linux/drivers/video/omap/dispc.c

1504 lines
36 KiB
C
Raw Normal View History

/*
* OMAP2 display controller support
*
* Copyright (C) 2005 Nokia Corporation
* Author: Imre Deak <imre.deak@nokia.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
2008-07-24 04:28:13 +00:00
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <asm/arch/sram.h>
#include <asm/arch/omapfb.h>
#include <asm/arch/board.h>
#include "dispc.h"
#define MODULE_NAME "dispc"
#define DSS_BASE 0x48050000
#define DSS_SYSCONFIG 0x0010
#define DISPC_BASE 0x48050400
/* DISPC common */
#define DISPC_REVISION 0x0000
#define DISPC_SYSCONFIG 0x0010
#define DISPC_SYSSTATUS 0x0014
#define DISPC_IRQSTATUS 0x0018
#define DISPC_IRQENABLE 0x001C
#define DISPC_CONTROL 0x0040
#define DISPC_CONFIG 0x0044
#define DISPC_CAPABLE 0x0048
#define DISPC_DEFAULT_COLOR0 0x004C
#define DISPC_DEFAULT_COLOR1 0x0050
#define DISPC_TRANS_COLOR0 0x0054
#define DISPC_TRANS_COLOR1 0x0058
#define DISPC_LINE_STATUS 0x005C
#define DISPC_LINE_NUMBER 0x0060
#define DISPC_TIMING_H 0x0064
#define DISPC_TIMING_V 0x0068
#define DISPC_POL_FREQ 0x006C
#define DISPC_DIVISOR 0x0070
#define DISPC_SIZE_DIG 0x0078
#define DISPC_SIZE_LCD 0x007C
#define DISPC_DATA_CYCLE1 0x01D4
#define DISPC_DATA_CYCLE2 0x01D8
#define DISPC_DATA_CYCLE3 0x01DC
/* DISPC GFX plane */
#define DISPC_GFX_BA0 0x0080
#define DISPC_GFX_BA1 0x0084
#define DISPC_GFX_POSITION 0x0088
#define DISPC_GFX_SIZE 0x008C
#define DISPC_GFX_ATTRIBUTES 0x00A0
#define DISPC_GFX_FIFO_THRESHOLD 0x00A4
#define DISPC_GFX_FIFO_SIZE_STATUS 0x00A8
#define DISPC_GFX_ROW_INC 0x00AC
#define DISPC_GFX_PIXEL_INC 0x00B0
#define DISPC_GFX_WINDOW_SKIP 0x00B4
#define DISPC_GFX_TABLE_BA 0x00B8
/* DISPC Video plane 1/2 */
#define DISPC_VID1_BASE 0x00BC
#define DISPC_VID2_BASE 0x014C
/* Offsets into DISPC_VID1/2_BASE */
#define DISPC_VID_BA0 0x0000
#define DISPC_VID_BA1 0x0004
#define DISPC_VID_POSITION 0x0008
#define DISPC_VID_SIZE 0x000C
#define DISPC_VID_ATTRIBUTES 0x0010
#define DISPC_VID_FIFO_THRESHOLD 0x0014
#define DISPC_VID_FIFO_SIZE_STATUS 0x0018
#define DISPC_VID_ROW_INC 0x001C
#define DISPC_VID_PIXEL_INC 0x0020
#define DISPC_VID_FIR 0x0024
#define DISPC_VID_PICTURE_SIZE 0x0028
#define DISPC_VID_ACCU0 0x002C
#define DISPC_VID_ACCU1 0x0030
/* 8 elements in 8 byte increments */
#define DISPC_VID_FIR_COEF_H0 0x0034
/* 8 elements in 8 byte increments */
#define DISPC_VID_FIR_COEF_HV0 0x0038
/* 5 elements in 4 byte increments */
#define DISPC_VID_CONV_COEF0 0x0074
#define DISPC_IRQ_FRAMEMASK 0x0001
#define DISPC_IRQ_VSYNC 0x0002
#define DISPC_IRQ_EVSYNC_EVEN 0x0004
#define DISPC_IRQ_EVSYNC_ODD 0x0008
#define DISPC_IRQ_ACBIAS_COUNT_STAT 0x0010
#define DISPC_IRQ_PROG_LINE_NUM 0x0020
#define DISPC_IRQ_GFX_FIFO_UNDERFLOW 0x0040
#define DISPC_IRQ_GFX_END_WIN 0x0080
#define DISPC_IRQ_PAL_GAMMA_MASK 0x0100
#define DISPC_IRQ_OCP_ERR 0x0200
#define DISPC_IRQ_VID1_FIFO_UNDERFLOW 0x0400
#define DISPC_IRQ_VID1_END_WIN 0x0800
#define DISPC_IRQ_VID2_FIFO_UNDERFLOW 0x1000
#define DISPC_IRQ_VID2_END_WIN 0x2000
#define DISPC_IRQ_SYNC_LOST 0x4000
#define DISPC_IRQ_MASK_ALL 0x7fff
#define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
DISPC_IRQ_SYNC_LOST)
#define RFBI_CONTROL 0x48050040
#define MAX_PALETTE_SIZE (256 * 16)
#define FLD_MASK(pos, len) (((1 << len) - 1) << pos)
#define MOD_REG_FLD(reg, mask, val) \
dispc_write_reg((reg), (dispc_read_reg(reg) & ~(mask)) | (val));
#define OMAP2_SRAM_START 0x40200000
/* Maximum size, in reality this is smaller if SRAM is partially locked. */
#define OMAP2_SRAM_SIZE 0xa0000 /* 640k */
/* We support the SDRAM / SRAM types. See OMAPFB_PLANE_MEMTYPE_* in omapfb.h */
#define DISPC_MEMTYPE_NUM 2
#define RESMAP_SIZE(_page_cnt) \
((_page_cnt + (sizeof(unsigned long) * 8) - 1) / 8)
#define RESMAP_PTR(_res_map, _page_nr) \
(((_res_map)->map) + (_page_nr) / (sizeof(unsigned long) * 8))
#define RESMAP_MASK(_page_nr) \
(1 << ((_page_nr) & (sizeof(unsigned long) * 8 - 1)))
struct resmap {
unsigned long start;
unsigned page_cnt;
unsigned long *map;
};
static struct {
u32 base;
struct omapfb_mem_desc mem_desc;
struct resmap *res_map[DISPC_MEMTYPE_NUM];
atomic_t map_count[OMAPFB_PLANE_NUM];
dma_addr_t palette_paddr;
void *palette_vaddr;
int ext_mode;
unsigned long enabled_irqs;
void (*irq_callback)(void *);
void *irq_callback_data;
struct completion frame_done;
int fir_hinc[OMAPFB_PLANE_NUM];
int fir_vinc[OMAPFB_PLANE_NUM];
struct clk *dss_ick, *dss1_fck;
struct clk *dss_54m_fck;
enum omapfb_update_mode update_mode;
struct omapfb_device *fbdev;
struct omapfb_color_key color_key;
} dispc;
static void enable_lcd_clocks(int enable);
static void inline dispc_write_reg(int idx, u32 val)
{
__raw_writel(val, dispc.base + idx);
}
static u32 inline dispc_read_reg(int idx)
{
u32 l = __raw_readl(dispc.base + idx);
return l;
}
/* Select RFBI or bypass mode */
static void enable_rfbi_mode(int enable)
{
u32 l;
l = dispc_read_reg(DISPC_CONTROL);
/* Enable RFBI, GPIO0/1 */
l &= ~((1 << 11) | (1 << 15) | (1 << 16));
l |= enable ? (1 << 11) : 0;
/* RFBI En: GPIO0/1=10 RFBI Dis: GPIO0/1=11 */
l |= 1 << 15;
l |= enable ? 0 : (1 << 16);
dispc_write_reg(DISPC_CONTROL, l);
/* Set bypass mode in RFBI module */
l = __raw_readl(io_p2v(RFBI_CONTROL));
l |= enable ? 0 : (1 << 1);
__raw_writel(l, io_p2v(RFBI_CONTROL));
}
static void set_lcd_data_lines(int data_lines)
{
u32 l;
int code = 0;
switch (data_lines) {
case 12:
code = 0;
break;
case 16:
code = 1;
break;
case 18:
code = 2;
break;
case 24:
code = 3;
break;
default:
BUG();
}
l = dispc_read_reg(DISPC_CONTROL);
l &= ~(0x03 << 8);
l |= code << 8;
dispc_write_reg(DISPC_CONTROL, l);
}
static void set_load_mode(int mode)
{
BUG_ON(mode & ~(DISPC_LOAD_CLUT_ONLY | DISPC_LOAD_FRAME_ONLY |
DISPC_LOAD_CLUT_ONCE_FRAME));
MOD_REG_FLD(DISPC_CONFIG, 0x03 << 1, mode << 1);
}
void omap_dispc_set_lcd_size(int x, int y)
{
BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_SIZE_LCD, FLD_MASK(16, 11) | FLD_MASK(0, 11),
((y - 1) << 16) | (x - 1));
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_set_lcd_size);
void omap_dispc_set_digit_size(int x, int y)
{
BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_SIZE_DIG, FLD_MASK(16, 11) | FLD_MASK(0, 11),
((y - 1) << 16) | (x - 1));
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_set_digit_size);
static void setup_plane_fifo(int plane, int ext_mode)
{
const u32 ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
DISPC_VID1_BASE + DISPC_VID_FIFO_THRESHOLD,
DISPC_VID2_BASE + DISPC_VID_FIFO_THRESHOLD };
const u32 fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
DISPC_VID1_BASE + DISPC_VID_FIFO_SIZE_STATUS,
DISPC_VID2_BASE + DISPC_VID_FIFO_SIZE_STATUS };
int low, high;
u32 l;
BUG_ON(plane > 2);
l = dispc_read_reg(fsz_reg[plane]);
l &= FLD_MASK(0, 9);
if (ext_mode) {
low = l * 3 / 4;
high = l;
} else {
low = l / 4;
high = l * 3 / 4;
}
MOD_REG_FLD(ftrs_reg[plane], FLD_MASK(16, 9) | FLD_MASK(0, 9),
(high << 16) | low);
}
void omap_dispc_enable_lcd_out(int enable)
{
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_CONTROL, 1, enable ? 1 : 0);
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_enable_lcd_out);
void omap_dispc_enable_digit_out(int enable)
{
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_CONTROL, 1 << 1, enable ? 1 << 1 : 0);
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_enable_digit_out);
static inline int _setup_plane(int plane, int channel_out,
u32 paddr, int screen_width,
int pos_x, int pos_y, int width, int height,
int color_mode)
{
const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
const u32 ba_reg[] = { DISPC_GFX_BA0, DISPC_VID1_BASE + DISPC_VID_BA0,
DISPC_VID2_BASE + DISPC_VID_BA0 };
const u32 ps_reg[] = { DISPC_GFX_POSITION,
DISPC_VID1_BASE + DISPC_VID_POSITION,
DISPC_VID2_BASE + DISPC_VID_POSITION };
const u32 sz_reg[] = { DISPC_GFX_SIZE,
DISPC_VID1_BASE + DISPC_VID_PICTURE_SIZE,
DISPC_VID2_BASE + DISPC_VID_PICTURE_SIZE };
const u32 ri_reg[] = { DISPC_GFX_ROW_INC,
DISPC_VID1_BASE + DISPC_VID_ROW_INC,
DISPC_VID2_BASE + DISPC_VID_ROW_INC };
const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
DISPC_VID2_BASE + DISPC_VID_SIZE };
int chout_shift, burst_shift;
int chout_val;
int color_code;
int bpp;
int cconv_en;
int set_vsize;
u32 l;
#ifdef VERBOSE
dev_dbg(dispc.fbdev->dev, "plane %d channel %d paddr %#08x scr_width %d"
" pos_x %d pos_y %d width %d height %d color_mode %d\n",
plane, channel_out, paddr, screen_width, pos_x, pos_y,
width, height, color_mode);
#endif
set_vsize = 0;
switch (plane) {
case OMAPFB_PLANE_GFX:
burst_shift = 6;
chout_shift = 8;
break;
case OMAPFB_PLANE_VID1:
case OMAPFB_PLANE_VID2:
burst_shift = 14;
chout_shift = 16;
set_vsize = 1;
break;
default:
return -EINVAL;
}
switch (channel_out) {
case OMAPFB_CHANNEL_OUT_LCD:
chout_val = 0;
break;
case OMAPFB_CHANNEL_OUT_DIGIT:
chout_val = 1;
break;
default:
return -EINVAL;
}
cconv_en = 0;
switch (color_mode) {
case OMAPFB_COLOR_RGB565:
color_code = DISPC_RGB_16_BPP;
bpp = 16;
break;
case OMAPFB_COLOR_YUV422:
if (plane == 0)
return -EINVAL;
color_code = DISPC_UYVY_422;
cconv_en = 1;
bpp = 16;
break;
case OMAPFB_COLOR_YUY422:
if (plane == 0)
return -EINVAL;
color_code = DISPC_YUV2_422;
cconv_en = 1;
bpp = 16;
break;
default:
return -EINVAL;
}
l = dispc_read_reg(at_reg[plane]);
l &= ~(0x0f << 1);
l |= color_code << 1;
l &= ~(1 << 9);
l |= cconv_en << 9;
l &= ~(0x03 << burst_shift);
l |= DISPC_BURST_8x32 << burst_shift;
l &= ~(1 << chout_shift);
l |= chout_val << chout_shift;
dispc_write_reg(at_reg[plane], l);
dispc_write_reg(ba_reg[plane], paddr);
MOD_REG_FLD(ps_reg[plane],
FLD_MASK(16, 11) | FLD_MASK(0, 11), (pos_y << 16) | pos_x);
MOD_REG_FLD(sz_reg[plane], FLD_MASK(16, 11) | FLD_MASK(0, 11),
((height - 1) << 16) | (width - 1));
if (set_vsize) {
/* Set video size if set_scale hasn't set it */
if (!dispc.fir_vinc[plane])
MOD_REG_FLD(vs_reg[plane],
FLD_MASK(16, 11), (height - 1) << 16);
if (!dispc.fir_hinc[plane])
MOD_REG_FLD(vs_reg[plane],
FLD_MASK(0, 11), width - 1);
}
dispc_write_reg(ri_reg[plane], (screen_width - width) * bpp / 8 + 1);
return height * screen_width * bpp / 8;
}
static int omap_dispc_setup_plane(int plane, int channel_out,
unsigned long offset,
int screen_width,
int pos_x, int pos_y, int width, int height,
int color_mode)
{
u32 paddr;
int r;
if ((unsigned)plane > dispc.mem_desc.region_cnt)
return -EINVAL;
paddr = dispc.mem_desc.region[plane].paddr + offset;
enable_lcd_clocks(1);
r = _setup_plane(plane, channel_out, paddr,
screen_width,
pos_x, pos_y, width, height, color_mode);
enable_lcd_clocks(0);
return r;
}
static void write_firh_reg(int plane, int reg, u32 value)
{
u32 base;
if (plane == 1)
base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_H0;
else
base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_H0;
dispc_write_reg(base + reg * 8, value);
}
static void write_firhv_reg(int plane, int reg, u32 value)
{
u32 base;
if (plane == 1)
base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_HV0;
else
base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_HV0;
dispc_write_reg(base + reg * 8, value);
}
static void set_upsampling_coef_table(int plane)
{
const u32 coef[][2] = {
{ 0x00800000, 0x00800000 },
{ 0x0D7CF800, 0x037B02FF },
{ 0x1E70F5FF, 0x0C6F05FE },
{ 0x335FF5FE, 0x205907FB },
{ 0xF74949F7, 0x00404000 },
{ 0xF55F33FB, 0x075920FE },
{ 0xF5701EFE, 0x056F0CFF },
{ 0xF87C0DFF, 0x027B0300 },
};
int i;
for (i = 0; i < 8; i++) {
write_firh_reg(plane, i, coef[i][0]);
write_firhv_reg(plane, i, coef[i][1]);
}
}
static int omap_dispc_set_scale(int plane,
int orig_width, int orig_height,
int out_width, int out_height)
{
const u32 at_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
DISPC_VID2_BASE + DISPC_VID_SIZE };
const u32 fir_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_FIR,
DISPC_VID2_BASE + DISPC_VID_FIR };
u32 l;
int fir_hinc;
int fir_vinc;
if ((unsigned)plane > OMAPFB_PLANE_NUM)
return -ENODEV;
if (plane == OMAPFB_PLANE_GFX &&
(out_width != orig_width || out_height != orig_height))
return -EINVAL;
enable_lcd_clocks(1);
if (orig_width < out_width) {
/*
* Upsampling.
* Currently you can only scale both dimensions in one way.
*/
if (orig_height > out_height ||
orig_width * 8 < out_width ||
orig_height * 8 < out_height) {
enable_lcd_clocks(0);
return -EINVAL;
}
set_upsampling_coef_table(plane);
} else if (orig_width > out_width) {
/* Downsampling not yet supported
*/
enable_lcd_clocks(0);
return -EINVAL;
}
if (!orig_width || orig_width == out_width)
fir_hinc = 0;
else
fir_hinc = 1024 * orig_width / out_width;
if (!orig_height || orig_height == out_height)
fir_vinc = 0;
else
fir_vinc = 1024 * orig_height / out_height;
dispc.fir_hinc[plane] = fir_hinc;
dispc.fir_vinc[plane] = fir_vinc;
MOD_REG_FLD(fir_reg[plane],
FLD_MASK(16, 12) | FLD_MASK(0, 12),
((fir_vinc & 4095) << 16) |
(fir_hinc & 4095));
dev_dbg(dispc.fbdev->dev, "out_width %d out_height %d orig_width %d "
"orig_height %d fir_hinc %d fir_vinc %d\n",
out_width, out_height, orig_width, orig_height,
fir_hinc, fir_vinc);
MOD_REG_FLD(vs_reg[plane],
FLD_MASK(16, 11) | FLD_MASK(0, 11),
((out_height - 1) << 16) | (out_width - 1));
l = dispc_read_reg(at_reg[plane]);
l &= ~(0x03 << 5);
l |= fir_hinc ? (1 << 5) : 0;
l |= fir_vinc ? (1 << 6) : 0;
dispc_write_reg(at_reg[plane], l);
enable_lcd_clocks(0);
return 0;
}
static int omap_dispc_enable_plane(int plane, int enable)
{
const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
if ((unsigned int)plane > dispc.mem_desc.region_cnt)
return -EINVAL;
enable_lcd_clocks(1);
MOD_REG_FLD(at_reg[plane], 1, enable ? 1 : 0);
enable_lcd_clocks(0);
return 0;
}
static int omap_dispc_set_color_key(struct omapfb_color_key *ck)
{
u32 df_reg, tr_reg;
int shift, val;
switch (ck->channel_out) {
case OMAPFB_CHANNEL_OUT_LCD:
df_reg = DISPC_DEFAULT_COLOR0;
tr_reg = DISPC_TRANS_COLOR0;
shift = 10;
break;
case OMAPFB_CHANNEL_OUT_DIGIT:
df_reg = DISPC_DEFAULT_COLOR1;
tr_reg = DISPC_TRANS_COLOR1;
shift = 12;
break;
default:
return -EINVAL;
}
switch (ck->key_type) {
case OMAPFB_COLOR_KEY_DISABLED:
val = 0;
break;
case OMAPFB_COLOR_KEY_GFX_DST:
val = 1;
break;
case OMAPFB_COLOR_KEY_VID_SRC:
val = 3;
break;
default:
return -EINVAL;
}
enable_lcd_clocks(1);
MOD_REG_FLD(DISPC_CONFIG, FLD_MASK(shift, 2), val << shift);
if (val != 0)
dispc_write_reg(tr_reg, ck->trans_key);
dispc_write_reg(df_reg, ck->background);
enable_lcd_clocks(0);
dispc.color_key = *ck;
return 0;
}
static int omap_dispc_get_color_key(struct omapfb_color_key *ck)
{
*ck = dispc.color_key;
return 0;
}
static void load_palette(void)
{
}
static int omap_dispc_set_update_mode(enum omapfb_update_mode mode)
{
int r = 0;
if (mode != dispc.update_mode) {
switch (mode) {
case OMAPFB_AUTO_UPDATE:
case OMAPFB_MANUAL_UPDATE:
enable_lcd_clocks(1);
omap_dispc_enable_lcd_out(1);
dispc.update_mode = mode;
break;
case OMAPFB_UPDATE_DISABLED:
init_completion(&dispc.frame_done);
omap_dispc_enable_lcd_out(0);
if (!wait_for_completion_timeout(&dispc.frame_done,
msecs_to_jiffies(500))) {
dev_err(dispc.fbdev->dev,
"timeout waiting for FRAME DONE\n");
}
dispc.update_mode = mode;
enable_lcd_clocks(0);
break;
default:
r = -EINVAL;
}
}
return r;
}
static void omap_dispc_get_caps(int plane, struct omapfb_caps *caps)
{
caps->ctrl |= OMAPFB_CAPS_PLANE_RELOCATE_MEM;
if (plane > 0)
caps->ctrl |= OMAPFB_CAPS_PLANE_SCALE;
caps->plane_color |= (1 << OMAPFB_COLOR_RGB565) |
(1 << OMAPFB_COLOR_YUV422) |
(1 << OMAPFB_COLOR_YUY422);
if (plane == 0)
caps->plane_color |= (1 << OMAPFB_COLOR_CLUT_8BPP) |
(1 << OMAPFB_COLOR_CLUT_4BPP) |
(1 << OMAPFB_COLOR_CLUT_2BPP) |
(1 << OMAPFB_COLOR_CLUT_1BPP) |
(1 << OMAPFB_COLOR_RGB444);
}
static enum omapfb_update_mode omap_dispc_get_update_mode(void)
{
return dispc.update_mode;
}
static void setup_color_conv_coef(void)
{
u32 mask = FLD_MASK(16, 11) | FLD_MASK(0, 11);
int cf1_reg = DISPC_VID1_BASE + DISPC_VID_CONV_COEF0;
int cf2_reg = DISPC_VID2_BASE + DISPC_VID_CONV_COEF0;
int at1_reg = DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES;
int at2_reg = DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES;
const struct color_conv_coef {
int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
int full_range;
} ctbl_bt601_5 = {
298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
};
const struct color_conv_coef *ct;
#define CVAL(x, y) (((x & 2047) << 16) | (y & 2047))
ct = &ctbl_bt601_5;
MOD_REG_FLD(cf1_reg, mask, CVAL(ct->rcr, ct->ry));
MOD_REG_FLD(cf1_reg + 4, mask, CVAL(ct->gy, ct->rcb));
MOD_REG_FLD(cf1_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
MOD_REG_FLD(cf1_reg + 12, mask, CVAL(ct->bcr, ct->by));
MOD_REG_FLD(cf1_reg + 16, mask, CVAL(0, ct->bcb));
MOD_REG_FLD(cf2_reg, mask, CVAL(ct->rcr, ct->ry));
MOD_REG_FLD(cf2_reg + 4, mask, CVAL(ct->gy, ct->rcb));
MOD_REG_FLD(cf2_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
MOD_REG_FLD(cf2_reg + 12, mask, CVAL(ct->bcr, ct->by));
MOD_REG_FLD(cf2_reg + 16, mask, CVAL(0, ct->bcb));
#undef CVAL
MOD_REG_FLD(at1_reg, (1 << 11), ct->full_range);
MOD_REG_FLD(at2_reg, (1 << 11), ct->full_range);
}
static void calc_ck_div(int is_tft, int pck, int *lck_div, int *pck_div)
{
unsigned long fck, lck;
*lck_div = 1;
pck = max(1, pck);
fck = clk_get_rate(dispc.dss1_fck);
lck = fck;
*pck_div = (lck + pck - 1) / pck;
if (is_tft)
*pck_div = max(2, *pck_div);
else
*pck_div = max(3, *pck_div);
if (*pck_div > 255) {
*pck_div = 255;
lck = pck * *pck_div;
*lck_div = fck / lck;
BUG_ON(*lck_div < 1);
if (*lck_div > 255) {
*lck_div = 255;
dev_warn(dispc.fbdev->dev, "pixclock %d kHz too low.\n",
pck / 1000);
}
}
}
static void set_lcd_tft_mode(int enable)
{
u32 mask;
mask = 1 << 3;
MOD_REG_FLD(DISPC_CONTROL, mask, enable ? mask : 0);
}
static void set_lcd_timings(void)
{
u32 l;
int lck_div, pck_div;
struct lcd_panel *panel = dispc.fbdev->panel;
int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
unsigned long fck;
l = dispc_read_reg(DISPC_TIMING_H);
l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
l |= ( max(1, (min(64, panel->hsw))) - 1 ) << 0;
l |= ( max(1, (min(256, panel->hfp))) - 1 ) << 8;
l |= ( max(1, (min(256, panel->hbp))) - 1 ) << 20;
dispc_write_reg(DISPC_TIMING_H, l);
l = dispc_read_reg(DISPC_TIMING_V);
l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
l |= ( max(1, (min(64, panel->vsw))) - 1 ) << 0;
l |= ( max(0, (min(255, panel->vfp))) - 0 ) << 8;
l |= ( max(0, (min(255, panel->vbp))) - 0 ) << 20;
dispc_write_reg(DISPC_TIMING_V, l);
l = dispc_read_reg(DISPC_POL_FREQ);
l &= ~FLD_MASK(12, 6);
l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 12;
l |= panel->acb & 0xff;
dispc_write_reg(DISPC_POL_FREQ, l);
calc_ck_div(is_tft, panel->pixel_clock * 1000, &lck_div, &pck_div);
l = dispc_read_reg(DISPC_DIVISOR);
l &= ~(FLD_MASK(16, 8) | FLD_MASK(0, 8));
l |= (lck_div << 16) | (pck_div << 0);
dispc_write_reg(DISPC_DIVISOR, l);
/* update panel info with the exact clock */
fck = clk_get_rate(dispc.dss1_fck);
panel->pixel_clock = fck / lck_div / pck_div / 1000;
}
int omap_dispc_request_irq(void (*callback)(void *data), void *data)
{
int r = 0;
BUG_ON(callback == NULL);
if (dispc.irq_callback)
r = -EBUSY;
else {
dispc.irq_callback = callback;
dispc.irq_callback_data = data;
}
return r;
}
EXPORT_SYMBOL(omap_dispc_request_irq);
void omap_dispc_enable_irqs(int irq_mask)
{
enable_lcd_clocks(1);
dispc.enabled_irqs = irq_mask;
irq_mask |= DISPC_IRQ_MASK_ERROR;
MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_enable_irqs);
void omap_dispc_disable_irqs(int irq_mask)
{
enable_lcd_clocks(1);
dispc.enabled_irqs &= ~irq_mask;
irq_mask &= ~DISPC_IRQ_MASK_ERROR;
MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_disable_irqs);
void omap_dispc_free_irq(void)
{
enable_lcd_clocks(1);
omap_dispc_disable_irqs(DISPC_IRQ_MASK_ALL);
dispc.irq_callback = NULL;
dispc.irq_callback_data = NULL;
enable_lcd_clocks(0);
}
EXPORT_SYMBOL(omap_dispc_free_irq);
static irqreturn_t omap_dispc_irq_handler(int irq, void *dev)
{
u32 stat = dispc_read_reg(DISPC_IRQSTATUS);
if (stat & DISPC_IRQ_FRAMEMASK)
complete(&dispc.frame_done);
if (stat & DISPC_IRQ_MASK_ERROR) {
if (printk_ratelimit()) {
dev_err(dispc.fbdev->dev, "irq error status %04x\n",
stat & 0x7fff);
}
}
if ((stat & dispc.enabled_irqs) && dispc.irq_callback)
dispc.irq_callback(dispc.irq_callback_data);
dispc_write_reg(DISPC_IRQSTATUS, stat);
return IRQ_HANDLED;
}
static int get_dss_clocks(void)
{
if (IS_ERR((dispc.dss_ick = clk_get(dispc.fbdev->dev, "dss_ick")))) {
dev_err(dispc.fbdev->dev, "can't get dss_ick\n");
return PTR_ERR(dispc.dss_ick);
}
if (IS_ERR((dispc.dss1_fck = clk_get(dispc.fbdev->dev, "dss1_fck")))) {
dev_err(dispc.fbdev->dev, "can't get dss1_fck\n");
clk_put(dispc.dss_ick);
return PTR_ERR(dispc.dss1_fck);
}
if (IS_ERR((dispc.dss_54m_fck =
clk_get(dispc.fbdev->dev, "dss_54m_fck")))) {
dev_err(dispc.fbdev->dev, "can't get dss_54m_fck\n");
clk_put(dispc.dss_ick);
clk_put(dispc.dss1_fck);
return PTR_ERR(dispc.dss_54m_fck);
}
return 0;
}
static void put_dss_clocks(void)
{
clk_put(dispc.dss_54m_fck);
clk_put(dispc.dss1_fck);
clk_put(dispc.dss_ick);
}
static void enable_lcd_clocks(int enable)
{
if (enable)
clk_enable(dispc.dss1_fck);
else
clk_disable(dispc.dss1_fck);
}
static void enable_interface_clocks(int enable)
{
if (enable)
clk_enable(dispc.dss_ick);
else
clk_disable(dispc.dss_ick);
}
static void enable_digit_clocks(int enable)
{
if (enable)
clk_enable(dispc.dss_54m_fck);
else
clk_disable(dispc.dss_54m_fck);
}
static void omap_dispc_suspend(void)
{
if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
init_completion(&dispc.frame_done);
omap_dispc_enable_lcd_out(0);
if (!wait_for_completion_timeout(&dispc.frame_done,
msecs_to_jiffies(500))) {
dev_err(dispc.fbdev->dev,
"timeout waiting for FRAME DONE\n");
}
enable_lcd_clocks(0);
}
}
static void omap_dispc_resume(void)
{
if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
enable_lcd_clocks(1);
if (!dispc.ext_mode) {
set_lcd_timings();
load_palette();
}
omap_dispc_enable_lcd_out(1);
}
}
static int omap_dispc_update_window(struct fb_info *fbi,
struct omapfb_update_window *win,
void (*complete_callback)(void *arg),
void *complete_callback_data)
{
return dispc.update_mode == OMAPFB_UPDATE_DISABLED ? -ENODEV : 0;
}
static int mmap_kern(struct omapfb_mem_region *region)
{
struct vm_struct *kvma;
struct vm_area_struct vma;
pgprot_t pgprot;
unsigned long vaddr;
kvma = get_vm_area(region->size, VM_IOREMAP);
if (kvma == NULL) {
dev_err(dispc.fbdev->dev, "can't get kernel vm area\n");
return -ENOMEM;
}
vma.vm_mm = &init_mm;
vaddr = (unsigned long)kvma->addr;
pgprot = pgprot_writecombine(pgprot_kernel);
vma.vm_start = vaddr;
vma.vm_end = vaddr + region->size;
if (io_remap_pfn_range(&vma, vaddr, region->paddr >> PAGE_SHIFT,
region->size, pgprot) < 0) {
dev_err(dispc.fbdev->dev, "kernel mmap for FBMEM failed\n");
return -EAGAIN;
}
region->vaddr = (void *)vaddr;
return 0;
}
static void mmap_user_open(struct vm_area_struct *vma)
{
int plane = (int)vma->vm_private_data;
atomic_inc(&dispc.map_count[plane]);
}
static void mmap_user_close(struct vm_area_struct *vma)
{
int plane = (int)vma->vm_private_data;
atomic_dec(&dispc.map_count[plane]);
}
static struct vm_operations_struct mmap_user_ops = {
.open = mmap_user_open,
.close = mmap_user_close,
};
static int omap_dispc_mmap_user(struct fb_info *info,
struct vm_area_struct *vma)
{
struct omapfb_plane_struct *plane = info->par;
unsigned long off;
unsigned long start;
u32 len;
if (vma->vm_end - vma->vm_start == 0)
return 0;
if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
return -EINVAL;
off = vma->vm_pgoff << PAGE_SHIFT;
start = info->fix.smem_start;
len = info->fix.smem_len;
if (off >= len)
return -EINVAL;
if ((vma->vm_end - vma->vm_start + off) > len)
return -EINVAL;
off += start;
vma->vm_pgoff = off >> PAGE_SHIFT;
vma->vm_flags |= VM_IO | VM_RESERVED;
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
vma->vm_ops = &mmap_user_ops;
vma->vm_private_data = (void *)plane->idx;
if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
vma->vm_end - vma->vm_start, vma->vm_page_prot))
return -EAGAIN;
/* vm_ops.open won't be called for mmap itself. */
atomic_inc(&dispc.map_count[plane->idx]);
return 0;
}
static void unmap_kern(struct omapfb_mem_region *region)
{
vunmap(region->vaddr);
}
static int alloc_palette_ram(void)
{
dispc.palette_vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
MAX_PALETTE_SIZE, &dispc.palette_paddr, GFP_KERNEL);
if (dispc.palette_vaddr == NULL) {
dev_err(dispc.fbdev->dev, "failed to alloc palette memory\n");
return -ENOMEM;
}
return 0;
}
static void free_palette_ram(void)
{
dma_free_writecombine(dispc.fbdev->dev, MAX_PALETTE_SIZE,
dispc.palette_vaddr, dispc.palette_paddr);
}
static int alloc_fbmem(struct omapfb_mem_region *region)
{
region->vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
region->size, &region->paddr, GFP_KERNEL);
if (region->vaddr == NULL) {
dev_err(dispc.fbdev->dev, "unable to allocate FB DMA memory\n");
return -ENOMEM;
}
return 0;
}
static void free_fbmem(struct omapfb_mem_region *region)
{
dma_free_writecombine(dispc.fbdev->dev, region->size,
region->vaddr, region->paddr);
}
static struct resmap *init_resmap(unsigned long start, size_t size)
{
unsigned page_cnt;
struct resmap *res_map;
page_cnt = PAGE_ALIGN(size) / PAGE_SIZE;
res_map =
kzalloc(sizeof(struct resmap) + RESMAP_SIZE(page_cnt), GFP_KERNEL);
if (res_map == NULL)
return NULL;
res_map->start = start;
res_map->page_cnt = page_cnt;
res_map->map = (unsigned long *)(res_map + 1);
return res_map;
}
static void cleanup_resmap(struct resmap *res_map)
{
kfree(res_map);
}
static inline int resmap_mem_type(unsigned long start)
{
if (start >= OMAP2_SRAM_START &&
start < OMAP2_SRAM_START + OMAP2_SRAM_SIZE)
return OMAPFB_MEMTYPE_SRAM;
else
return OMAPFB_MEMTYPE_SDRAM;
}
static inline int resmap_page_reserved(struct resmap *res_map, unsigned page_nr)
{
return *RESMAP_PTR(res_map, page_nr) & RESMAP_MASK(page_nr) ? 1 : 0;
}
static inline void resmap_reserve_page(struct resmap *res_map, unsigned page_nr)
{
BUG_ON(resmap_page_reserved(res_map, page_nr));
*RESMAP_PTR(res_map, page_nr) |= RESMAP_MASK(page_nr);
}
static inline void resmap_free_page(struct resmap *res_map, unsigned page_nr)
{
BUG_ON(!resmap_page_reserved(res_map, page_nr));
*RESMAP_PTR(res_map, page_nr) &= ~RESMAP_MASK(page_nr);
}
static void resmap_reserve_region(unsigned long start, size_t size)
{
struct resmap *res_map;
unsigned start_page;
unsigned end_page;
int mtype;
unsigned i;
mtype = resmap_mem_type(start);
res_map = dispc.res_map[mtype];
dev_dbg(dispc.fbdev->dev, "reserve mem type %d start %08lx size %d\n",
mtype, start, size);
start_page = (start - res_map->start) / PAGE_SIZE;
end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
for (i = start_page; i < end_page; i++)
resmap_reserve_page(res_map, i);
}
static void resmap_free_region(unsigned long start, size_t size)
{
struct resmap *res_map;
unsigned start_page;
unsigned end_page;
unsigned i;
int mtype;
mtype = resmap_mem_type(start);
res_map = dispc.res_map[mtype];
dev_dbg(dispc.fbdev->dev, "free mem type %d start %08lx size %d\n",
mtype, start, size);
start_page = (start - res_map->start) / PAGE_SIZE;
end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
for (i = start_page; i < end_page; i++)
resmap_free_page(res_map, i);
}
static unsigned long resmap_alloc_region(int mtype, size_t size)
{
unsigned i;
unsigned total;
unsigned start_page;
unsigned long start;
struct resmap *res_map = dispc.res_map[mtype];
BUG_ON(mtype >= DISPC_MEMTYPE_NUM || res_map == NULL || !size);
size = PAGE_ALIGN(size) / PAGE_SIZE;
start_page = 0;
total = 0;
for (i = 0; i < res_map->page_cnt; i++) {
if (resmap_page_reserved(res_map, i)) {
start_page = i + 1;
total = 0;
} else if (++total == size)
break;
}
if (total < size)
return 0;
start = res_map->start + start_page * PAGE_SIZE;
resmap_reserve_region(start, size * PAGE_SIZE);
return start;
}
/* Note that this will only work for user mappings, we don't deal with
* kernel mappings here, so fbcon will keep using the old region.
*/
static int omap_dispc_setup_mem(int plane, size_t size, int mem_type,
unsigned long *paddr)
{
struct omapfb_mem_region *rg;
unsigned long new_addr = 0;
if ((unsigned)plane > dispc.mem_desc.region_cnt)
return -EINVAL;
if (mem_type >= DISPC_MEMTYPE_NUM)
return -EINVAL;
if (dispc.res_map[mem_type] == NULL)
return -ENOMEM;
rg = &dispc.mem_desc.region[plane];
if (size == rg->size && mem_type == rg->type)
return 0;
if (atomic_read(&dispc.map_count[plane]))
return -EBUSY;
if (rg->size != 0)
resmap_free_region(rg->paddr, rg->size);
if (size != 0) {
new_addr = resmap_alloc_region(mem_type, size);
if (!new_addr) {
/* Reallocate old region. */
resmap_reserve_region(rg->paddr, rg->size);
return -ENOMEM;
}
}
rg->paddr = new_addr;
rg->size = size;
rg->type = mem_type;
*paddr = new_addr;
return 0;
}
static int setup_fbmem(struct omapfb_mem_desc *req_md)
{
struct omapfb_mem_region *rg;
int i;
int r;
unsigned long mem_start[DISPC_MEMTYPE_NUM];
unsigned long mem_end[DISPC_MEMTYPE_NUM];
if (!req_md->region_cnt) {
dev_err(dispc.fbdev->dev, "no memory regions defined\n");
return -ENOENT;
}
rg = &req_md->region[0];
memset(mem_start, 0xff, sizeof(mem_start));
memset(mem_end, 0, sizeof(mem_end));
for (i = 0; i < req_md->region_cnt; i++, rg++) {
int mtype;
if (rg->paddr) {
rg->alloc = 0;
if (rg->vaddr == NULL) {
rg->map = 1;
if ((r = mmap_kern(rg)) < 0)
return r;
}
} else {
if (rg->type != OMAPFB_MEMTYPE_SDRAM) {
dev_err(dispc.fbdev->dev,
"unsupported memory type\n");
return -EINVAL;
}
rg->alloc = rg->map = 1;
if ((r = alloc_fbmem(rg)) < 0)
return r;
}
mtype = rg->type;
if (rg->paddr < mem_start[mtype])
mem_start[mtype] = rg->paddr;
if (rg->paddr + rg->size > mem_end[mtype])
mem_end[mtype] = rg->paddr + rg->size;
}
for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
unsigned long start;
size_t size;
if (mem_end[i] == 0)
continue;
start = mem_start[i];
size = mem_end[i] - start;
dispc.res_map[i] = init_resmap(start, size);
r = -ENOMEM;
if (dispc.res_map[i] == NULL)
goto fail;
/* Initial state is that everything is reserved. This
* includes possible holes as well, which will never be
* freed.
*/
resmap_reserve_region(start, size);
}
dispc.mem_desc = *req_md;
return 0;
fail:
for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
if (dispc.res_map[i] != NULL)
cleanup_resmap(dispc.res_map[i]);
}
return r;
}
static void cleanup_fbmem(void)
{
struct omapfb_mem_region *rg;
int i;
for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
if (dispc.res_map[i] != NULL)
cleanup_resmap(dispc.res_map[i]);
}
rg = &dispc.mem_desc.region[0];
for (i = 0; i < dispc.mem_desc.region_cnt; i++, rg++) {
if (rg->alloc)
free_fbmem(rg);
else {
if (rg->map)
unmap_kern(rg);
}
}
}
static int omap_dispc_init(struct omapfb_device *fbdev, int ext_mode,
struct omapfb_mem_desc *req_vram)
{
int r;
u32 l;
struct lcd_panel *panel = fbdev->panel;
int tmo = 10000;
int skip_init = 0;
int i;
memset(&dispc, 0, sizeof(dispc));
dispc.base = io_p2v(DISPC_BASE);
dispc.fbdev = fbdev;
dispc.ext_mode = ext_mode;
init_completion(&dispc.frame_done);
if ((r = get_dss_clocks()) < 0)
return r;
enable_interface_clocks(1);
enable_lcd_clocks(1);
#ifdef CONFIG_FB_OMAP_BOOTLOADER_INIT
l = dispc_read_reg(DISPC_CONTROL);
/* LCD enabled ? */
if (l & 1) {
pr_info("omapfb: skipping hardware initialization\n");
skip_init = 1;
}
#endif
if (!skip_init) {
/* Reset monitoring works only w/ the 54M clk */
enable_digit_clocks(1);
/* Soft reset */
MOD_REG_FLD(DISPC_SYSCONFIG, 1 << 1, 1 << 1);
while (!(dispc_read_reg(DISPC_SYSSTATUS) & 1)) {
if (!--tmo) {
dev_err(dispc.fbdev->dev, "soft reset failed\n");
r = -ENODEV;
enable_digit_clocks(0);
goto fail1;
}
}
enable_digit_clocks(0);
}
/* Enable smart idle and autoidle */
l = dispc_read_reg(DISPC_CONTROL);
l &= ~((3 << 12) | (3 << 3));
l |= (2 << 12) | (2 << 3) | (1 << 0);
dispc_write_reg(DISPC_SYSCONFIG, l);
omap_writel(1 << 0, DSS_BASE + DSS_SYSCONFIG);
/* Set functional clock autogating */
l = dispc_read_reg(DISPC_CONFIG);
l |= 1 << 9;
dispc_write_reg(DISPC_CONFIG, l);
l = dispc_read_reg(DISPC_IRQSTATUS);
dispc_write_reg(l, DISPC_IRQSTATUS);
/* Enable those that we handle always */
omap_dispc_enable_irqs(DISPC_IRQ_FRAMEMASK);
if ((r = request_irq(INT_24XX_DSS_IRQ, omap_dispc_irq_handler,
0, MODULE_NAME, fbdev)) < 0) {
dev_err(dispc.fbdev->dev, "can't get DSS IRQ\n");
goto fail1;
}
/* L3 firewall setting: enable access to OCM RAM */
__raw_writel(0x402000b0, io_p2v(0x680050a0));
if ((r = alloc_palette_ram()) < 0)
goto fail2;
if ((r = setup_fbmem(req_vram)) < 0)
goto fail3;
if (!skip_init) {
for (i = 0; i < dispc.mem_desc.region_cnt; i++) {
memset(dispc.mem_desc.region[i].vaddr, 0,
dispc.mem_desc.region[i].size);
}
/* Set logic clock to fck, pixel clock to fck/2 for now */
MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(16, 8), 1 << 16);
MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(0, 8), 2 << 0);
setup_plane_fifo(0, ext_mode);
setup_plane_fifo(1, ext_mode);
setup_plane_fifo(2, ext_mode);
setup_color_conv_coef();
set_lcd_tft_mode(panel->config & OMAP_LCDC_PANEL_TFT);
set_load_mode(DISPC_LOAD_FRAME_ONLY);
if (!ext_mode) {
set_lcd_data_lines(panel->data_lines);
omap_dispc_set_lcd_size(panel->x_res, panel->y_res);
set_lcd_timings();
} else
set_lcd_data_lines(panel->bpp);
enable_rfbi_mode(ext_mode);
}
l = dispc_read_reg(DISPC_REVISION);
pr_info("omapfb: DISPC version %d.%d initialized\n",
l >> 4 & 0x0f, l & 0x0f);
enable_lcd_clocks(0);
return 0;
fail3:
free_palette_ram();
fail2:
free_irq(INT_24XX_DSS_IRQ, fbdev);
fail1:
enable_lcd_clocks(0);
enable_interface_clocks(0);
put_dss_clocks();
return r;
}
static void omap_dispc_cleanup(void)
{
int i;
omap_dispc_set_update_mode(OMAPFB_UPDATE_DISABLED);
/* This will also disable clocks that are on */
for (i = 0; i < dispc.mem_desc.region_cnt; i++)
omap_dispc_enable_plane(i, 0);
cleanup_fbmem();
free_palette_ram();
free_irq(INT_24XX_DSS_IRQ, dispc.fbdev);
enable_interface_clocks(0);
put_dss_clocks();
}
const struct lcd_ctrl omap2_int_ctrl = {
.name = "internal",
.init = omap_dispc_init,
.cleanup = omap_dispc_cleanup,
.get_caps = omap_dispc_get_caps,
.set_update_mode = omap_dispc_set_update_mode,
.get_update_mode = omap_dispc_get_update_mode,
.update_window = omap_dispc_update_window,
.suspend = omap_dispc_suspend,
.resume = omap_dispc_resume,
.setup_plane = omap_dispc_setup_plane,
.setup_mem = omap_dispc_setup_mem,
.set_scale = omap_dispc_set_scale,
.enable_plane = omap_dispc_enable_plane,
.set_color_key = omap_dispc_set_color_key,
.get_color_key = omap_dispc_get_color_key,
.mmap = omap_dispc_mmap_user,
};