dstY2 <= dst->renderHeight;
const bool xOverlap = src == dst && srcX2 > dstX1 && srcX1 < dstX2;
const bool yOverlap = src == dst && srcY2 > dstY1 && srcY1 < dstY2;
if (sameSize && sameDepth && srcInsideBounds && dstInsideBounds && !(xOverlap && yOverlap)) {
VkImageCopy region = {};
region.extent = { (uint32_t)(dstX2 - dstX1), (uint32_t)(dstY2 - dstY1), 1 };
/*
glCopyImageSubDataOES(
fbo_get_color_texture(src->fbo), GL_TEXTURE_2D, 0, srcX1, srcY1, 0,
fbo_get_color_texture(dst->fbo), GL_TEXTURE_2D, 0, dstX1, dstY1, 0,
dstX2 - dstX1, dstY2 - dstY1, 1);
*/
return;
}
// fbo_bind_as_render_target(dst->fbo);
if (useBlit) {
// fbo_bind_for_read(src->fbo);
//glBlitFramebuffer(srcX1, srcY1, srcX2, srcY2, dstX1, dstY1, dstX2, dstY2, GL_COLOR_BUFFER_BIT, GL_NEAREST);
} else {
// fbo_bind_color_as_texture(src->fbo, 0);
// The first four coordinates are relative to the 6th and 7th arguments of DrawActiveTexture.
// Should maybe revamp that interface.
float srcW = src->bufferWidth;
float srcH = src->bufferHeight;
// DrawActiveTexture(0, dstX1, dstY1, w * dstXFactor, h, dst->bufferWidth, dst->bufferHeight, srcX1 / srcW, srcY1 / srcH, srcX2 / srcW, srcY2 / srcH, draw2dprogram_, ROTATION_LOCKED_HORIZONTAL);
}
}
// TODO: SSE/NEON
// Could also make C fake-simd for 64-bit, two 8888 pixels fit in a register :)
void ConvertFromRGBA8888_Vulkan(u8 *dst, const u8 *src, u32 dstStride, u32 srcStride, u32 width, u32 height, GEBufferFormat format) {
// Must skip stride in the cases below. Some games pack data into the cracks, like MotoGP.
const u32 *src32 = (const u32 *)src;
if (format == GE_FORMAT_8888) {
u32 *dst32 = (u32 *)dst;
if (src == dst) {
return;
} else {
// Here let's assume they don't intersect
for (u32 y = 0; y < height; ++y) {
memcpy(dst32, src32, width * 4);
src32 += srcStride;
dst32 += dstStride;
}
}
} else {
// But here it shouldn't matter if they do intersect
u16 *dst16 = (u16 *)dst;
switch (format) {
case GE_FORMAT_565: // BGR 565
for (u32 y = 0; y < height; ++y) {
ConvertRGBA8888ToRGB565(dst16, src32, width);
src32 += srcStride;
dst16 += dstStride;
}
break;
case GE_FORMAT_5551: // ABGR 1555
for (u32 y = 0; y < height; ++y) {
ConvertBGRA8888ToRGBA5551(dst16, src32, width);
src32 += srcStride;
dst16 += dstStride;
}
break;
case GE_FORMAT_4444: // ABGR 4444
for (u32 y = 0; y < height; ++y) {
ConvertRGBA8888ToRGBA4444(dst16, src32, width);
src32 += srcStride;
dst16 += dstStride;
}
break;
case GE_FORMAT_8888:
case GE_FORMAT_INVALID:
// Not possible.
break;
}
}
}
#ifdef DEBUG_READ_PIXELS
// TODO: Make more generic.
static void LogReadPixelsError(GLenum error) {
switch (error) {
case GL_NO_ERROR:
break;
case GL_INVALID_ENUM:
ERROR_LOG(SCEGE, "glReadPixels: GL_INVALID_ENUM");
break;
case GL_INVALID_VALUE:
ERROR_LOG(SCEGE, "glReadPixels: GL_INVALID_VALUE");
break;
case GL_INVALID_OPERATION:
ERROR_LOG(SCEGE, "glReadPixels: GL_INVALID_OPERATION");
break;
case GL_INVALID_FRAMEBUFFER_OPERATION:
ERROR_LOG(SCEGE, "glReadPixels: GL_INVALID_FRAMEBUFFER_OPERATION");
break;
case GL_OUT_OF_MEMORY:
ERROR_LOG(SCEGE, "glReadPixels: GL_OUT_OF_MEMORY");
break;
#ifndef USING_GLES2
case GL_STACK_UNDERFLOW:
ERROR_LOG(SCEGE, "glReadPixels: GL_STACK_UNDERFLOW");
break;
case GL_STACK_OVERFLOW:
ERROR_LOG(SCEGE, "glReadPixels: GL_STACK_OVERFLOW");
break;
#endif
default:
ERROR_LOG(SCEGE, "glReadPixels: %08x", error);
break;
}
}
#endif
// One frame behind, but no stalling.
void FramebufferManagerVulkan::PackFramebufferAsync_(VirtualFramebuffer *vfb) {
const int MAX_PBO = 2;
uint8_t *packed = 0;
const u8 nextPBO = (currentPBO_ + 1) % MAX_PBO;
bool useCPU = false;
// We'll prepare two PBOs to switch between readying and reading
if (!pixelBufObj_) {
if (!vfb) {
// This call is just to flush the buffers. We don't have any yet,
// so there's nothing to do.
return;
}
// GLuint pbos[MAX_PBO];
// glGenBuffers(MAX_PBO, pbos);
pixelBufObj_ = new AsyncPBOVulkan[MAX_PBO];
for (int i = 0; i < MAX_PBO; i++) {
// TODO
// pixelBufObj_[i].handle = pbos[i];
pixelBufObj_[i].maxSize = 0;
pixelBufObj_[i].reading = false;
}
}
// Receive previously requested data from a PBO
AsyncPBOVulkan &pbo = pixelBufObj_[nextPBO];
if (pbo.reading) {
// glBindBuffer(GL_PIXEL_PACK_BUFFER, pbo.handle);
// packed = (GLubyte *)glMapBufferRange(GL_PIXEL_PACK_BUFFER, 0, pbo.size, GL_MAP_READ_BIT);
if (packed) {
DEBUG_LOG(SCEGE, "Reading PBO to memory , bufSize = %u, packed = %p, fb_address = %08x, stride = %u, pbo = %u",
pbo.size, packed, pbo.fb_address, pbo.stride, nextPBO);
// We don't need to convert, GPU already did (or should have)
// (vulkan: hopefully)
Memory::MemcpyUnchecked(pbo.fb_address, packed, pbo.size);
pbo.reading = false;
}
// glUnmapBuffer(GL_PIXEL_PACK_BUFFER);
}
// Order packing/readback of the framebuffer
if (vfb) {
// int pixelType, pixelFormat;
int pixelSize, align;
switch (vfb->format) {
case GE_FORMAT_4444: // 16 bit RGBA
// pixelType = GL_UNSIGNED_SHORT_4_4_4_4;
// pixelFormat = GL_RGBA;
pixelSize = 2;
align = 2;
break;
case GE_FORMAT_5551: // 16 bit RGBA
// pixelType = GL_UNSIGNED_SHORT_5_5_5_1;
// pixelFormat = GL_RGBA;
pixelSize = 2;
align = 2;
break;
case GE_FORMAT_565: // 16 bit RGB
// pixelType = GL_UNSIGNED_SHORT_5_6_5;
// pixelFormat = GL_RGB;
pixelSize = 2;
align = 2;
break;
case GE_FORMAT_8888: // 32 bit RGBA
default:
// pixelType = GL_UNSIGNED_BYTE;
// pixelFormat = UseBGRA8888() ? GL_BGRA_EXT : GL_RGBA;
pixelSize = 4;
align = 4;
break;
}
// If using the CPU, we need 4 bytes per pixel always.
u32 bufSize = vfb->fb_stride * vfb->height * 4 * (useCPU ? 4 : pixelSize);
u32 fb_address = (0x04000000) | vfb->fb_address;
if (vfb->fbo) {
// fbo_bind_for_read(vfb->fbo);
} else {
ERROR_LOG_REPORT_ONCE(vfbfbozero, SCEGE, "PackFramebufferAsync_: vfb->fbo == 0");
// fbo_unbind_read();
return;
}
// glBindBuffer(GL_PIXEL_PACK_BUFFER, pixelBufObj_[currentPBO_].handle);
if (pixelBufObj_[currentPBO_].maxSize < bufSize) {
// We reserve a buffer big enough to fit all those pixels
// glBufferData(GL_PIXEL_PACK_BUFFER, bufSize, NULL, GL_DYNAMIC_READ);
pixelBufObj_[currentPBO_].maxSize = bufSize;
}
if (useCPU) {
// If converting pixel formats on the CPU we'll always request RGBA8888
// SafeGLReadPixels(0, 0, vfb->fb_stride, vfb->height, UseBGRA8888() ? GL_BGRA_EXT : GL_RGBA, GL_UNSIGNED_BYTE, 0);
} else {
// Otherwise we'll directly request the format we need and let the GPU sort it out
// SafeGLReadPixels(0, 0, vfb->fb_stride, vfb->height, pixelFormat, pixelType, 0);
}
pixelBufObj_[currentPBO_].fb_address = fb_address;
pixelBufObj_[currentPBO_].size = bufSize;
pixelBufObj_[currentPBO_].stride = vfb->fb_stride;
pixelBufObj_[currentPBO_].height = vfb->height;
pixelBufObj_[currentPBO_].format = vfb->format;
pixelBufObj_[currentPBO_].reading = true;
}
currentPBO_ = nextPBO;
}
void FramebufferManagerVulkan::PackFramebufferSync_(VirtualFramebuffer *vfb, int x, int y, int w, int h) {
}
VkCommandBuffer FramebufferManagerVulkan::AllocFrameCommandBuffer() {
FrameData &frame = frameData_[curFrame_];
int num = frame.numCommandBuffers_;
if (!frame.commandBuffers_[num]) {
VkCommandBufferAllocateInfo cmd = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO };
cmd.commandBufferCount = 1;
cmd.commandPool = frame.cmdPool_;
cmd.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
vkAllocateCommandBuffers(vulkan_->GetDevice(), &cmd, &frame.commandBuffers_[num]);
frame.totalCommandBuffers_ = num + 1;
}
return frame.commandBuffers_[num];
}
void FramebufferManagerVulkan::BeginFrameVulkan() {
BeginFrame();
FrameData &frame = frameData_[curFrame_];
vkResetCommandPool(vulkan_->GetDevice(), frame.cmdPool_, 0);
frame.numCommandBuffers_ = 0;
frame.push_->Reset();
frame.push_->Begin(vulkan_);
if (!useBufferedRendering_) {
// We only use a single command buffer in this case.
curCmd_ = vulkan_->GetSurfaceCommandBuffer();
VkRect2D scissor;
scissor.offset = { 0, 0 };
scissor.extent = { (uint32_t)pixelWidth_, (uint32_t)pixelHeight_ };
vkCmdSetScissor(curCmd_, 0, 1, &scissor);
}
}
void FramebufferManagerVulkan::EndFrame() {
if (resized_) {
// TODO: Only do this if the new size actually changed the renderwidth/height.
DestroyAllFBOs();
// Check if postprocessing shader is doing upscaling as it requires native resolution
const ShaderInfo *shaderInfo = 0;
if (g_Config.sPostShaderName != "Off") {
shaderInfo = GetPostShaderInfo(g_Config.sPostShaderName);
}
postShaderIsUpscalingFilter_ = shaderInfo ? shaderInfo->isUpscalingFilter : false;
// Actually, auto mode should be more granular...
// Round up to a zoom factor for the render size.
int zoom = g_Config.iInternalResolution;
if (zoom == 0) { // auto mode
// Use the longest dimension
if (!g_Config.IsPortrait()) {
zoom = (PSP_CoreParameter().pixelWidth + 479) / 480;
} else {
zoom = (PSP_CoreParameter().pixelHeight + 479) / 480;
}
}
if (zoom <= 1 || postShaderIsUpscalingFilter_)
zoom = 1;
if (g_Config.IsPortrait()) {
PSP_CoreParameter().renderWidth = 272 * zoom;
PSP_CoreParameter().renderHeight = 480 * zoom;
} else {
PSP_CoreParameter().renderWidth = 480 * zoom;
PSP_CoreParameter().renderHeight = 272 * zoom;
}
UpdateSize();
resized_ = false;
#ifdef _WIN32
// Seems related - if you're ok with numbers all the time, show some more :)
if (g_Config.iShowFPSCounter != 0) {
ShowScreenResolution();
}
#endif
ClearBuffer();
}
// We flush to memory last requested framebuffer, if any.
// Only do this in the read-framebuffer modes.
if (updateVRAM_)
PackFramebufferAsync_(nullptr);
FrameData &frame = frameData_[curFrame_];
frame.push_->End();
curFrame_++;
curFrame_ &= 1;
}
void FramebufferManagerVulkan::DeviceLost() {
DestroyAllFBOs();
resized_ = false;
}
std::vector<FramebufferInfo> FramebufferManagerVulkan::GetFramebufferList() {
std::vector<FramebufferInfo> list;
for (size_t i = 0; i < vfbs_.size(); ++i) {
VirtualFramebuffer *vfb = vfbs_[i];
FramebufferInfo info;
info.fb_address = vfb->fb_address;
info.z_address = vfb->z_address;
info.format = vfb->format;
info.width = vfb->width;
info.height = vfb->height;
info.fbo = vfb->fbo;
list.push_back(info);
}
return list;
}
void FramebufferManagerVulkan::DecimateFBOs() {
currentRenderVfb_ = 0;
for (size_t i = 0; i < vfbs_.size(); ++i) {
VirtualFramebuffer *vfb = vfbs_[i];
int age = frameLastFramebufUsed_ - std::max(vfb->last_frame_render, vfb->last_frame_used);
if (ShouldDownloadFramebuffer(vfb) && age == 0 && !vfb->memoryUpdated) {
bool sync = true;
ReadFramebufferToMemory(vfb, sync, 0, 0, vfb->width, vfb->height);
}
// Let's also "decimate" the usageFlags.
UpdateFramebufUsage(vfb);
if (vfb != displayFramebuf_ && vfb != prevDisplayFramebuf_ && vfb != prevPrevDisplayFramebuf_) {
if (age > FBO_OLD_AGE) {
INFO_LOG(SCEGE, "Decimating FBO for %08x (%i x %i x %i), age %i", vfb->fb_address, vfb->width, vfb->height, vfb->format, age);
DestroyFramebuf(vfb);
vfbs_.erase(vfbs_.begin() + i--);
}
}
}
}
void FramebufferManagerVulkan::DestroyAllFBOs() {
currentRenderVfb_ = 0;
displayFramebuf_ = 0;
prevDisplayFramebuf_ = 0;
prevPrevDisplayFramebuf_ = 0;
for (size_t i = 0; i < vfbs_.size(); ++i) {
VirtualFramebuffer *vfb = vfbs_[i];
INFO_LOG(SCEGE, "Destroying FBO for %08x : %i x %i x %i", vfb->fb_address, vfb->width, vfb->height, vfb->format);
DestroyFramebuf(vfb);
}
vfbs_.clear();
for (size_t i = 0; i < bvfbs_.size(); ++i) {
VirtualFramebuffer *vfb = bvfbs_[i];
DestroyFramebuf(vfb);
}
bvfbs_.clear();
}
void FramebufferManagerVulkan::FlushBeforeCopy() {
// Flush anything not yet drawn before blitting, downloading, or uploading.
// This might be a stalled list, or unflushed before a block transfer, etc.
// TODO: It's really bad that we are calling SetRenderFramebuffer here with
// all the irrelevant state checking it'll use to decide what to do. Should
// do something more focused here.
SetRenderFrameBuffer(gstate_c.framebufChanged, gstate_c.skipDrawReason);
drawEngine_->Flush(curCmd_);
}
void FramebufferManagerVulkan::Resized() {
resized_ = true;
}
bool FramebufferManagerVulkan::GetFramebuffer(u32 fb_address, int fb_stride, GEBufferFormat format, GPUDebugBuffer &buffer) {
// TODO: Doing this synchronously will require stalling the pipeline. Maybe better
// to do it callback-style?
/*
VirtualFramebuffer *vfb = currentRenderVfb_;
if (!vfb) {
vfb = GetVFBAt(fb_address);
}
if (!vfb) {
// If there's no vfb and we're drawing there, must be memory?
buffer = GPUDebugBuffer(Memory::GetPointer(fb_address | 0x04000000), fb_stride, 512, format);
return true;
}
buffer.Allocate(vfb->renderWidth, vfb->renderHeight, GE_FORMAT_8888, false, true);
if (vfb->fbo_vk)
fbo_bind_for_read(vfb->fbo_vk);
if (gl_extensions.GLES3 || !gl_extensions.IsGLES)
glReadBuffer(GL_COLOR_ATTACHMENT0);
glPixelStorei(GL_PACK_ALIGNMENT, 4);
SafeGLReadPixels(0, 0, vfb->renderWidth, vfb->renderHeight, GL_RGBA, GL_UNSIGNED_BYTE, buffer.GetData());
*/
return false;
}
bool FramebufferManagerVulkan::GetDisplayFramebuffer(GPUDebugBuffer &buffer) {
// TODO: Doing this synchronously will require stalling the pipeline. Maybe better
// to do it callback-style?
/*
fbo_unbind_read();
int pw = PSP_CoreParameter().pixelWidth;
int ph = PSP_CoreParameter().pixelHeight;
// The backbuffer is flipped.
buffer.Allocate(pw, ph, GPU_DBG_FORMAT_888_RGB, true);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
SafeGLReadPixels(0, 0, pw, ph, GL_RGB, GL_UNSIGNED_BYTE, buffer.GetData());
*/
return false;
}
bool FramebufferManagerVulkan::GetDepthbuffer(u32 fb_address, int fb_stride, u32 z_address, int z_stride, GPUDebugBuffer &buffer) {
// TODO: Doing this synchronously will require stalling the pipeline. Maybe better
// to do it callback-style?
VirtualFramebuffer *vfb = currentRenderVfb_;
if (!vfb) {
vfb = GetVFBAt(fb_address);
}
if (!vfb) {
// If there's no vfb and we're drawing there, must be memory?
buffer = GPUDebugBuffer(Memory::GetPointer(z_address | 0x04000000), z_stride, 512, GPU_DBG_FORMAT_16BIT);
return true;
}
/*
buffer.Allocate(vfb->renderWidth, vfb->renderHeight, GPU_DBG_FORMAT_FLOAT, false);
SafeGLReadPixels(0, 0, vfb->renderWidth, vfb->renderHeight, GL_DEPTH_COMPONENT, GL_FLOAT, buffer.GetData());
*/
return false;
}
bool FramebufferManagerVulkan::GetStencilbuffer(u32 fb_address, int fb_stride, GPUDebugBuffer &buffer) {
// TODO: Doing this synchronously will require stalling the pipeline. Maybe better
// to do it callback-style?
VirtualFramebuffer *vfb = currentRenderVfb_;
if (!vfb) {
vfb = GetVFBAt(fb_address);
}
if (!vfb) {
// If there's no vfb and we're drawing there, must be memory?
// TODO: Actually get the stencil.
buffer = GPUDebugBuffer(Memory::GetPointer(fb_address | 0x04000000), fb_stride, 512, GPU_DBG_FORMAT_8888);
return true;
}
/*
buffer.Allocate(vfb->renderWidth, vfb->renderHeight, GPU_DBG_FORMAT_8BIT, false);
SafeGLReadPixels(0, 0, vfb->renderWidth, vfb->renderHeight, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, buffer.GetData());
return true;
*/
return false;
}
void FramebufferManagerVulkan::ClearBuffer(bool keepState) {
// keepState is irrelevant.
if (!currentRenderVfb_) {
return;
}
VkClearAttachment clear[2];
memset(clear, 0, sizeof(clear));
clear[0].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
clear[1].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
VkClearRect rc;
rc.baseArrayLayer = 0;
rc.layerCount = 1;
rc.rect.offset.x = 0;
rc.rect.offset.y = 0;
rc.rect.extent.width = currentRenderVfb_->bufferWidth;
rc.rect.extent.height = currentRenderVfb_->bufferHeight;
vkCmdClearAttachments(curCmd_, 2, clear, 1, &rc);
}