ppsspp/GPU/Software/Rasterizer.cpp
Unknown W. Brackets 2479d52202 Global: Reduce includes of common headers.
In many places, string, map, or Common.h were included but not needed.
2022-01-30 16:35:33 -08:00

1298 lines
45 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#include <algorithm>
#include <cmath>
#include "Common/Common.h"
#include "Common/CPUDetect.h"
#include "Common/Data/Convert/ColorConv.h"
#include "Common/Profiler/Profiler.h"
#include "Common/StringUtils.h"
#include "Core/Config.h"
#include "Core/Debugger/MemBlockInfo.h"
#include "Core/MemMap.h"
#include "Core/Reporting.h"
#include "GPU/GPUState.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Software/BinManager.h"
#include "GPU/Software/DrawPixel.h"
#include "GPU/Software/Rasterizer.h"
#include "GPU/Software/Sampler.h"
#include "GPU/Software/SoftGpu.h"
#include "GPU/Software/TransformUnit.h"
#if defined(_M_SSE)
#include <emmintrin.h>
#include <smmintrin.h>
#endif
namespace Rasterizer {
// Only OK on x64 where our stack is aligned
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
static inline __m128 Interpolate(const __m128 &c0, const __m128 &c1, const __m128 &c2, int w0, int w1, int w2, float wsum) {
__m128 v = _mm_mul_ps(c0, _mm_cvtepi32_ps(_mm_set1_epi32(w0)));
v = _mm_add_ps(v, _mm_mul_ps(c1, _mm_cvtepi32_ps(_mm_set1_epi32(w1))));
v = _mm_add_ps(v, _mm_mul_ps(c2, _mm_cvtepi32_ps(_mm_set1_epi32(w2))));
return _mm_mul_ps(v, _mm_set_ps1(wsum));
}
static inline __m128i Interpolate(const __m128i &c0, const __m128i &c1, const __m128i &c2, int w0, int w1, int w2, float wsum) {
return _mm_cvtps_epi32(Interpolate(_mm_cvtepi32_ps(c0), _mm_cvtepi32_ps(c1), _mm_cvtepi32_ps(c2), w0, w1, w2, wsum));
}
#endif
// NOTE: When not casting color0 and color1 to float vectors, this code suffers from severe overflow issues.
// Not sure if that should be regarded as a bug or if casting to float is a valid fix.
static inline Vec4<int> Interpolate(const Vec4<int> &c0, const Vec4<int> &c1, const Vec4<int> &c2, int w0, int w1, int w2, float wsum) {
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
return Vec4<int>(Interpolate(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum));
#else
return ((c0.Cast<float>() * w0 + c1.Cast<float>() * w1 + c2.Cast<float>() * w2) * wsum).Cast<int>();
#endif
}
static inline Vec3<int> Interpolate(const Vec3<int> &c0, const Vec3<int> &c1, const Vec3<int> &c2, int w0, int w1, int w2, float wsum) {
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
return Vec3<int>(Interpolate(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum));
#else
return ((c0.Cast<float>() * w0 + c1.Cast<float>() * w1 + c2.Cast<float>() * w2) * wsum).Cast<int>();
#endif
}
static inline Vec2<float> Interpolate(const Vec2<float> &c0, const Vec2<float> &c1, const Vec2<float> &c2, int w0, int w1, int w2, float wsum) {
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
return Vec2<float>(Interpolate(c0.vec, c1.vec, c2.vec, w0, w1, w2, wsum));
#else
return (c0 * w0 + c1 * w1 + c2 * w2) * wsum;
#endif
}
static inline Vec4<float> Interpolate(const float &c0, const float &c1, const float &c2, const Vec4<float> &w0, const Vec4<float> &w1, const Vec4<float> &w2, const Vec4<float> &wsum_recip) {
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
__m128 v = _mm_mul_ps(w0.vec, _mm_set1_ps(c0));
v = _mm_add_ps(v, _mm_mul_ps(w1.vec, _mm_set1_ps(c1)));
v = _mm_add_ps(v, _mm_mul_ps(w2.vec, _mm_set1_ps(c2)));
return _mm_mul_ps(v, wsum_recip.vec);
#else
return (w0 * c0 + w1 * c1 + w2 * c2) * wsum_recip;
#endif
}
static inline Vec4<float> Interpolate(const float &c0, const float &c1, const float &c2, const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2, const Vec4<float> &wsum_recip) {
return Interpolate(c0, c1, c2, w0.Cast<float>(), w1.Cast<float>(), w2.Cast<float>(), wsum_recip);
}
void ComputeRasterizerState(RasterizerState *state) {
ComputePixelFuncID(&state->pixelID);
state->drawPixel = Rasterizer::GetSingleFunc(state->pixelID);
state->enableTextures = gstate.isTextureMapEnabled() && !state->pixelID.clearMode;
if (state->enableTextures) {
ComputeSamplerID(&state->samplerID);
state->linear = Sampler::GetLinearFunc(state->samplerID);
state->nearest = Sampler::GetNearestFunc(state->samplerID);
// Since the definitions are the same, just force this setting using the func pointer.
if (g_Config.iTexFiltering == TEX_FILTER_FORCE_LINEAR) {
state->nearest = state->linear;
} else if (g_Config.iTexFiltering == TEX_FILTER_FORCE_NEAREST) {
state->linear = state->nearest;
}
state->maxTexLevel = state->samplerID.hasAnyMips ? gstate.getTextureMaxLevel() : 0;
GETextureFormat texfmt = state->samplerID.TexFmt();
for (uint8_t i = 0; i <= state->maxTexLevel; i++) {
u32 texaddr = gstate.getTextureAddress(i);
state->texaddr[i] = texaddr;
state->texbufw[i] = GetTextureBufw(i, texaddr, texfmt);
if (Memory::IsValidAddress(texaddr))
state->texptr[i] = Memory::GetPointerUnchecked(texaddr);
else
state->texptr[i] = nullptr;
}
state->textureLodSlope = gstate.getTextureLodSlope();
state->texLevelMode = gstate.getTexLevelMode();
state->texLevelOffset = (int8_t)gstate.getTexLevelOffset16();
state->mipFilt = gstate.isMipmapFilteringEnabled();
state->minFilt = gstate.isMinifyFilteringEnabled();
state->magFilt = gstate.isMagnifyFilteringEnabled();
}
state->shadeGouraud = gstate.getShadeMode() == GE_SHADE_GOURAUD;
state->throughMode = gstate.isModeThrough();
state->antialiasLines = gstate.isAntiAliasEnabled();
state->screenOffsetX = gstate.getOffsetX16();
state->screenOffsetY = gstate.getOffsetY16();
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
DisplayList currentList{};
if (gpuDebug)
gpuDebug->GetCurrentDisplayList(currentList);
state->listPC = currentList.pc;
#endif
}
static inline u8 ClampFogDepth(float fogdepth) {
union FloatBits {
float f;
u32 u;
};
FloatBits f;
f.f = fogdepth;
u32 exp = f.u >> 23;
if ((f.u & 0x80000000) != 0 || exp <= 126 - 8)
return 0;
if (exp > 126)
return 255;
u32 mantissa = (f.u & 0x007FFFFF) | 0x00800000;
return mantissa >> (16 + 126 - exp);
}
static inline void GetTextureCoordinates(const VertexData& v0, const VertexData& v1, const float p, float &s, float &t) {
// All UV gen modes, by the time they get here, behave the same.
// TODO: What happens if vertex has no texture coordinates?
// Note that for environment mapping, texture coordinates have been calculated during lighting
float q0 = 1.f / v0.clippos.w;
float q1 = 1.f / v1.clippos.w;
float wq0 = p * q0;
float wq1 = (1.0f - p) * q1;
float q_recip = 1.0f / (wq0 + wq1);
s = (v0.texturecoords.s() * wq0 + v1.texturecoords.s() * wq1) * q_recip;
t = (v0.texturecoords.t() * wq0 + v1.texturecoords.t() * wq1) * q_recip;
}
static inline void GetTextureCoordinates(const VertexData &v0, const VertexData &v1, const VertexData &v2, const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2, const Vec4<float> &wsum_recip, Vec4<float> &s, Vec4<float> &t) {
// All UV gen modes, by the time they get here, behave the same.
// TODO: What happens if vertex has no texture coordinates?
// Note that for environment mapping, texture coordinates have been calculated during lighting.
float q0 = 1.f / v0.clippos.w;
float q1 = 1.f / v1.clippos.w;
float q2 = 1.f / v2.clippos.w;
Vec4<float> wq0 = w0.Cast<float>() * q0;
Vec4<float> wq1 = w1.Cast<float>() * q1;
Vec4<float> wq2 = w2.Cast<float>() * q2;
Vec4<float> q_recip = (wq0 + wq1 + wq2).Reciprocal();
s = Interpolate(v0.texturecoords.s(), v1.texturecoords.s(), v2.texturecoords.s(), wq0, wq1, wq2, q_recip);
t = Interpolate(v0.texturecoords.t(), v1.texturecoords.t(), v2.texturecoords.t(), wq0, wq1, wq2, q_recip);
}
static inline void SetPixelDepth(int x, int y, int stride, u16 value) {
depthbuf.Set16(x, y, stride, value);
}
static inline u8 GetPixelStencil(GEBufferFormat fmt, int fbStride, int x, int y) {
if (fmt == GE_FORMAT_565) {
// Always treated as 0 for comparison purposes.
return 0;
} else if (fmt == GE_FORMAT_5551) {
return ((fb.Get16(x, y, fbStride) & 0x8000) != 0) ? 0xFF : 0;
} else if (fmt == GE_FORMAT_4444) {
return Convert4To8(fb.Get16(x, y, fbStride) >> 12);
} else {
return fb.Get32(x, y, fbStride) >> 24;
}
}
static inline bool IsRightSideOrFlatBottomLine(const Vec2<int>& vertex, const Vec2<int>& line1, const Vec2<int>& line2)
{
if (line1.y == line2.y) {
// just check if vertex is above us => bottom line parallel to x-axis
return vertex.y < line1.y;
} else {
// check if vertex is on our left => right side
return vertex.x < line1.x + (line2.x - line1.x) * (vertex.y - line1.y) / (line2.y - line1.y);
}
}
static inline Vec3<int> GetSourceFactor(PixelBlendFactor factor, const Vec4<int> &source, const Vec4<int> &dst, uint32_t fix) {
switch (factor) {
case PixelBlendFactor::OTHERCOLOR:
return dst.rgb();
case PixelBlendFactor::INVOTHERCOLOR:
return Vec3<int>::AssignToAll(255) - dst.rgb();
case PixelBlendFactor::SRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)));
#else
return Vec3<int>::AssignToAll(source.a());
#endif
case PixelBlendFactor::INVSRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))));
#else
return Vec3<int>::AssignToAll(255 - source.a());
#endif
case PixelBlendFactor::DSTALPHA:
return Vec3<int>::AssignToAll(dst.a());
case PixelBlendFactor::INVDSTALPHA:
return Vec3<int>::AssignToAll(255 - dst.a());
case PixelBlendFactor::DOUBLESRCALPHA:
return Vec3<int>::AssignToAll(2 * source.a());
case PixelBlendFactor::DOUBLEINVSRCALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * source.a(), 255));
case PixelBlendFactor::DOUBLEDSTALPHA:
return Vec3<int>::AssignToAll(2 * dst.a());
case PixelBlendFactor::DOUBLEINVDSTALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * dst.a(), 255));
case PixelBlendFactor::FIX:
default:
// All other dest factors (> 10) are treated as FIXA.
return Vec3<int>::FromRGB(fix);
case PixelBlendFactor::ZERO:
return Vec3<int>::AssignToAll(0);
case PixelBlendFactor::ONE:
return Vec3<int>::AssignToAll(255);
}
}
static inline Vec3<int> GetDestFactor(PixelBlendFactor factor, const Vec4<int> &source, const Vec4<int> &dst, uint32_t fix) {
switch (factor) {
case PixelBlendFactor::OTHERCOLOR:
return source.rgb();
case PixelBlendFactor::INVOTHERCOLOR:
return Vec3<int>::AssignToAll(255) - source.rgb();
case PixelBlendFactor::SRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)));
#else
return Vec3<int>::AssignToAll(source.a());
#endif
case PixelBlendFactor::INVSRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))));
#else
return Vec3<int>::AssignToAll(255 - source.a());
#endif
case PixelBlendFactor::DSTALPHA:
return Vec3<int>::AssignToAll(dst.a());
case PixelBlendFactor::INVDSTALPHA:
return Vec3<int>::AssignToAll(255 - dst.a());
case PixelBlendFactor::DOUBLESRCALPHA:
return Vec3<int>::AssignToAll(2 * source.a());
case PixelBlendFactor::DOUBLEINVSRCALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * source.a(), 255));
case PixelBlendFactor::DOUBLEDSTALPHA:
return Vec3<int>::AssignToAll(2 * dst.a());
case PixelBlendFactor::DOUBLEINVDSTALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * dst.a(), 255));
case PixelBlendFactor::FIX:
default:
// All other dest factors (> 10) are treated as FIXB.
return Vec3<int>::FromRGB(fix);
case PixelBlendFactor::ZERO:
return Vec3<int>::AssignToAll(0);
case PixelBlendFactor::ONE:
return Vec3<int>::AssignToAll(255);
}
}
// Removed inline here - it was never chosen to be inlined by the compiler anyway, too complex.
Vec3<int> AlphaBlendingResult(const PixelFuncID &pixelID, const Vec4<int> &source, const Vec4<int> &dst) {
// Note: These factors cannot go below 0, but they can go above 255 when doubling.
Vec3<int> srcfactor = GetSourceFactor(pixelID.AlphaBlendSrc(), source, dst, pixelID.cached.alphaBlendSrc);
Vec3<int> dstfactor = GetDestFactor(pixelID.AlphaBlendDst(), source, dst, pixelID.cached.alphaBlendDst);
switch (pixelID.AlphaBlendEq()) {
case GE_BLENDMODE_MUL_AND_ADD:
{
#if defined(_M_SSE)
// We switch to 16 bit to use mulhi, and we use 4 bits of decimal to make the 16 bit shift free.
const __m128i half = _mm_set1_epi16(1 << 3);
const __m128i srgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(source.ivec, source.ivec), 4), half);
const __m128i sf = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(srcfactor.ivec, srcfactor.ivec), 4), half);
const __m128i s = _mm_mulhi_epi16(srgb, sf);
const __m128i drgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dst.ivec, dst.ivec), 4), half);
const __m128i df = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dstfactor.ivec, dstfactor.ivec), 4), half);
const __m128i d = _mm_mulhi_epi16(drgb, df);
return Vec3<int>(_mm_unpacklo_epi16(_mm_adds_epi16(s, d), _mm_setzero_si128()));
#else
Vec3<int> half = Vec3<int>::AssignToAll(1);
Vec3<int> lhs = ((source.rgb() * 2 + half) * (srcfactor * 2 + half)) / 1024;
Vec3<int> rhs = ((dst.rgb() * 2 + half) * (dstfactor * 2 + half)) / 1024;
return lhs + rhs;
#endif
}
case GE_BLENDMODE_MUL_AND_SUBTRACT:
{
#if defined(_M_SSE)
const __m128i half = _mm_set1_epi16(1 << 3);
const __m128i srgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(source.ivec, source.ivec), 4), half);
const __m128i sf = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(srcfactor.ivec, srcfactor.ivec), 4), half);
const __m128i s = _mm_mulhi_epi16(srgb, sf);
const __m128i drgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dst.ivec, dst.ivec), 4), half);
const __m128i df = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dstfactor.ivec, dstfactor.ivec), 4), half);
const __m128i d = _mm_mulhi_epi16(drgb, df);
return Vec3<int>(_mm_unpacklo_epi16(_mm_max_epi16(_mm_subs_epi16(s, d), _mm_setzero_si128()), _mm_setzero_si128()));
#else
Vec3<int> half = Vec3<int>::AssignToAll(1);
Vec3<int> lhs = ((source.rgb() * 2 + half) * (srcfactor * 2 + half)) / 1024;
Vec3<int> rhs = ((dst.rgb() * 2 + half) * (dstfactor * 2 + half)) / 1024;
return lhs - rhs;
#endif
}
case GE_BLENDMODE_MUL_AND_SUBTRACT_REVERSE:
{
#if defined(_M_SSE)
const __m128i half = _mm_set1_epi16(1 << 3);
const __m128i srgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(source.ivec, source.ivec), 4), half);
const __m128i sf = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(srcfactor.ivec, srcfactor.ivec), 4), half);
const __m128i s = _mm_mulhi_epi16(srgb, sf);
const __m128i drgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dst.ivec, dst.ivec), 4), half);
const __m128i df = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dstfactor.ivec, dstfactor.ivec), 4), half);
const __m128i d = _mm_mulhi_epi16(drgb, df);
return Vec3<int>(_mm_unpacklo_epi16(_mm_max_epi16(_mm_subs_epi16(d, s), _mm_setzero_si128()), _mm_setzero_si128()));
#else
Vec3<int> half = Vec3<int>::AssignToAll(1);
Vec3<int> lhs = ((source.rgb() * 2 + half) * (srcfactor * 2 + half)) / 1024;
Vec3<int> rhs = ((dst.rgb() * 2 + half) * (dstfactor * 2 + half)) / 1024;
return rhs - lhs;
#endif
}
case GE_BLENDMODE_MIN:
return Vec3<int>(std::min(source.r(), dst.r()),
std::min(source.g(), dst.g()),
std::min(source.b(), dst.b()));
case GE_BLENDMODE_MAX:
return Vec3<int>(std::max(source.r(), dst.r()),
std::max(source.g(), dst.g()),
std::max(source.b(), dst.b()));
case GE_BLENDMODE_ABSDIFF:
return Vec3<int>(::abs(source.r() - dst.r()),
::abs(source.g() - dst.g()),
::abs(source.b() - dst.b()));
default:
return source.rgb();
}
}
static inline Vec4IntResult SOFTRAST_CALL ApplyTexturing(float s, float t, int x, int y, Vec4IntArg prim_color, int texlevel, int frac_texlevel, bool bilinear, const RasterizerState &state) {
const u8 **tptr0 = const_cast<const u8 **>(&state.texptr[texlevel]);
const int *bufw0 = &state.texbufw[texlevel];
if (!bilinear) {
return state.nearest(s, t, x, y, prim_color, tptr0, bufw0, texlevel, frac_texlevel, state.samplerID);
}
return state.linear(s, t, x, y, prim_color, tptr0, bufw0, texlevel, frac_texlevel, state.samplerID);
}
static inline Vec4IntResult SOFTRAST_CALL ApplyTexturingSingle(float s, float t, int x, int y, Vec4IntArg prim_color, int texlevel, int frac_texlevel, bool bilinear, const RasterizerState &state) {
return ApplyTexturing(s, t, ((x & 15) + 1) / 2, ((y & 15) + 1) / 2, prim_color, texlevel, frac_texlevel, bilinear, state);
}
// Produces a signed 1.27.4 value.
static int TexLog2(float delta) {
union FloatBits {
float f;
u32 u;
};
FloatBits f;
f.f = delta;
// Use the exponent as the tex level, and the top mantissa bits for a frac.
// We can't support more than 4 bits of frac, so truncate.
int useful = (f.u >> 19) & 0x0FFF;
// Now offset so the exponent aligns with log2f (exp=127 is 0.)
return useful - 127 * 16;
}
static inline void CalculateSamplingParams(const float ds, const float dt, const RasterizerState &state, int &level, int &levelFrac, bool &filt) {
const int width = 1 << state.samplerID.width0Shift;
const int height = 1 << state.samplerID.height0Shift;
// With 8 bits of fraction (because texslope can be fairly precise.)
int detail;
switch (state.TexLevelMode()) {
case GE_TEXLEVEL_MODE_AUTO:
detail = TexLog2(std::max(ds * width, dt * height));
break;
case GE_TEXLEVEL_MODE_SLOPE:
// This is always offset by an extra texlevel.
detail = 1 * 16 + TexLog2(state.textureLodSlope);
break;
case GE_TEXLEVEL_MODE_CONST:
default:
// Unused value 3 operates the same as CONST.
detail = 0;
break;
}
// Add in the bias (used in all modes), with 4 bits of fraction.
detail += state.texLevelOffset;
if (detail > 0 && state.maxTexLevel > 0) {
bool mipFilt = state.mipFilt;
int level8 = std::min(detail, state.maxTexLevel * 16);
if (!mipFilt) {
// Round up at 1.5.
level8 += 8;
}
level = level8 >> 4;
levelFrac = mipFilt ? level8 & 0xF : 0;
} else {
level = 0;
levelFrac = 0;
}
if (detail > 0)
filt = state.minFilt;
else
filt = state.magFilt;
}
static inline void ApplyTexturing(const RasterizerState &state, Vec4<int> *prim_color, const Vec4<int> &mask, const Vec4<float> &s, const Vec4<float> &t, int x, int y) {
float ds = s[1] - s[0];
float dt = t[2] - t[0];
int level;
int levelFrac;
bool bilinear;
CalculateSamplingParams(ds, dt, state, level, levelFrac, bilinear);
PROFILE_THIS_SCOPE("sampler");
for (int i = 0; i < 4; ++i) {
if (mask[i] >= 0)
prim_color[i] = ApplyTexturing(s[i], t[i], ((x & 15) + 1) / 2, ((y & 15) + 1) / 2, ToVec4IntArg(prim_color[i]), level, levelFrac, bilinear, state);
}
}
template <bool useSSE4>
struct TriangleEdge {
Vec4<int> Start(const ScreenCoords &v0, const ScreenCoords &v1, const ScreenCoords &origin);
inline Vec4<int> StepX(const Vec4<int> &w);
inline Vec4<int> StepY(const Vec4<int> &w);
inline void NarrowMinMaxX(const Vec4<int> &w, int64_t minX, int64_t &rowMinX, int64_t &rowMaxX);
inline Vec4<int> StepXTimes(const Vec4<int> &w, int c);
Vec4<int> stepX;
Vec4<int> stepY;
};
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
#if defined(__GNUC__) || defined(__clang__) || defined(__INTEL_COMPILER)
[[gnu::target("sse4.1")]]
#endif
static inline __m128i SOFTRAST_CALL TriangleEdgeStartSSE4(__m128i initX, __m128i initY, int xf, int yf, int c) {
initX = _mm_mullo_epi32(initX, _mm_set1_epi32(xf));
initY = _mm_mullo_epi32(initY, _mm_set1_epi32(yf));
return _mm_add_epi32(_mm_add_epi32(initX, initY), _mm_set1_epi32(c));
}
#endif
template <bool useSSE4>
Vec4<int> TriangleEdge<useSSE4>::Start(const ScreenCoords &v0, const ScreenCoords &v1, const ScreenCoords &origin) {
// Start at pixel centers.
Vec4<int> initX = Vec4<int>::AssignToAll(origin.x) + Vec4<int>(7, 23, 7, 23);
Vec4<int> initY = Vec4<int>::AssignToAll(origin.y) + Vec4<int>(7, 7, 23, 23);
// orient2d refactored.
int xf = v0.y - v1.y;
int yf = v1.x - v0.x;
int c = v1.y * v0.x - v1.x * v0.y;
stepX = Vec4<int>::AssignToAll(xf * 16 * 2);
stepY = Vec4<int>::AssignToAll(yf * 16 * 2);
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
if (useSSE4)
return TriangleEdgeStartSSE4(initX.ivec, initY.ivec, xf, yf, c);
#endif
return Vec4<int>::AssignToAll(xf) * initX + Vec4<int>::AssignToAll(yf) * initY + Vec4<int>::AssignToAll(c);
}
template <bool useSSE4>
inline Vec4<int> TriangleEdge<useSSE4>::StepX(const Vec4<int> &w) {
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
return _mm_add_epi32(w.ivec, stepX.ivec);
#else
return w + stepX;
#endif
}
template <bool useSSE4>
inline Vec4<int> TriangleEdge<useSSE4>::StepY(const Vec4<int> &w) {
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
return _mm_add_epi32(w.ivec, stepY.ivec);
#else
return w + stepY;
#endif
}
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
#if defined(__GNUC__) || defined(__clang__) || defined(__INTEL_COMPILER)
[[gnu::target("sse4.1")]]
#endif
static inline int SOFTRAST_CALL MaxWeightSSE4(__m128i w) {
__m128i max2 = _mm_max_epi32(w, _mm_shuffle_epi32(w, _MM_SHUFFLE(3, 2, 3, 2)));
__m128i max1 = _mm_max_epi32(max2, _mm_shuffle_epi32(max2, _MM_SHUFFLE(1, 1, 1, 1)));
return _mm_cvtsi128_si32(max1);
}
#endif
template <bool useSSE4>
void TriangleEdge<useSSE4>::NarrowMinMaxX(const Vec4<int> &w, int64_t minX, int64_t &rowMinX, int64_t &rowMaxX) {
int wmax;
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
if (useSSE4) {
wmax = MaxWeightSSE4(w.ivec);
} else {
wmax = std::max(std::max(w.x, w.y), std::max(w.z, w.w));
}
#else
wmax = std::max(std::max(w.x, w.y), std::max(w.z, w.w));
#endif
if (wmax < 0) {
if (stepX.x > 0) {
int steps = -wmax / stepX.x;
rowMinX = std::max(rowMinX, minX + steps * 16 * 2);
} else if (stepX.x <= 0) {
rowMinX = rowMaxX + 1;
}
}
if (wmax >= 0 && stepX.x < 0) {
int steps = (-wmax / stepX.x) + 1;
rowMaxX = std::min(rowMaxX, minX + steps * 16 * 2);
}
}
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
#if defined(__GNUC__) || defined(__clang__) || defined(__INTEL_COMPILER)
[[gnu::target("sse4.1")]]
#endif
static inline __m128i SOFTRAST_CALL StepTimesSSE4(__m128i w, __m128i step, int c) {
return _mm_add_epi32(w, _mm_mullo_epi32(_mm_set1_epi32(c), step));
}
#endif
template <bool useSSE4>
inline Vec4<int> TriangleEdge<useSSE4>::StepXTimes(const Vec4<int> &w, int c) {
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
if (useSSE4)
return StepTimesSSE4(w.ivec, stepX.ivec, c);
#endif
return w + stepX * c;
}
static inline Vec4<int> MakeMask(const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2, const Vec4<int> &bias0, const Vec4<int> &bias1, const Vec4<int> &bias2, const Vec4<int> &scissor) {
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
__m128i biased0 = _mm_add_epi32(w0.ivec, bias0.ivec);
__m128i biased1 = _mm_add_epi32(w1.ivec, bias1.ivec);
__m128i biased2 = _mm_add_epi32(w2.ivec, bias2.ivec);
return _mm_or_si128(_mm_or_si128(biased0, _mm_or_si128(biased1, biased2)), scissor.ivec);
#else
return (w0 + bias0) | (w1 + bias1) | (w2 + bias2) | scissor;
#endif
}
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
#if defined(__GNUC__) || defined(__clang__) || defined(__INTEL_COMPILER)
[[gnu::target("sse4.1")]]
#endif
static inline bool SOFTRAST_CALL AnyMaskSSE4(__m128i mask) {
__m128i sig = _mm_srai_epi32(mask, 31);
return _mm_test_all_ones(sig) == 0;
}
#endif
template <bool useSSE4>
static inline bool AnyMask(const Vec4<int> &mask) {
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
if (useSSE4) {
return AnyMaskSSE4(mask.ivec);
}
// In other words: !(mask.x < 0 && mask.y < 0 && mask.z < 0 && mask.w < 0)
__m128i low2 = _mm_and_si128(mask.ivec, _mm_shuffle_epi32(mask.ivec, _MM_SHUFFLE(3, 2, 3, 2)));
__m128i low1 = _mm_and_si128(low2, _mm_shuffle_epi32(low2, _MM_SHUFFLE(1, 1, 1, 1)));
// Now we only need to check one sign bit.
return _mm_cvtsi128_si32(low1) >= 0;
#else
return mask.x >= 0 || mask.y >= 0 || mask.z >= 0 || mask.w >= 0;
#endif
}
static inline Vec4<float> EdgeRecip(const Vec4<int> &w0, const Vec4<int> &w1, const Vec4<int> &w2) {
#if defined(_M_SSE) && !PPSSPP_ARCH(X86)
__m128i wsum = _mm_add_epi32(w0.ivec, _mm_add_epi32(w1.ivec, w2.ivec));
// _mm_rcp_ps loses too much precision.
return _mm_div_ps(_mm_set1_ps(1.0f), _mm_cvtepi32_ps(wsum));
#else
return (w0 + w1 + w2).Cast<float>().Reciprocal();
#endif
}
template <bool clearMode, bool useSSE4>
void DrawTriangleSlice(
const VertexData& v0, const VertexData& v1, const VertexData& v2,
int x1, int y1, int x2, int y2,
const RasterizerState &state)
{
Vec4<int> bias0 = Vec4<int>::AssignToAll(IsRightSideOrFlatBottomLine(v0.screenpos.xy(), v1.screenpos.xy(), v2.screenpos.xy()) ? -1 : 0);
Vec4<int> bias1 = Vec4<int>::AssignToAll(IsRightSideOrFlatBottomLine(v1.screenpos.xy(), v2.screenpos.xy(), v0.screenpos.xy()) ? -1 : 0);
Vec4<int> bias2 = Vec4<int>::AssignToAll(IsRightSideOrFlatBottomLine(v2.screenpos.xy(), v0.screenpos.xy(), v1.screenpos.xy()) ? -1 : 0);
const PixelFuncID &pixelID = state.pixelID;
TriangleEdge<useSSE4> e0;
TriangleEdge<useSSE4> e1;
TriangleEdge<useSSE4> e2;
int64_t minX = x1, maxX = x2, minY = y1, maxY = y2;
ScreenCoords pprime(minX, minY, 0);
Vec4<int> w0_base = e0.Start(v1.screenpos, v2.screenpos, pprime);
Vec4<int> w1_base = e1.Start(v2.screenpos, v0.screenpos, pprime);
Vec4<int> w2_base = e2.Start(v0.screenpos, v1.screenpos, pprime);
// All the z values are the same, no interpolation required.
// This is common, and when we interpolate, we lose accuracy.
const bool flatZ = v0.screenpos.z == v1.screenpos.z && v0.screenpos.z == v2.screenpos.z;
const bool flatColorAll = clearMode || !state.shadeGouraud;
const bool flatColor0 = flatColorAll || (v0.color0 == v1.color0 && v0.color0 == v2.color0);
const bool flatColor1 = flatColorAll || (v0.color1 == v1.color1 && v0.color1 == v2.color1);
const bool noFog = clearMode || !pixelID.applyFog || (v0.fogdepth >= 1.0f && v1.fogdepth >= 1.0f && v2.fogdepth >= 1.0f);
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
uint32_t bpp = pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
std::string tag = StringFromFormat("DisplayListT_%08x", state.listPC);
std::string ztag = StringFromFormat("DisplayListTZ_%08x", state.listPC);
#endif
for (int64_t curY = minY; curY <= maxY; curY += 32,
w0_base = e0.StepY(w0_base),
w1_base = e1.StepY(w1_base),
w2_base = e2.StepY(w2_base)) {
Vec4<int> w0 = w0_base;
Vec4<int> w1 = w1_base;
Vec4<int> w2 = w2_base;
DrawingCoords p = TransformUnit::ScreenToDrawing(minX, curY, state.screenOffsetX, state.screenOffsetY);
int64_t rowMinX = minX, rowMaxX = maxX;
e0.NarrowMinMaxX(w0, minX, rowMinX, rowMaxX);
e1.NarrowMinMaxX(w1, minX, rowMinX, rowMaxX);
e2.NarrowMinMaxX(w2, minX, rowMinX, rowMaxX);
int skipX = (rowMinX - minX) / 32;
w0 = e0.StepXTimes(w0, skipX);
w1 = e1.StepXTimes(w1, skipX);
w2 = e2.StepXTimes(w2, skipX);
p.x = (p.x + 2 * skipX) & 0x3FF;
// TODO: Maybe we can clip the edges instead?
int scissorYPlus1 = curY + 16 > maxY ? -1 : 0;
Vec4<int> scissor_mask = Vec4<int>(0, rowMaxX - rowMinX - 16, scissorYPlus1, (rowMaxX - rowMinX - 16) | scissorYPlus1);
Vec4<int> scissor_step = Vec4<int>(0, -32, 0, -32);
for (int64_t curX = rowMinX; curX <= rowMaxX; curX += 32,
w0 = e0.StepX(w0),
w1 = e1.StepX(w1),
w2 = e2.StepX(w2),
scissor_mask = scissor_mask + scissor_step,
p.x = (p.x + 2) & 0x3FF) {
// If p is on or inside all edges, render pixel
Vec4<int> mask = MakeMask(w0, w1, w2, bias0, bias1, bias2, scissor_mask);
if (AnyMask<useSSE4>(mask)) {
Vec4<float> wsum_recip = EdgeRecip(w0, w1, w2);
Vec4<int> prim_color[4];
if (!flatColor0) {
// Does the PSP do perspective-correct color interpolation? The GC doesn't.
for (int i = 0; i < 4; ++i) {
if (mask[i] >= 0)
prim_color[i] = Interpolate(v0.color0, v1.color0, v2.color0, w0[i], w1[i], w2[i], wsum_recip[i]);
}
} else {
for (int i = 0; i < 4; ++i) {
prim_color[i] = v2.color0;
}
}
Vec3<int> sec_color[4];
if (!flatColor1) {
for (int i = 0; i < 4; ++i) {
if (mask[i] >= 0)
sec_color[i] = Interpolate(v0.color1, v1.color1, v2.color1, w0[i], w1[i], w2[i], wsum_recip[i]);
}
} else {
for (int i = 0; i < 4; ++i) {
sec_color[i] = v2.color1;
}
}
if (state.enableTextures && !clearMode) {
Vec4<float> s, t;
if (state.throughMode) {
s = Interpolate(v0.texturecoords.s(), v1.texturecoords.s(), v2.texturecoords.s(), w0, w1, w2, wsum_recip);
t = Interpolate(v0.texturecoords.t(), v1.texturecoords.t(), v2.texturecoords.t(), w0, w1, w2, wsum_recip);
// For levels > 0, mipmapping is always based on level 0. Simpler to scale first.
s *= 1.0f / (float)(1 << state.samplerID.width0Shift);
t *= 1.0f / (float)(1 << state.samplerID.height0Shift);
} else {
// Texture coordinate interpolation must definitely be perspective-correct.
GetTextureCoordinates(v0, v1, v2, w0, w1, w2, wsum_recip, s, t);
}
ApplyTexturing(state, prim_color, mask, s, t, curX, curY);
}
if (!clearMode) {
for (int i = 0; i < 4; ++i) {
#if defined(_M_SSE)
// TODO: Tried making Vec4 do this, but things got slower.
const __m128i sec = _mm_and_si128(sec_color[i].ivec, _mm_set_epi32(0, -1, -1, -1));
prim_color[i].ivec = _mm_add_epi32(prim_color[i].ivec, sec);
#else
prim_color[i] += Vec4<int>(sec_color[i], 0);
#endif
}
}
Vec4<int> fog = Vec4<int>::AssignToAll(255);
if (!noFog) {
Vec4<float> fogdepths = w0.Cast<float>() * v0.fogdepth + w1.Cast<float>() * v1.fogdepth + w2.Cast<float>() * v2.fogdepth;
fogdepths = fogdepths * wsum_recip;
for (int i = 0; i < 4; ++i) {
fog[i] = ClampFogDepth(fogdepths[i]);
}
}
Vec4<int> z;
if (flatZ) {
z = Vec4<int>::AssignToAll(v2.screenpos.z);
} else {
// TODO: Is that the correct way to interpolate?
Vec4<float> zfloats = w0.Cast<float>() * v0.screenpos.z + w1.Cast<float>() * v1.screenpos.z + w2.Cast<float>() * v2.screenpos.z;
z = (zfloats * wsum_recip).Cast<int>();
}
PROFILE_THIS_SCOPE("draw_tri_px");
DrawingCoords subp = p;
for (int i = 0; i < 4; ++i) {
if (mask[i] < 0) {
continue;
}
subp.x = p.x + (i & 1);
subp.y = p.y + (i / 2);
state.drawPixel(subp.x, subp.y, z[i], fog[i], ToVec4IntArg(prim_color[i]), pixelID);
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED)
uint32_t row = gstate.getFrameBufAddress() + subp.y * pixelID.cached.framebufStride * bpp;
NotifyMemInfo(MemBlockFlags::WRITE, row + subp.x * bpp, bpp, tag.c_str(), tag.size());
if (pixelID.depthWrite) {
row = gstate.getDepthBufAddress() + subp.y * pixelID.cached.depthbufStride * 2;
NotifyMemInfo(MemBlockFlags::WRITE, row + subp.x * 2, 2, ztag.c_str(), ztag.size());
}
#endif
}
}
}
}
#if !defined(SOFTGPU_MEMORY_TAGGING_DETAILED) && defined(SOFTGPU_MEMORY_TAGGING_BASIC)
for (int y = minY; y <= maxY; y += 16) {
DrawingCoords p = TransformUnit::ScreenToDrawing(minX, y, state.screenOffsetX, state.screenOffsetY);
DrawingCoords pend = TransformUnit::ScreenToDrawing(maxX, y, state.screenOffsetX, state.screenOffsetY);
uint32_t row = gstate.getFrameBufAddress() + p.y * pixelID.cached.framebufStride * bpp;
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * bpp, (pend.x - p.x) * bpp, tag.c_str(), tag.size());
if (pixelID.depthWrite) {
row = gstate.getDepthBufAddress() + p.y * pixelID.cached.depthbufStride * 2;
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * 2, (pend.x - p.x) * 2, ztag.c_str(), ztag.size());
}
}
#endif
}
// Draws triangle, vertices specified in counter-clockwise direction
void DrawTriangle(const VertexData &v0, const VertexData &v1, const VertexData &v2, const BinCoords &range, const RasterizerState &state) {
PROFILE_THIS_SCOPE("draw_tri");
auto drawSlice = cpu_info.bSSE4_1 ?
(state.pixelID.clearMode ? &DrawTriangleSlice<true, true> : &DrawTriangleSlice<false, true>) :
(state.pixelID.clearMode ? &DrawTriangleSlice<true, false> : &DrawTriangleSlice<false, false>);
drawSlice(v0, v1, v2, range.x1, range.y1, range.x2, range.y2, state);
}
void DrawPoint(const VertexData &v0, const BinCoords &range, const RasterizerState &state) {
ScreenCoords pos = v0.screenpos;
Vec4<int> prim_color = v0.color0;
Vec3<int> sec_color = v0.color1;
auto &pixelID = state.pixelID;
auto &samplerID = state.samplerID;
if (state.enableTextures && !pixelID.clearMode) {
float s = v0.texturecoords.s();
float t = v0.texturecoords.t();
if (state.throughMode) {
s *= 1.0f / (float)(1 << state.samplerID.width0Shift);
t *= 1.0f / (float)(1 << state.samplerID.height0Shift);
} else {
// Texture coordinate interpolation must definitely be perspective-correct.
GetTextureCoordinates(v0, v0, 0.0f, s, t);
}
int texLevel;
int texLevelFrac;
bool bilinear;
CalculateSamplingParams(0.0f, 0.0f, state, texLevel, texLevelFrac, bilinear);
PROFILE_THIS_SCOPE("sampler");
prim_color = ApplyTexturingSingle(s, t, pos.x, pos.y, ToVec4IntArg(prim_color), texLevel, texLevelFrac, bilinear, state);
}
if (!pixelID.clearMode)
prim_color += Vec4<int>(sec_color, 0);
DrawingCoords p = TransformUnit::ScreenToDrawing(pos, state.screenOffsetX, state.screenOffsetY);
u16 z = pos.z;
u8 fog = 255;
if (pixelID.applyFog && !pixelID.clearMode) {
fog = ClampFogDepth(v0.fogdepth);
}
PROFILE_THIS_SCOPE("draw_px");
state.drawPixel(p.x, p.y, z, fog, ToVec4IntArg(prim_color), pixelID);
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
uint32_t bpp = pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
std::string tag = StringFromFormat("DisplayListP_%08x", state.listPC);
uint32_t row = gstate.getFrameBufAddress() + p.y * pixelID.cached.framebufStride * bpp;
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * bpp, bpp, tag.c_str(), tag.size());
if (pixelID.depthWrite) {
std::string ztag = StringFromFormat("DisplayListPZ_%08x", state.listPC);
row = gstate.getDepthBufAddress() + p.y * pixelID.cached.depthbufStride * 2;
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * 2, 2, ztag.c_str(), ztag.size());
}
#endif
}
void ClearRectangle(const VertexData &v0, const VertexData &v1, const BinCoords &range, const RasterizerState &state) {
DrawingCoords pprime = TransformUnit::ScreenToDrawing(range.x1, range.y1, state.screenOffsetX, state.screenOffsetY);
DrawingCoords pend = TransformUnit::ScreenToDrawing(range.x2, range.y2, state.screenOffsetX, state.screenOffsetY);
auto &pixelID = state.pixelID;
auto &samplerID = state.samplerID;
// Min and max are in PSP fixed point screen coordinates, 16 here is for the 4 subpixel bits.
const int w = (range.x2 - range.x1 + 1) / 16;
if (w <= 0)
return;
if (pixelID.DepthClear()) {
const u16 z = v1.screenpos.z;
const int stride = pixelID.cached.depthbufStride;
// If both bytes of Z equal, we can just use memset directly which is faster.
if ((z & 0xFF) == (z >> 8)) {
DrawingCoords p = pprime;
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
u16 *row = depthbuf.Get16Ptr(p.x, p.y, stride);
memset(row, z, w * 2);
}
} else {
DrawingCoords p = pprime;
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
for (int x = 0; x < w; ++x) {
SetPixelDepth(p.x + x, p.y, pixelID.cached.depthbufStride, z);
}
}
}
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
std::string tag = StringFromFormat("DisplayListXZ_%08x", state.listPC);
for (int y = pprime.y; y <= pend.y; ++y) {
uint32_t row = gstate.getDepthBufAddress() + y * pixelID.cached.depthbufStride * 2;
NotifyMemInfo(MemBlockFlags::WRITE, row + pprime.x * 2, w * 2, tag.c_str(), tag.size());
}
#endif
}
// Note: this stays 0xFFFFFFFF if keeping color and alpha, even for 16-bit.
u32 keepOldMask = 0xFFFFFFFF;
if (pixelID.ColorClear() && pixelID.StencilClear()) {
keepOldMask = 0;
} else {
switch (pixelID.FBFormat()) {
case GE_FORMAT_565:
if (pixelID.ColorClear())
keepOldMask = 0;
break;
case GE_FORMAT_5551:
if (pixelID.ColorClear())
keepOldMask = 0xFFFF8000;
else if (pixelID.StencilClear())
keepOldMask = 0xFFFF7FFF;
break;
case GE_FORMAT_4444:
if (pixelID.ColorClear())
keepOldMask = 0xFFFFF000;
else if (pixelID.StencilClear())
keepOldMask = 0xFFFF0FFF;
break;
case GE_FORMAT_8888:
default:
if (pixelID.ColorClear())
keepOldMask = 0xFF000000;
else if (pixelID.StencilClear())
keepOldMask = 0x00FFFFFF;
break;
}
}
// The pixel write masks are respected in clear mode.
if (pixelID.applyColorWriteMask) {
keepOldMask |= pixelID.cached.colorWriteMask;
}
const u32 new_color = v1.color0.ToRGBA();
u16 new_color16;
switch (pixelID.FBFormat()) {
case GE_FORMAT_565:
new_color16 = RGBA8888ToRGB565(new_color);
break;
case GE_FORMAT_5551:
new_color16 = RGBA8888ToRGBA5551(new_color);
break;
case GE_FORMAT_4444:
new_color16 = RGBA8888ToRGBA4444(new_color);
break;
case GE_FORMAT_8888:
break;
case GE_FORMAT_INVALID:
case GE_FORMAT_DEPTH16:
_dbg_assert_msg_(false, "Software: invalid framebuf format.");
break;
}
if (keepOldMask == 0) {
const int stride = pixelID.cached.framebufStride;
if (pixelID.FBFormat() == GE_FORMAT_8888) {
const bool canMemsetColor = (new_color & 0xFF) == (new_color >> 8) && (new_color & 0xFFFF) == (new_color >> 16);
if (canMemsetColor) {
DrawingCoords p = pprime;
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
u32 *row = fb.Get32Ptr(p.x, p.y, stride);
memset(row, new_color, w * 4);
}
} else {
DrawingCoords p = pprime;
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
for (int x = 0; x < w; ++x) {
fb.Set32(p.x + x, p.y, stride, new_color);
}
}
}
} else {
const bool canMemsetColor = (new_color16 & 0xFF) == (new_color16 >> 8);
if (canMemsetColor) {
DrawingCoords p = pprime;
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
u16 *row = fb.Get16Ptr(p.x, p.y, stride);
memset(row, new_color16, w * 2);
}
} else {
DrawingCoords p = pprime;
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
for (int x = 0; x < w; ++x) {
fb.Set16(p.x + x, p.y, stride, new_color16);
}
}
}
}
} else if (keepOldMask != 0xFFFFFFFF) {
const int stride = pixelID.cached.framebufStride;
if (pixelID.FBFormat() == GE_FORMAT_8888) {
DrawingCoords p = pprime;
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
for (int x = 0; x < w; ++x) {
const u32 old_color = fb.Get32(p.x + x, p.y, stride);
const u32 c = (old_color & keepOldMask) | (new_color & ~keepOldMask);
fb.Set32(p.x + x, p.y, stride, c);
}
}
} else {
DrawingCoords p = pprime;
for (p.y = pprime.y; p.y <= pend.y; ++p.y) {
for (int x = 0; x < w; ++x) {
const u16 old_color = fb.Get16(p.x + x, p.y, stride);
const u16 c = (old_color & keepOldMask) | (new_color16 & ~keepOldMask);
fb.Set16(p.x + x, p.y, stride, c);
}
}
}
}
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
if (keepOldMask != 0xFFFFFFFF) {
uint32_t bpp = pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
std::string tag = StringFromFormat("DisplayListX_%08x", state.listPC);
for (int y = pprime.y; y < pend.y; ++y) {
uint32_t row = gstate.getFrameBufAddress() + y * pixelID.cached.framebufStride * bpp;
NotifyMemInfo(MemBlockFlags::WRITE, row + pprime.x * bpp, w * bpp, tag.c_str(), tag.size());
}
}
#endif
}
void DrawLine(const VertexData &v0, const VertexData &v1, const BinCoords &range, const RasterizerState &state) {
// TODO: Use a proper line drawing algorithm that handles fractional endpoints correctly.
Vec3<int> a(v0.screenpos.x, v0.screenpos.y, v0.screenpos.z);
Vec3<int> b(v1.screenpos.x, v1.screenpos.y, v0.screenpos.z);
int dx = b.x - a.x;
int dy = b.y - a.y;
int dz = b.z - a.z;
int steps;
if (abs(dx) < abs(dy))
steps = abs(dy) / 16;
else
steps = abs(dx) / 16;
// Avoid going too far since we typically don't start at the pixel center.
if (dx < 0 && dx >= -16)
dx++;
if (dy < 0 && dy >= -16)
dy++;
double xinc = (double)dx / steps;
double yinc = (double)dy / steps;
double zinc = (double)dz / steps;
auto &pixelID = state.pixelID;
auto &samplerID = state.samplerID;
const bool interpolateColor = !state.shadeGouraud || (v0.color0 == v1.color0 && v0.color1 == v1.color1);
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
std::string tag = StringFromFormat("DisplayListL_%08x", state.listPC);
std::string ztag = StringFromFormat("DisplayListLZ_%08x", state.listPC);
#endif
double x = a.x > b.x ? a.x - 1 : a.x;
double y = a.y > b.y ? a.y - 1 : a.y;
double z = a.z;
const int steps1 = steps == 0 ? 1 : steps;
for (int i = 0; i < steps; i++) {
if (x >= range.x1 && y >= range.y1 && x <= range.x2 && y <= range.y2) {
// Interpolate between the two points.
Vec4<int> prim_color;
Vec3<int> sec_color;
if (interpolateColor) {
prim_color = (v0.color0 * (steps - i) + v1.color0 * i) / steps1;
sec_color = (v0.color1 * (steps - i) + v1.color1 * i) / steps1;
} else {
prim_color = v1.color0;
sec_color = v1.color1;
}
u8 fog = 255;
if (pixelID.applyFog && !pixelID.clearMode) {
fog = ClampFogDepth((v0.fogdepth * (float)(steps - i) + v1.fogdepth * (float)i) / steps1);
}
if (state.antialiasLines) {
// TODO: Clearmode?
// TODO: Calculate.
prim_color.a() = 0x7F;
}
if (state.enableTextures && !pixelID.clearMode) {
float s, s1;
float t, t1;
if (state.throughMode) {
Vec2<float> tc = (v0.texturecoords * (float)(steps - i) + v1.texturecoords * (float)i) / steps1;
Vec2<float> tc1 = (v0.texturecoords * (float)(steps - i - 1) + v1.texturecoords * (float)(i + 1)) / steps1;
s = tc.s() * (1.0f / (float)(1 << state.samplerID.width0Shift));
s1 = tc1.s() * (1.0f / (float)(1 << state.samplerID.width0Shift));
t = tc.t() * (1.0f / (float)(1 << state.samplerID.height0Shift));
t1 = tc1.t() * (1.0f / (float)(1 << state.samplerID.height0Shift));
} else {
// Texture coordinate interpolation must definitely be perspective-correct.
GetTextureCoordinates(v0, v1, (float)(steps - i) / steps1, s, t);
GetTextureCoordinates(v0, v1, (float)(steps - i - 1) / steps1, s1, t1);
}
// If inc is 0, force the delta to zero.
float ds = xinc == 0.0 ? 0.0f : (s1 - s) * 16.0f * (1.0f / xinc);
float dt = yinc == 0.0 ? 0.0f : (t1 - t) * 16.0f * (1.0f / yinc);
int texLevel;
int texLevelFrac;
bool texBilinear;
CalculateSamplingParams(ds, dt, state, texLevel, texLevelFrac, texBilinear);
if (state.antialiasLines) {
// TODO: This is a naive and wrong implementation.
DrawingCoords p0 = TransformUnit::ScreenToDrawing(x, y, state.screenOffsetX, state.screenOffsetY);
s = ((float)p0.x + xinc / 32.0f) / 512.0f;
t = ((float)p0.y + yinc / 32.0f) / 512.0f;
texBilinear = true;
}
PROFILE_THIS_SCOPE("sampler");
prim_color = ApplyTexturingSingle(s, t, x, y, ToVec4IntArg(prim_color), texLevel, texLevelFrac, texBilinear, state);
}
if (!pixelID.clearMode)
prim_color += Vec4<int>(sec_color, 0);
PROFILE_THIS_SCOPE("draw_px");
DrawingCoords p = TransformUnit::ScreenToDrawing(x, y, state.screenOffsetX, state.screenOffsetY);
state.drawPixel(p.x, p.y, z, fog, ToVec4IntArg(prim_color), pixelID);
#if defined(SOFTGPU_MEMORY_TAGGING_DETAILED) || defined(SOFTGPU_MEMORY_TAGGING_BASIC)
uint32_t bpp = pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
uint32_t row = gstate.getFrameBufAddress() + p.y * pixelID.cached.framebufStride * bpp;
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * bpp, bpp, tag.c_str(), tag.size());
if (pixelID.depthWrite) {
uint32_t row = gstate.getDepthBufAddress() + y * pixelID.cached.depthbufStride * 2;
NotifyMemInfo(MemBlockFlags::WRITE, row + p.x * 2, 2, ztag.c_str(), ztag.size());
}
#endif
}
x += xinc;
y += yinc;
z += zinc;
}
}
bool GetCurrentStencilbuffer(GPUDebugBuffer &buffer) {
int w = gstate.getRegionX2() + 1;
int h = gstate.getRegionY2() + 1;
buffer.Allocate(w, h, GPU_DBG_FORMAT_8BIT);
u8 *row = buffer.GetData();
for (int y = 0; y < w; ++y) {
for (int x = 0; x < h; ++x) {
row[x] = GetPixelStencil(gstate.FrameBufFormat(), gstate.FrameBufStride(), x, y);
}
row += w;
}
return true;
}
bool GetCurrentTexture(GPUDebugBuffer &buffer, int level)
{
if (!gstate.isTextureMapEnabled()) {
return false;
}
GETextureFormat texfmt = gstate.getTextureFormat();
u32 texaddr = gstate.getTextureAddress(level);
int texbufw = GetTextureBufw(level, texaddr, texfmt);
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
if (!texaddr || !Memory::IsValidRange(texaddr, (textureBitsPerPixel[texfmt] * texbufw * h) / 8))
return false;
buffer.Allocate(w, h, GE_FORMAT_8888, false);
SamplerID id;
ComputeSamplerID(&id);
id.cached.clut = (const u8 *)clut;
Sampler::FetchFunc sampler = Sampler::GetFetchFunc(id);
u8 *texptr = Memory::GetPointer(texaddr);
u32 *row = (u32 *)buffer.GetData();
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
row[x] = Vec4<int>(sampler(x, y, texptr, texbufw, level, id)).ToRGBA();
}
row += w;
}
return true;
}
} // namespace