ppsspp/Core/MIPS/MIPS.cpp

330 lines
7.4 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cmath>
#include <limits>
#include "math/math_util.h"
#include "Common.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSTables.h"
#include "Core/MIPS/MIPSDebugInterface.h"
#include "Core/MIPS/MIPSVFPUUtils.h"
#include "Core/MIPS/JitCommon/JitBlockCache.h"
#include "Core/Reporting.h"
#include "Core/System.h"
#include "Core/HLE/sceDisplay.h"
#if defined(ARM)
#include "ARM/ArmJit.h"
#elif defined(PPC)
#include "PPC/PpcJit.h"
#else
#include "x86/Jit.h"
#endif
#include "Core/MIPS/JitCommon/JitCommon.h"
#include "Core/CoreTiming.h"
MIPSState mipsr4k;
MIPSState *currentMIPS = &mipsr4k;
MIPSDebugInterface debugr4k(&mipsr4k);
MIPSDebugInterface *currentDebugMIPS = &debugr4k;
u8 voffset[128];
u8 fromvoffset[128];
#ifndef M_LOG2E
#define M_E 2.71828182845904523536f
#define M_LOG2E 1.44269504088896340736f
#define M_LOG10E 0.434294481903251827651f
#define M_LN2 0.693147180559945309417f
#define M_LN10 2.30258509299404568402f
#undef M_PI
#define M_PI 3.14159265358979323846f
#define M_PI_2 1.57079632679489661923f
#define M_PI_4 0.785398163397448309616f
#define M_1_PI 0.318309886183790671538f
#define M_2_PI 0.636619772367581343076f
#define M_2_SQRTPI 1.12837916709551257390f
#define M_SQRT2 1.41421356237309504880f
#define M_SQRT1_2 0.707106781186547524401f
#endif
const float cst_constants[32] = {
0,
std::numeric_limits<float>::max(), // all these are verified on real PSP
sqrtf(2.0f),
sqrtf(0.5f),
2.0f/sqrtf((float)M_PI),
2.0f/(float)M_PI,
1.0f/(float)M_PI,
(float)M_PI/4,
(float)M_PI/2,
(float)M_PI,
(float)M_E,
(float)M_LOG2E,
(float)M_LOG10E,
(float)M_LN2,
(float)M_LN10,
2*(float)M_PI,
(float)M_PI/6,
log10f(2.0f),
logf(10.0f)/logf(2.0f),
sqrtf(3.0f)/2.0f,
};
MIPSState::MIPSState()
{
MIPSComp::jit = 0;
// Initialize vorder
// This reordering of the VFPU registers in RAM means that instead of being like this:
// 0x00 0x20 0x40 0x60 -> "columns", the most common direction
// 0x01 0x21 0x41 0x61
// 0x02 0x22 0x42 0x62
// 0x03 0x23 0x43 0x63
// 0x04 0x24 0x44 0x64
// 0x06 0x26 0x45 0x65
// ....
// the VPU registers are effectively organized like this:
// 0x00 0x01 0x02 0x03
// 0x04 0x05 0x06 0x07
// 0x08 0x09 0x0a 0x0b
// ....
// This is because the original indices look like this:
// 0XXMMMYY where M is the matrix number.
// We will now map 0YYMMMXX to 0MMMXXYY.
// Advantages:
// * Columns can be flushed and reloaded faster "at once"
// * 4x4 Matrices are contiguous in RAM, making them, too, fast-loadable in NEON
// Disadvantages:
// * Extra indirection, can be confusing and slower (interpreter only)
// * Flushing and reloading row registers is now slower
int i = 0;
for (int m = 0; m < 8; m++) {
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
voffset[m * 4 + x * 32 + y] = i++;
}
}
}
// And the inverse.
for (int i = 0; i < 128; i++) {
fromvoffset[voffset[i]] = i;
}
// Sanity check that things that should be ordered are ordered.
const int firstEight[8] = { 0x0, 0x20, 0x40, 0x60, 0x1, 0x21, 0x41, 0x61 };
for (int i = 0; i < 8; i++) {
if (voffset[firstEight[i]] != i) {
ERROR_LOG(CPU, "Wrong voffset order! %i: %i should have been %i", firstEight[i], voffset[firstEight[i]], i);
}
}
}
MIPSState::~MIPSState()
{
if (MIPSComp::jit)
{
delete MIPSComp::jit;
MIPSComp::jit = 0;
}
}
void MIPSState::Reset()
{
if (MIPSComp::jit)
{
delete MIPSComp::jit;
MIPSComp::jit = 0;
}
if (PSP_CoreParameter().cpuCore == CPU_JIT)
MIPSComp::jit = new MIPSComp::Jit(this);
memset(r, 0, sizeof(r));
memset(f, 0, sizeof(f));
memset(v, 0, sizeof(v));
memset(vfpuCtrl, 0, sizeof(vfpuCtrl));
vfpuCtrl[VFPU_CTRL_SPREFIX] = 0xe4; //passthru
vfpuCtrl[VFPU_CTRL_TPREFIX] = 0xe4; //passthru
vfpuCtrl[VFPU_CTRL_DPREFIX] = 0;
vfpuCtrl[VFPU_CTRL_CC] = 0x3f;
vfpuCtrl[VFPU_CTRL_INF4] = 0;
vfpuCtrl[VFPU_CTRL_RCX0] = 0x3f800001;
vfpuCtrl[VFPU_CTRL_RCX1] = 0x3f800002;
vfpuCtrl[VFPU_CTRL_RCX2] = 0x3f800004;
vfpuCtrl[VFPU_CTRL_RCX3] = 0x3f800008;
vfpuCtrl[VFPU_CTRL_RCX4] = 0x3f800000;
vfpuCtrl[VFPU_CTRL_RCX5] = 0x3f800000;
vfpuCtrl[VFPU_CTRL_RCX6] = 0x3f800000;
vfpuCtrl[VFPU_CTRL_RCX7] = 0x3f800000;
pc = 0;
hi = 0;
lo = 0;
fpcond = 0;
fcr31 = 0;
debugCount = 0;
currentMIPS = this;
inDelaySlot = false;
llBit = 0;
nextPC = 0;
downcount = 0;
// Initialize the VFPU random number generator with .. something?
rng.Init(0x1337);
}
void MIPSState::DoState(PointerWrap &p) {
auto s = p.Section("MIPSState", 1, 3);
if (!s)
return;
// Reset the jit if we're loading.
if (p.mode == p.MODE_READ)
Reset();
if (MIPSComp::jit)
MIPSComp::jit->DoState(p);
else
MIPSComp::Jit::DoDummyState(p);
p.DoArray(r, sizeof(r) / sizeof(r[0]));
p.DoArray(f, sizeof(f) / sizeof(f[0]));
if (s <= 2) {
float vtemp[128];
p.DoArray(vtemp, sizeof(v) / sizeof(v[0]));
for (int i = 0; i < 128; i++) {
v[voffset[i]] = vtemp[i];
}
} else {
p.DoArray(v, sizeof(v) / sizeof(v[0]));
}
p.DoArray(vfpuCtrl, sizeof(vfpuCtrl) / sizeof(vfpuCtrl[0]));
p.Do(pc);
p.Do(nextPC);
p.Do(downcount);
p.Do(hi);
p.Do(lo);
p.Do(fpcond);
if (s <= 1) {
u32 fcr0_unused = 0;
p.Do(fcr0_unused);
}
p.Do(fcr31);
p.Do(rng.m_w);
p.Do(rng.m_z);
p.Do(inDelaySlot);
p.Do(llBit);
p.Do(debugCount);
}
void MIPSState::SingleStep()
{
int cycles = MIPS_SingleStep();
currentMIPS->downcount -= cycles;
CoreTiming::Advance();
}
// returns 1 if reached ticks limit
int MIPSState::RunLoopUntil(u64 globalTicks)
{
switch (PSP_CoreParameter().cpuCore)
{
case CPU_JIT:
MIPSComp::jit->RunLoopUntil(globalTicks);
break;
case CPU_INTERPRETER:
return MIPSInterpret_RunUntil(globalTicks);
}
return 1;
}
void MIPSState::WriteFCR(int reg, int value)
{
if (reg == 31)
{
fcr31 = value & 0x0181FFFF;
fpcond = (value >> 23) & 1;
}
else
{
WARN_LOG_REPORT(CPU, "WriteFCR: Unexpected reg %d (value %08x)", reg, value);
// MessageBox(0, "Invalid FCR","...",0);
}
DEBUG_LOG(CPU, "FCR%i written to, value %08x", reg, value);
}
u32 MIPSState::ReadFCR(int reg)
{
DEBUG_LOG(CPU,"FCR%i read",reg);
if (reg == 31)
{
fcr31 = (fcr31 & ~(1<<23)) | ((fpcond & 1)<<23);
return fcr31;
}
else if (reg == 0)
{
return FCR0_VALUE;
}
else
{
WARN_LOG_REPORT(CPU, "ReadFCR: Unexpected reg %d", reg);
// MessageBox(0, "Invalid FCR","...",0);
}
return 0;
}
void MIPSState::InvalidateICache(u32 address, int length)
{
// Only really applies to jit.
if (MIPSComp::jit)
MIPSComp::jit->ClearCacheAt(address, length);
}
// Interrupts should be served directly on the running thread.
void MIPSState::Irq()
{
// if (IRQEnabled())
{
}
}
void MIPSState::SWI()
{
}
const char *MIPSState::DisasmAt(u32 compilerPC) {
static char temp[256];
MIPSDisAsm(Memory::Read_Instruction(compilerPC), 0, temp);
return temp;
}