ppsspp/GPU/Directx9/VertexShaderGeneratorDX9.cpp

811 lines
32 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <stdio.h>
#include <locale.h>
#if defined(_WIN32) && defined(_DEBUG)
#include "Common/CommonWindows.h"
#endif
#include "base/stringutil.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#include "Core/Config.h"
#include "GPU/Directx9/VertexShaderGeneratorDX9.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Common/ShaderUniforms.h"
#undef WRITE
#define WRITE p+=sprintf
namespace DX9 {
static const char * const boneWeightAttrDecl[9] = {
"#ERROR#",
"float a_w1:TEXCOORD1;\n",
"float2 a_w1:TEXCOORD1;\n",
"float3 a_w1:TEXCOORD1;\n",
"float4 a_w1:TEXCOORD1;\n",
"float4 a_w1:TEXCOORD1;\n float a_w2:TEXCOORD2;\n",
"float4 a_w1:TEXCOORD1;\n float2 a_w2:TEXCOORD2;\n",
"float4 a_w1:TEXCOORD1;\n float3 a_w2:TEXCOORD2;\n",
"float4 a_w1:TEXCOORD1;\n float4 a_w2:TEXCOORD2;\n",
};
enum DoLightComputation {
LIGHT_OFF,
LIGHT_SHADE,
LIGHT_FULL,
};
void GenerateVertexShaderHLSL(const VShaderID &id, char *buffer, ShaderLanguage lang) {
char *p = buffer;
const u32 vertType = gstate.vertType;
bool isModeThrough = id.Bit(VS_BIT_IS_THROUGH);
bool lmode = id.Bit(VS_BIT_LMODE);
bool doTexture = id.Bit(VS_BIT_DO_TEXTURE);
bool doTextureTransform = id.Bit(VS_BIT_DO_TEXTURE_TRANSFORM);
GETexMapMode uvGenMode = static_cast<GETexMapMode>(id.Bits(VS_BIT_UVGEN_MODE, 2));
// this is only valid for some settings of uvGenMode
GETexProjMapMode uvProjMode = static_cast<GETexProjMapMode>(id.Bits(VS_BIT_UVPROJ_MODE, 2));
bool doShadeMapping = uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP;
bool doFlatShading = id.Bit(VS_BIT_FLATSHADE);
bool useHWTransform = id.Bit(VS_BIT_USE_HW_TRANSFORM);
bool hasColor = id.Bit(VS_BIT_HAS_COLOR) || !useHWTransform;
bool hasNormal = id.Bit(VS_BIT_HAS_NORMAL) && useHWTransform;
bool hasTexcoord = id.Bit(VS_BIT_HAS_TEXCOORD) || !useHWTransform;
bool enableFog = id.Bit(VS_BIT_ENABLE_FOG);
bool throughmode = id.Bit(VS_BIT_IS_THROUGH);
bool flipNormal = id.Bit(VS_BIT_NORM_REVERSE);
int ls0 = id.Bits(VS_BIT_LS0, 2);
int ls1 = id.Bits(VS_BIT_LS1, 2);
bool enableBones = id.Bit(VS_BIT_ENABLE_BONES);
bool enableLighting = id.Bit(VS_BIT_LIGHTING_ENABLE);
int matUpdate = id.Bits(VS_BIT_MATERIAL_UPDATE, 3);
bool doBezier = id.Bit(VS_BIT_BEZIER);
bool doSpline = id.Bit(VS_BIT_SPLINE);
bool hasColorTess = id.Bit(VS_BIT_HAS_COLOR_TESS);
bool hasTexcoordTess = id.Bit(VS_BIT_HAS_TEXCOORD_TESS);
bool flipNormalTess = id.Bit(VS_BIT_NORM_REVERSE_TESS);
DoLightComputation doLight[4] = { LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF };
if (useHWTransform) {
int shadeLight0 = doShadeMapping ? ls0 : -1;
int shadeLight1 = doShadeMapping ? ls1 : -1;
for (int i = 0; i < 4; i++) {
if (i == shadeLight0 || i == shadeLight1)
doLight[i] = LIGHT_SHADE;
if (id.Bit(VS_BIT_LIGHTING_ENABLE) && id.Bit(VS_BIT_LIGHT0_ENABLE + i))
doLight[i] = LIGHT_FULL;
}
}
int numBoneWeights = 0;
int boneWeightScale = id.Bits(VS_BIT_WEIGHT_FMTSCALE, 2);
if (enableBones) {
numBoneWeights = 1 + id.Bits(VS_BIT_BONES, 3);
}
if (lang == HLSL_DX9) {
WRITE(p, "#pragma warning( disable : 3571 )\n");
if (isModeThrough) {
WRITE(p, "float4x4 u_proj_through : register(c%i);\n", CONST_VS_PROJ_THROUGH);
} else {
WRITE(p, "float4x4 u_proj : register(c%i);\n", CONST_VS_PROJ);
// Add all the uniforms we'll need to transform properly.
}
if (enableFog) {
WRITE(p, "float2 u_fogcoef : register(c%i);\n", CONST_VS_FOGCOEF);
}
if (useHWTransform || !hasColor)
WRITE(p, "float4 u_matambientalpha : register(c%i);\n", CONST_VS_MATAMBIENTALPHA); // matambient + matalpha
if (useHWTransform) {
// When transforming by hardware, we need a great deal more uniforms...
WRITE(p, "float4x3 u_world : register(c%i);\n", CONST_VS_WORLD);
WRITE(p, "float4x3 u_view : register(c%i);\n", CONST_VS_VIEW);
if (doTextureTransform)
WRITE(p, "float4x3 u_tex : register(c%i);\n", CONST_VS_TEXMTX);
if (enableBones) {
#ifdef USE_BONE_ARRAY
WRITE(p, "float4x3 u_bone[%i] : register(c%i);\n", numBones, CONST_VS_BONE0);
#else
for (int i = 0; i < numBoneWeights; i++) {
WRITE(p, "float4x3 u_bone%i : register(c%i);\n", i, CONST_VS_BONE0 + i * 3);
}
#endif
}
if (doTexture) {
WRITE(p, "float4 u_uvscaleoffset : register(c%i);\n", CONST_VS_UVSCALEOFFSET);
}
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_OFF) {
// This is needed for shade mapping
WRITE(p, "float3 u_lightpos%i : register(c%i);\n", i, CONST_VS_LIGHTPOS + i);
}
if (doLight[i] == LIGHT_FULL) {
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (type != GE_LIGHTTYPE_DIRECTIONAL)
WRITE(p, "float3 u_lightatt%i : register(c%i);\n", i, CONST_VS_LIGHTATT + i);
if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) {
WRITE(p, "float3 u_lightdir%i : register(c%i);\n", i, CONST_VS_LIGHTDIR + i);
WRITE(p, "float4 u_lightangle_spotCoef%i : register(c%i);\n", i, CONST_VS_LIGHTANGLE_SPOTCOEF + i);
}
WRITE(p, "float3 u_lightambient%i : register(c%i);\n", i, CONST_VS_LIGHTAMBIENT + i);
WRITE(p, "float3 u_lightdiffuse%i : register(c%i);\n", i, CONST_VS_LIGHTDIFFUSE + i);
if (comp != GE_LIGHTCOMP_ONLYDIFFUSE) {
WRITE(p, "float3 u_lightspecular%i : register(c%i);\n", i, CONST_VS_LIGHTSPECULAR + i);
}
}
}
if (enableLighting) {
WRITE(p, "float4 u_ambient : register(c%i);\n", CONST_VS_AMBIENT);
if ((gstate.materialupdate & 2) == 0 || !hasColor)
WRITE(p, "float3 u_matdiffuse : register(c%i);\n", CONST_VS_MATDIFFUSE);
// if ((gstate.materialupdate & 4) == 0)
WRITE(p, "float4 u_matspecular : register(c%i);\n", CONST_VS_MATSPECULAR); // Specular coef is contained in alpha
WRITE(p, "float3 u_matemissive : register(c%i);\n", CONST_VS_MATEMISSIVE);
}
}
if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, "float4 u_depthRange : register(c%i);\n", CONST_VS_DEPTHRANGE);
}
} else {
WRITE(p, "cbuffer base : register(b0) {\n%s};\n", cb_baseStr);
WRITE(p, "cbuffer lights: register(b1) {\n%s};\n", cb_vs_lightsStr);
WRITE(p, "cbuffer bones : register(b2) {\n%s};\n", cb_vs_bonesStr);
}
// And the "varyings".
bool texCoordInVec3 = false;
if (useHWTransform) {
WRITE(p, "struct VS_IN { \n");
if ((doSpline || doBezier) && lang == HLSL_D3D11) {
WRITE(p, " uint instanceId : SV_InstanceID;\n");
}
if (enableBones) {
WRITE(p, " %s", boneWeightAttrDecl[numBoneWeights]);
}
if (doTexture && hasTexcoord) {
WRITE(p, " float2 texcoord : TEXCOORD0;\n");
}
if (hasColor) {
WRITE(p, " float4 color0 : COLOR0;\n");
}
if (hasNormal) {
WRITE(p, " float3 normal : NORMAL;\n");
}
WRITE(p, " float3 position : POSITION;\n");
WRITE(p, "};\n");
} else {
WRITE(p, "struct VS_IN {\n");
WRITE(p, " float4 position : POSITION;\n");
if (doTexture && hasTexcoord) {
if (doTextureTransform && !throughmode) {
texCoordInVec3 = true;
WRITE(p, " float3 texcoord : TEXCOORD0;\n");
}
else
WRITE(p, " float2 texcoord : TEXCOORD0;\n");
}
if (hasColor) {
WRITE(p, " float4 color0 : COLOR0;\n");
}
// only software transform supplies color1 as vertex data
if (lmode) {
WRITE(p, " float4 color1 : COLOR1;\n");
}
WRITE(p, "};\n");
}
WRITE(p, "struct VS_OUT {\n");
if (doTexture) {
WRITE(p, " float3 v_texcoord : TEXCOORD0;\n");
}
WRITE(p, " float4 v_color0 : COLOR0;\n");
if (lmode)
WRITE(p, " float3 v_color1 : COLOR1;\n");
if (enableFog) {
WRITE(p, " float v_fogdepth: TEXCOORD1;\n");
}
if (lang == HLSL_DX9) {
WRITE(p, " float4 gl_Position : POSITION;\n");
} else {
WRITE(p, " float4 gl_Position : SV_Position;\n");
}
WRITE(p, "};\n");
// Confirmed: Through mode gets through exactly the same in GL and D3D in Phantasy Star: Text is 38023.0 in the test scene.
if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
// Apply the projection and viewport to get the Z buffer value, floor to integer, undo the viewport and projection.
// The Z range in D3D is different but we compensate for that using parameters.
WRITE(p, "\nfloat4 depthRoundZVP(float4 v) {\n");
WRITE(p, " float z = v.z / v.w;\n");
WRITE(p, " z = (z * u_depthRange.x + u_depthRange.y);\n");
WRITE(p, " z = floor(z);\n");
WRITE(p, " z = (z - u_depthRange.z) * u_depthRange.w;\n");
WRITE(p, " return float4(v.x, v.y, z * v.w, v.w);\n");
WRITE(p, "}\n\n");
}
// Hardware tessellation
if (doSpline || doBezier) {
if (lang == HLSL_D3D11 || lang == HLSL_D3D11_LEVEL9) {
WRITE(p, "Texture1D<float3> u_tess_pos_tex : register(t0);\n");
WRITE(p, "Texture1D<float3> u_tess_tex_tex : register(t1);\n");
WRITE(p, "Texture1D<float4> u_tess_col_tex : register(t2);\n");
}
const char *init[3] = { "0.0, 0.0", "0.0, 0.0, 0.0", "0.0, 0.0, 0.0, 0.0" };
for (int i = 2; i <= 4; i++) {
// Define 3 types float2, float3, float4
WRITE(p, "float%d tess_sample(in float%d points[16], in float2 weights[4]) {\n", i, i);
WRITE(p, " float%d pos = float%d(%s);\n", i, i, init[i - 2]);
WRITE(p, " for (int i = 0; i < 4; ++i) {\n");
WRITE(p, " for (int j = 0; j < 4; ++j) {\n");
WRITE(p, " float f = weights[j].x * weights[i].y;\n");
WRITE(p, " if (f != 0.0)\n");
WRITE(p, " pos = pos + f * points[i * 4 + j];\n");
WRITE(p, " }\n");
WRITE(p, " }\n");
WRITE(p, " return pos;\n");
WRITE(p, "}\n");
}
if (doSpline) {
WRITE(p, "void spline_knot(int2 num_patches, int2 type, out float2 knot[6], int2 patch_pos) {\n");
WRITE(p, " for (int i = 0; i < 6; ++i) {\n");
WRITE(p, " knot[i] = float2(i + patch_pos.x - 2, i + patch_pos.y - 2);\n");
WRITE(p, " }\n");
// WRITE(p, " if ((type.x & 1) != 0) {\n");
WRITE(p, " if ((type.x == 1) || (type.x == 3)) {\n");
WRITE(p, " if (patch_pos.x <= 2)\n");
WRITE(p, " knot[0].x = 0.0;\n");
WRITE(p, " if (patch_pos.x <= 1)\n");
WRITE(p, " knot[1].x = 0.0;\n");
WRITE(p, " }\n");
// WRITE(p, " if ((type.x & 2) != 0) {\n");
WRITE(p, " if ((type.x == 2) || (type.x == 3)) {\n");
WRITE(p, " if (patch_pos.x >= (num_patches.x - 2))\n");
WRITE(p, " knot[5].x = num_patches.x;\n");
WRITE(p, " if (patch_pos.x == (num_patches.x - 1))\n");
WRITE(p, " knot[4].x = num_patches.x;\n");
WRITE(p, " }\n");
// WRITE(p, " if ((type.y & 1) != 0) {\n");
WRITE(p, " if ((type.y == 1) || (type.y == 3)) {\n");
WRITE(p, " if (patch_pos.y <= 2)\n");
WRITE(p, " knot[0].y = 0.0;\n");
WRITE(p, " if (patch_pos.y <= 1)\n");
WRITE(p, " knot[1].y = 0.0;\n");
WRITE(p, " }\n");
// WRITE(p, " if ((type.y & 2) != 0) {\n");
WRITE(p, " if ((type.y == 2) || (type.y == 3)) {\n");
WRITE(p, " if (patch_pos.y >= (num_patches.y - 2))\n");
WRITE(p, " knot[5].y = num_patches.y;\n");
WRITE(p, " if (patch_pos.y == (num_patches.y - 1))\n");
WRITE(p, " knot[4].y = num_patches.y;\n");
WRITE(p, " }\n");
WRITE(p, "}\n");
WRITE(p, "void spline_weight(float2 t, in float2 knot[6], out float2 weights[4]) {\n");
// TODO: Maybe compilers could be coaxed into vectorizing this code without the above explicitly...
WRITE(p, " float2 t0 = (t - knot[0]);\n");
WRITE(p, " float2 t1 = (t - knot[1]);\n");
WRITE(p, " float2 t2 = (t - knot[2]);\n");
// TODO: All our knots are integers so we should be able to get rid of these divisions (How?)
WRITE(p, " float2 f30 = t0 / (knot[3] - knot[0]);\n");
WRITE(p, " float2 f41 = t1 / (knot[4] - knot[1]);\n");
WRITE(p, " float2 f52 = t2 / (knot[5] - knot[2]);\n");
WRITE(p, " float2 f31 = t1 / (knot[3] - knot[1]);\n");
WRITE(p, " float2 f42 = t2 / (knot[4] - knot[2]);\n");
WRITE(p, " float2 f32 = t2 / (knot[3] - knot[2]);\n");
WRITE(p, " float2 a = (1.0 - f30)*(1.0 - f31);\n");
WRITE(p, " float2 b = (f31*f41);\n");
WRITE(p, " float2 c = (1.0 - f41)*(1.0 - f42);\n");
WRITE(p, " float2 d = (f42*f52);\n");
WRITE(p, " weights[0] = a - (a*f32);\n");
WRITE(p, " weights[1] = 1.0 - a - b + ((a + b + c - 1.0)*f32);\n");
WRITE(p, " weights[2] = b + ((1.0 - b - c - d)*f32);\n");
WRITE(p, " weights[3] = d*f32;\n");
WRITE(p, "}\n");
}
}
WRITE(p, "VS_OUT main(VS_IN In) {\n");
WRITE(p, " VS_OUT Out;\n");
if (!useHWTransform) {
// Simple pass-through of vertex data to fragment shader
if (doTexture) {
if (texCoordInVec3) {
WRITE(p, " Out.v_texcoord = In.texcoord;\n");
} else {
WRITE(p, " Out.v_texcoord = float3(In.texcoord, 1.0);\n");
}
}
if (hasColor) {
WRITE(p, " Out.v_color0 = In.color0;\n");
if (lmode)
WRITE(p, " Out.v_color1 = In.color1.rgb;\n");
} else {
WRITE(p, " Out.v_color0 = In.u_matambientalpha;\n");
if (lmode)
WRITE(p, " Out.v_color1 = float3(0.0);\n");
}
if (enableFog) {
WRITE(p, " Out.v_fogdepth = In.position.w;\n");
}
if (lang == HLSL_D3D11 || lang == HLSL_D3D11_LEVEL9) {
if (gstate.isModeThrough()) {
WRITE(p, " Out.gl_Position = mul(u_proj_through, float4(In.position.xyz, 1.0));\n");
} else {
if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, " Out.gl_Position = depthRoundZVP(mul(u_proj, float4(In.position.xyz, 1.0)));\n");
} else {
WRITE(p, " Out.gl_Position = mul(u_proj, float4(In.position.xyz, 1.0));\n");
}
}
} else {
if (gstate.isModeThrough()) {
WRITE(p, " Out.gl_Position = mul(float4(In.position.xyz, 1.0), u_proj_through);\n");
} else {
if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, " Out.gl_Position = depthRoundZVP(mul(float4(In.position.xyz, 1.0), u_proj));\n");
} else {
WRITE(p, " Out.gl_Position = mul(float4(In.position.xyz, 1.0), u_proj);\n");
}
}
}
} else {
// Step 1: World Transform / Skinning
if (!enableBones) {
// Hardware tessellation
if (doSpline || doBezier) {
WRITE(p, " uint u_spline_count_u = u_spline_counts & 0xFF;\n");
WRITE(p, " uint u_spline_count_v = (u_spline_counts >> 8) & 0xFF;\n");
WRITE(p, " uint num_patches_u = %s;\n", doBezier ? "(u_spline_count_u - 1) / 3u" : "u_spline_count_u - 3");
WRITE(p, " float2 tess_pos = In.position.xy;\n");
WRITE(p, " int u = In.instanceId %% num_patches_u;\n");
WRITE(p, " int v = In.instanceId / num_patches_u;\n");
WRITE(p, " int2 patch_pos = int2(u, v);\n");
WRITE(p, " float3 _pos[16];\n");
WRITE(p, " float2 _tex[16];\n");
WRITE(p, " float4 _col[16];\n");
WRITE(p, " int idx;\n");
WRITE(p, " int2 index;\n");
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
WRITE(p, " idx = (%i + v%s) * u_spline_count_u + (%i + u%s);\n", i, doBezier ? " * 3" : "", j, doBezier ? " * 3" : "");
WRITE(p, " index = int2(idx, 0);\n");
WRITE(p, " _pos[%i] = u_tess_pos_tex.Load(index).xyz;\n", i * 4 + j);
if (doTexture && hasTexcoord && hasTexcoordTess)
WRITE(p, " _tex[%i] = u_tess_tex_tex.Load(index).xy;\n", i * 4 + j);
if (hasColor && hasColorTess)
WRITE(p, " _col[%i] = u_tess_col_tex.Load(index).rgba;\n", i * 4 + j);
}
}
WRITE(p, " float2 weights[4];\n");
if (doBezier) {
// Bernstein 3D
WRITE(p, " weights[0] = (1.0 - tess_pos) * (1.0 - tess_pos) * (1.0 - tess_pos);\n");
WRITE(p, " weights[1] = 3.0 * tess_pos * (1.0 - tess_pos) * (1.0 - tess_pos);\n");
WRITE(p, " weights[2] = 3.0 * tess_pos * tess_pos * (1.0 - tess_pos);\n");
WRITE(p, " weights[3] = tess_pos * tess_pos * tess_pos;\n");
} else if (doSpline) {
WRITE(p, " int2 spline_num_patches = int2(u_spline_count_u - 3, u_spline_count_v - 3);\n");
WRITE(p, " int u_spline_type_u = (u_spline_counts >> 16) & 0xFF;\n");
WRITE(p, " int u_spline_type_v = (u_spline_counts >> 24) & 0xFF;\n");
WRITE(p, " int2 spline_type = int2(u_spline_type_u, u_spline_type_v);\n");
WRITE(p, " float2 knots[6];\n");
WRITE(p, " spline_knot(spline_num_patches, spline_type, knots, patch_pos);\n");
WRITE(p, " spline_weight(tess_pos + patch_pos, knots, weights);\n");
}
WRITE(p, " float3 pos = tess_sample(_pos, weights);\n");
if (doTexture && hasTexcoord) {
if (hasTexcoordTess)
WRITE(p, " float2 tex = tess_sample(_tex, weights);\n");
else
WRITE(p, " float2 tex = tess_pos + patch_pos;\n");
}
if (hasColor) {
if (hasColorTess)
WRITE(p, " float4 col = tess_sample(_col, weights);\n");
else
WRITE(p, " float4 col = u_tess_col_tex.Load(int2(0, 0)).rgba;\n");
}
if (hasNormal) {
// Curved surface is probably always need to compute normal(not sampling from control points)
if (doBezier) {
// Bernstein derivative
WRITE(p, " float2 bernderiv[4];\n");
WRITE(p, " bernderiv[0] = -3.0 * (tess_pos - 1.0) * (tess_pos - 1.0); \n");
WRITE(p, " bernderiv[1] = 9.0 * tess_pos * tess_pos - 12.0 * tess_pos + 3.0; \n");
WRITE(p, " bernderiv[2] = 3.0 * (2.0 - 3.0 * tess_pos) * tess_pos; \n");
WRITE(p, " bernderiv[3] = 3.0 * tess_pos * tess_pos; \n");
WRITE(p, " float2 bernderiv_u[4];\n");
WRITE(p, " float2 bernderiv_v[4];\n");
WRITE(p, " for (int i = 0; i < 4; i++) {\n");
WRITE(p, " bernderiv_u[i] = float2(bernderiv[i].x, weights[i].y);\n");
WRITE(p, " bernderiv_v[i] = float2(weights[i].x, bernderiv[i].y);\n");
WRITE(p, " }\n");
WRITE(p, " float3 du = tess_sample(_pos, bernderiv_u);\n");
WRITE(p, " float3 dv = tess_sample(_pos, bernderiv_v);\n");
} else if (doSpline) {
WRITE(p, " float2 tess_next_u = float2(In.normal.x, 0.0);\n");
WRITE(p, " float2 tess_next_v = float2(0.0, In.normal.y);\n");
// Right
WRITE(p, " float2 tess_pos_r = tess_pos + tess_next_u;\n");
WRITE(p, " spline_weight(tess_pos_r + patch_pos, knots, weights);\n");
WRITE(p, " float3 pos_r = tess_sample(_pos, weights);\n");
// Left
WRITE(p, " float2 tess_pos_l = tess_pos - tess_next_u;\n");
WRITE(p, " spline_weight(tess_pos_l + patch_pos, knots, weights);\n");
WRITE(p, " float3 pos_l = tess_sample(_pos, weights);\n");
// Down
WRITE(p, " float2 tess_pos_d = tess_pos + tess_next_v;\n");
WRITE(p, " spline_weight(tess_pos_d + patch_pos, knots, weights);\n");
WRITE(p, " float3 pos_d = tess_sample(_pos, weights);\n");
// Up
WRITE(p, " float2 tess_pos_u = tess_pos - tess_next_v;\n");
WRITE(p, " spline_weight(tess_pos_u + patch_pos, knots, weights);\n");
WRITE(p, " float3 pos_u = tess_sample(_pos, weights);\n");
WRITE(p, " float3 du = pos_r - pos_l;\n");
WRITE(p, " float3 dv = pos_d - pos_u;\n");
}
WRITE(p, " float3 nrm = cross(du, dv);\n");
WRITE(p, " nrm = normalize(nrm);\n");
}
WRITE(p, " float3 worldpos = mul(float4(pos.xyz, 1.0), u_world);\n");
if (hasNormal)
WRITE(p, " float3 worldnormal = normalize(mul(float4(%snrm, 0.0), u_world));\n", flipNormalTess ? "-" : "");
else
WRITE(p, " float3 worldnormal = float3(0.0, 0.0, 1.0);\n");
} else {
// No skinning, just standard T&L.
WRITE(p, " float3 worldpos = mul(float4(In.position.xyz, 1.0), u_world);\n");
if (hasNormal)
WRITE(p, " float3 worldnormal = normalize(mul(float4(%sIn.normal, 0.0), u_world));\n", flipNormal ? "-" : "");
else
WRITE(p, " float3 worldnormal = float3(0.0, 0.0, 1.0);\n");
}
} else {
static const char * const boneWeightAttr[8] = {
"a_w1.x", "a_w1.y", "a_w1.z", "a_w1.w",
"a_w2.x", "a_w2.y", "a_w2.z", "a_w2.w",
};
#if defined(USE_FOR_LOOP) && defined(USE_BONE_ARRAY)
// To loop through the weights, we unfortunately need to put them in a float array.
// GLSL ES sucks - no way to directly initialize an array!
switch (numBoneWeights) {
case 1: WRITE(p, " float w[1]; w[0] = a_w1;\n"); break;
case 2: WRITE(p, " float w[2]; w[0] = a_w1.x; w[1] = a_w1.y;\n"); break;
case 3: WRITE(p, " float w[3]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z;\n"); break;
case 4: WRITE(p, " float w[4]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w;\n"); break;
case 5: WRITE(p, " float w[5]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2;\n"); break;
case 6: WRITE(p, " float w[6]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y;\n"); break;
case 7: WRITE(p, " float w[7]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y; w[6] = a_w2.z;\n"); break;
case 8: WRITE(p, " float w[8]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y; w[6] = a_w2.z; w[7] = a_w2.w;\n"); break;
}
WRITE(p, " mat4 skinMatrix = w[0] * u_bone[0];\n");
if (numBoneWeights > 1) {
WRITE(p, " for (int i = 1; i < %i; i++) {\n", numBoneWeights);
WRITE(p, " skinMatrix += w[i] * u_bone[i];\n");
WRITE(p, " }\n");
}
#else
if (lang == HLSL_D3D11 || lang == HLSL_D3D11_LEVEL9) {
if (numBoneWeights == 1)
WRITE(p, " float4x3 skinMatrix = mul(In.a_w1, u_bone[0])");
else
WRITE(p, " float4x3 skinMatrix = mul(In.a_w1.x, u_bone[0])");
for (int i = 1; i < numBoneWeights; i++) {
const char *weightAttr = boneWeightAttr[i];
// workaround for "cant do .x of scalar" issue
if (numBoneWeights == 1 && i == 0) weightAttr = "a_w1";
if (numBoneWeights == 5 && i == 4) weightAttr = "a_w2";
WRITE(p, " + mul(In.%s, u_bone[%i])", weightAttr, i);
}
} else {
if (numBoneWeights == 1)
WRITE(p, " float4x3 skinMatrix = mul(In.a_w1, u_bone0)");
else
WRITE(p, " float4x3 skinMatrix = mul(In.a_w1.x, u_bone0)");
for (int i = 1; i < numBoneWeights; i++) {
const char *weightAttr = boneWeightAttr[i];
// workaround for "cant do .x of scalar" issue
if (numBoneWeights == 1 && i == 0) weightAttr = "a_w1";
if (numBoneWeights == 5 && i == 4) weightAttr = "a_w2";
WRITE(p, " + mul(In.%s, u_bone%i)", weightAttr, i);
}
}
#endif
WRITE(p, ";\n");
// Trying to simplify this results in bugs in LBP...
WRITE(p, " float3 skinnedpos = mul(float4(In.position.xyz, 1.0), skinMatrix);\n");
WRITE(p, " float3 worldpos = mul(float4(skinnedpos, 1.0), u_world);\n");
if (hasNormal) {
WRITE(p, " float3 skinnednormal = mul(float4(%sIn.normal, 0.0), skinMatrix);\n", flipNormal ? "-" : "");
} else {
WRITE(p, " float3 skinnednormal = mul(float4(0.0, 0.0, %s1.0, 0.0), skinMatrix);\n", flipNormal ? "-" : "");
}
WRITE(p, " float3 worldnormal = normalize(mul(float4(skinnednormal, 0.0), u_world));\n");
}
WRITE(p, " float4 viewPos = float4(mul(float4(worldpos, 1.0), u_view), 1.0);\n");
if (lang == HLSL_D3D11 || lang == HLSL_D3D11_LEVEL9) {
// Final view and projection transforms.
if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, " Out.gl_Position = depthRoundZVP(mul(u_proj, viewPos));\n");
} else {
WRITE(p, " Out.gl_Position = mul(u_proj, viewPos);\n");
}
} else {
// Final view and projection transforms.
if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, " Out.gl_Position = depthRoundZVP(mul(viewPos, u_proj));\n");
} else {
WRITE(p, " Out.gl_Position = mul(viewPos, u_proj);\n");
}
}
// TODO: Declare variables for dots for shade mapping if needed.
const char *ambientStr = (gstate.materialupdate & 1) && hasColor ? "In.color0" : "u_matambientalpha";
const char *diffuseStr = (gstate.materialupdate & 2) && hasColor ? "In.color0.rgb" : "u_matdiffuse";
const char *specularStr = (gstate.materialupdate & 4) && hasColor ? "In.color0.rgb" : "u_matspecular.rgb";
if (doBezier || doSpline) {
ambientStr = (matUpdate & 1) && hasColor ? "col" : "u_matambientalpha";
diffuseStr = (matUpdate & 2) && hasColor ? "col.rgb" : "u_matdiffuse";
specularStr = (matUpdate & 4) && hasColor ? "col.rgb" : "u_matspecular.rgb";
}
bool diffuseIsZero = true;
bool specularIsZero = true;
bool distanceNeeded = false;
if (enableLighting) {
WRITE(p, " float4 lightSum0 = u_ambient * %s + float4(u_matemissive, 0.0);\n", ambientStr);
for (int i = 0; i < 4; i++) {
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (doLight[i] != LIGHT_FULL)
continue;
diffuseIsZero = false;
if (comp != GE_LIGHTCOMP_ONLYDIFFUSE)
specularIsZero = false;
if (type != GE_LIGHTTYPE_DIRECTIONAL)
distanceNeeded = true;
}
if (!specularIsZero) {
WRITE(p, " float3 lightSum1 = 0;\n");
}
if (!diffuseIsZero) {
WRITE(p, " float3 toLight;\n");
WRITE(p, " float3 diffuse;\n");
}
if (distanceNeeded) {
WRITE(p, " float distance;\n");
WRITE(p, " float lightScale;\n");
}
}
// Calculate lights if needed. If shade mapping is enabled, lights may need to be
// at least partially calculated.
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_FULL)
continue;
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (type == GE_LIGHTTYPE_DIRECTIONAL) {
// We prenormalize light positions for directional lights.
WRITE(p, " toLight = u_lightpos%i;\n", i);
} else {
WRITE(p, " toLight = u_lightpos%i - worldpos;\n", i);
WRITE(p, " distance = length(toLight);\n");
WRITE(p, " toLight /= distance;\n");
}
bool doSpecular = comp != GE_LIGHTCOMP_ONLYDIFFUSE;
bool poweredDiffuse = comp == GE_LIGHTCOMP_BOTHWITHPOWDIFFUSE;
if (poweredDiffuse) {
WRITE(p, " float dot%i = pow(dot(toLight, worldnormal), u_matspecular.a);\n", i);
// TODO: Somehow the NaN check from GLES seems unnecessary here?
// If it returned 0, it'd be wrong, so that's strange.
} else {
WRITE(p, " float dot%i = dot(toLight, worldnormal);\n", i);
}
const char *timesLightScale = " * lightScale";
// Attenuation
switch (type) {
case GE_LIGHTTYPE_DIRECTIONAL:
timesLightScale = "";
break;
case GE_LIGHTTYPE_POINT:
WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, float3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i);
break;
case GE_LIGHTTYPE_SPOT:
case GE_LIGHTTYPE_UNKNOWN:
WRITE(p, " float angle%i = dot(normalize(u_lightdir%i), toLight);\n", i, i);
WRITE(p, " if (angle%i >= u_lightangle_spotCoef%i.x) {\n", i, i);
WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, float3(1.0, distance, distance*distance)), 0.0, 1.0) * pow(angle%i, u_lightangle_spotCoef%i.y);\n", i, i, i);
WRITE(p, " } else {\n");
WRITE(p, " lightScale = 0.0;\n");
WRITE(p, " }\n");
break;
default:
// ILLEGAL
break;
}
WRITE(p, " diffuse = (u_lightdiffuse%i * %s) * max(dot%i, 0.0);\n", i, diffuseStr, i);
if (doSpecular) {
WRITE(p, " dot%i = dot(normalize(toLight + float3(0.0, 0.0, 1.0)), worldnormal);\n", i);
WRITE(p, " if (dot%i > 0.0)\n", i);
WRITE(p, " lightSum1 += u_lightspecular%i * %s * (pow(dot%i, u_matspecular.a) %s);\n", i, specularStr, i, timesLightScale);
}
WRITE(p, " lightSum0.rgb += (u_lightambient%i * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale);
}
if (enableLighting) {
// Sum up ambient, emissive here.
if (lmode) {
WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n");
// v_color1 only exists when lmode = 1.
if (specularIsZero) {
WRITE(p, " Out.v_color1 = float3(0, 0, 0);\n");
} else {
WRITE(p, " Out.v_color1 = clamp(lightSum1, 0.0, 1.0);\n");
}
} else {
if (specularIsZero) {
WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n");
} else {
WRITE(p, " Out.v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + float4(lightSum1, 0.0), 0.0, 1.0);\n");
}
}
} else {
// Lighting doesn't affect color.
if (hasColor) {
if (doBezier || doSpline)
WRITE(p, " Out.v_color0 = col;\n");
else
WRITE(p, " Out.v_color0 = In.color0;\n");
} else {
WRITE(p, " Out.v_color0 = u_matambientalpha;\n");
}
if (lmode)
WRITE(p, " Out.v_color1 = float3(0, 0, 0);\n");
}
bool scaleUV = !throughmode && (uvGenMode == GE_TEXMAP_TEXTURE_COORDS || uvGenMode == GE_TEXMAP_UNKNOWN);
// Step 3: UV generation
if (doTexture) {
switch (uvGenMode) {
case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy.
case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works.
if (scaleUV) {
if (hasTexcoord) {
if (doBezier || doSpline)
WRITE(p, " Out.v_texcoord = float3(tex.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n");
else
WRITE(p, " Out.v_texcoord = float3(In.texcoord.xy * u_uvscaleoffset.xy, 0.0);\n");
} else {
WRITE(p, " Out.v_texcoord = float3(0.0, 0.0, 0.0);\n");
}
} else {
if (hasTexcoord) {
if (doBezier || doSpline)
WRITE(p, " Out.v_texcoord = float3(tex.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n");
else
WRITE(p, " Out.v_texcoord = float3(In.texcoord.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n");
} else {
WRITE(p, " Out.v_texcoord = float3(u_uvscaleoffset.zw, 0.0);\n");
}
}
break;
case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping.
{
std::string temp_tc;
switch (uvProjMode) {
case GE_PROJMAP_POSITION: // Use model space XYZ as source
temp_tc = "float4(In.position.xyz, 1.0)";
break;
case GE_PROJMAP_UV: // Use unscaled UV as source
{
if (hasTexcoord) {
temp_tc = StringFromFormat("float4(In.texcoord.xy, 0.0, 1.0)");
} else {
temp_tc = "float4(0.0, 0.0, 0.0, 1.0)";
}
}
break;
case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source
if (hasNormal)
temp_tc = flipNormal ? "float4(normalize(-In.normal), 1.0)" : "float4(normalize(In.normal), 1.0)";
else
temp_tc = "float4(0.0, 0.0, 1.0, 1.0)";
break;
case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source
if (hasNormal)
temp_tc = flipNormal ? "float4(-In.normal, 1.0)" : "float4(In.normal, 1.0)";
else
temp_tc = "float4(0.0, 0.0, 1.0, 1.0)";
break;
}
// Transform by texture matrix. XYZ as we are doing projection mapping.
WRITE(p, " Out.v_texcoord.xyz = mul(%s, u_tex) * float3(u_uvscaleoffset.xy, 1.0);\n", temp_tc.c_str());
}
break;
case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources.
WRITE(p, " Out.v_texcoord = float3(u_uvscaleoffset.xy * float2(1.0 + dot(normalize(u_lightpos%i), worldnormal), 1.0 + dot(normalize(u_lightpos%i), worldnormal)) * 0.5, 1.0);\n", ls0, ls1);
break;
default:
// ILLEGAL
break;
}
}
// Compute fogdepth
if (enableFog) {
WRITE(p, " Out.v_fogdepth = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n");
}
}
WRITE(p, " return Out;\n");
WRITE(p, "}\n");
}
};