linux/arch/s390/include/asm/lowcore.h

440 lines
16 KiB
C
Raw Normal View History

/*
* include/asm-s390/lowcore.h
*
* S390 version
* Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Author(s): Hartmut Penner (hp@de.ibm.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com),
* Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
*/
#ifndef _ASM_S390_LOWCORE_H
#define _ASM_S390_LOWCORE_H
#ifndef __s390x__
#define __LC_EXT_OLD_PSW 0x018
#define __LC_SVC_OLD_PSW 0x020
#define __LC_PGM_OLD_PSW 0x028
#define __LC_MCK_OLD_PSW 0x030
#define __LC_IO_OLD_PSW 0x038
#define __LC_EXT_NEW_PSW 0x058
#define __LC_SVC_NEW_PSW 0x060
#define __LC_PGM_NEW_PSW 0x068
#define __LC_MCK_NEW_PSW 0x070
#define __LC_IO_NEW_PSW 0x078
#else /* !__s390x__ */
#define __LC_EXT_OLD_PSW 0x0130
#define __LC_SVC_OLD_PSW 0x0140
#define __LC_PGM_OLD_PSW 0x0150
#define __LC_MCK_OLD_PSW 0x0160
#define __LC_IO_OLD_PSW 0x0170
#define __LC_EXT_NEW_PSW 0x01b0
#define __LC_SVC_NEW_PSW 0x01c0
#define __LC_PGM_NEW_PSW 0x01d0
#define __LC_MCK_NEW_PSW 0x01e0
#define __LC_IO_NEW_PSW 0x01f0
#endif /* !__s390x__ */
#define __LC_IPL_PARMBLOCK_PTR 0x014
#define __LC_EXT_PARAMS 0x080
#define __LC_CPU_ADDRESS 0x084
#define __LC_EXT_INT_CODE 0x086
#define __LC_SVC_ILC 0x088
#define __LC_SVC_INT_CODE 0x08A
#define __LC_PGM_ILC 0x08C
#define __LC_PGM_INT_CODE 0x08E
#define __LC_PER_ATMID 0x096
#define __LC_PER_ADDRESS 0x098
#define __LC_PER_ACCESS_ID 0x0A1
#define __LC_AR_MODE_ID 0x0A3
#define __LC_SUBCHANNEL_ID 0x0B8
#define __LC_SUBCHANNEL_NR 0x0BA
#define __LC_IO_INT_PARM 0x0BC
#define __LC_IO_INT_WORD 0x0C0
#define __LC_MCCK_CODE 0x0E8
[S390] kernel: show last breaking-event-address on oops Newer s390 models have a breaking-event-address-recording register. Each time an instruction causes a break in the sequential instruction execution, the address is saved in that hardware register. On a program interrupt the address is copied to the lowcore address 272-279, which makes it software accessible. This patch changes the program check handler and the stack overflow checker to copy the value into the pt_regs argument. The oops output is enhanced to show the last known breaking address. It might give additional information if the stack trace is corrupted. The feature is only available on 64 bit. The new oops output looks like: [---------snip----------] Modules linked in: vmcp sunrpc qeth_l2 dm_mod qeth ccwgroup CPU: 2 Not tainted 2.6.24zlive-host #8 Process modprobe (pid: 4788, task: 00000000bf3d8718, ksp: 00000000b2b0b8e0) Krnl PSW : 0704200180000000 000003e000020028 (vmcp_init+0x28/0xe4 [vmcp]) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:0 CC:2 PM:0 EA:3 Krnl GPRS: 0000000004000002 000003e000020000 0000000000000000 0000000000000001 000000000015734c ffffffffffffffff 000003e0000b3b00 0000000000000000 000003e00007ca30 00000000b5bb5d40 00000000b5bb5800 000003e0000b3b00 000003e0000a2000 00000000003ecf50 00000000b2b0bd50 00000000b2b0bcb0 Krnl Code: 000003e000020018: c0c000040ff4 larl %r12,3e0000a2000 000003e00002001e: e3e0f0000024 stg %r14,0(%r15) 000003e000020024: a7f40001 brc 15,3e000020026 >000003e000020028: e310c0100004 lg %r1,16(%r12) 000003e00002002e: c020000413dc larl %r2,3e0000a27e6 000003e000020034: c0a00004aee6 larl %r10,3e0000b5e00 000003e00002003a: a7490001 lghi %r4,1 000003e00002003e: a75900f0 lghi %r5,240 Call Trace: ([<000000000014b300>] blocking_notifier_call_chain+0x2c/0x40) [<000000000015735c>] sys_init_module+0x19d8/0x1b08 [<0000000000110afc>] sysc_noemu+0x10/0x16 [<000002000011cda2>] 0x2000011cda2 Last Breaking-Event-Address: [<000003e000020024>] vmcp_init+0x24/0xe4 [vmcp] [---------snip----------] Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-17 05:46:30 +00:00
#define __LC_LAST_BREAK 0x110
#define __LC_RETURN_PSW 0x200
#define __LC_SAVE_AREA 0xC00
#ifndef __s390x__
#define __LC_IRB 0x208
#define __LC_SYNC_ENTER_TIMER 0x248
#define __LC_ASYNC_ENTER_TIMER 0x250
#define __LC_EXIT_TIMER 0x258
#define __LC_USER_TIMER 0x260
#define __LC_SYSTEM_TIMER 0x268
#define __LC_STEAL_TIMER 0x270
#define __LC_LAST_UPDATE_TIMER 0x278
#define __LC_LAST_UPDATE_CLOCK 0x280
#define __LC_RETURN_MCCK_PSW 0x288
#define __LC_KERNEL_STACK 0xC40
#define __LC_THREAD_INFO 0xC44
#define __LC_ASYNC_STACK 0xC48
#define __LC_KERNEL_ASCE 0xC4C
#define __LC_USER_ASCE 0xC50
#define __LC_PANIC_STACK 0xC54
#define __LC_CPUID 0xC60
#define __LC_CURRENT 0xC90
#define __LC_INT_CLOCK 0xC98
#else /* __s390x__ */
#define __LC_IRB 0x210
#define __LC_SYNC_ENTER_TIMER 0x250
#define __LC_ASYNC_ENTER_TIMER 0x258
#define __LC_EXIT_TIMER 0x260
#define __LC_USER_TIMER 0x268
#define __LC_SYSTEM_TIMER 0x270
#define __LC_STEAL_TIMER 0x278
#define __LC_LAST_UPDATE_TIMER 0x280
#define __LC_LAST_UPDATE_CLOCK 0x288
#define __LC_RETURN_MCCK_PSW 0x290
#define __LC_KERNEL_STACK 0xD40
#define __LC_THREAD_INFO 0xD48
#define __LC_ASYNC_STACK 0xD50
#define __LC_KERNEL_ASCE 0xD58
#define __LC_USER_ASCE 0xD60
#define __LC_PANIC_STACK 0xD68
#define __LC_CPUID 0xD80
#define __LC_CURRENT 0xDD8
#define __LC_INT_CLOCK 0xDE8
#define __LC_VDSO_PER_CPU 0xE38
#endif /* __s390x__ */
#define __LC_PASTE 0xE40
#define __LC_DUMP_REIPL 0xE00
#ifndef __s390x__
#define __LC_PFAULT_INTPARM 0x080
#define __LC_CPU_TIMER_SAVE_AREA 0x0D8
#define __LC_CLOCK_COMP_SAVE_AREA 0x0E0
#define __LC_PSW_SAVE_AREA 0x100
#define __LC_PREFIX_SAVE_AREA 0x108
#define __LC_AREGS_SAVE_AREA 0x120
#define __LC_FPREGS_SAVE_AREA 0x160
#define __LC_GPREGS_SAVE_AREA 0x180
#define __LC_CREGS_SAVE_AREA 0x1C0
#else /* __s390x__ */
#define __LC_PFAULT_INTPARM 0x11B8
#define __LC_FPREGS_SAVE_AREA 0x1200
#define __LC_GPREGS_SAVE_AREA 0x1280
#define __LC_PSW_SAVE_AREA 0x1300
#define __LC_PREFIX_SAVE_AREA 0x1318
#define __LC_FP_CREG_SAVE_AREA 0x131C
#define __LC_TODREG_SAVE_AREA 0x1324
#define __LC_CPU_TIMER_SAVE_AREA 0x1328
#define __LC_CLOCK_COMP_SAVE_AREA 0x1331
#define __LC_AREGS_SAVE_AREA 0x1340
#define __LC_CREGS_SAVE_AREA 0x1380
#endif /* __s390x__ */
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <linux/types.h>
#include <asm/sigp.h>
void restart_int_handler(void);
void ext_int_handler(void);
void system_call(void);
void pgm_check_handler(void);
void mcck_int_handler(void);
void io_int_handler(void);
struct save_area_s390 {
u32 ext_save;
u64 timer;
u64 clk_cmp;
u8 pad1[24];
u8 psw[8];
u32 pref_reg;
u8 pad2[20];
u32 acc_regs[16];
u64 fp_regs[4];
u32 gp_regs[16];
u32 ctrl_regs[16];
} __attribute__((packed));
struct save_area_s390x {
u64 fp_regs[16];
u64 gp_regs[16];
u8 psw[16];
u8 pad1[8];
u32 pref_reg;
u32 fp_ctrl_reg;
u8 pad2[4];
u32 tod_reg;
u64 timer;
u64 clk_cmp;
u8 pad3[8];
u32 acc_regs[16];
u64 ctrl_regs[16];
} __attribute__((packed));
union save_area {
struct save_area_s390 s390;
struct save_area_s390x s390x;
};
#define SAVE_AREA_BASE_S390 0xd4
#define SAVE_AREA_BASE_S390X 0x1200
#ifndef __s390x__
#define SAVE_AREA_SIZE sizeof(struct save_area_s390)
#define SAVE_AREA_BASE SAVE_AREA_BASE_S390
#else
#define SAVE_AREA_SIZE sizeof(struct save_area_s390x)
#define SAVE_AREA_BASE SAVE_AREA_BASE_S390X
#endif
struct _lowcore
{
#ifndef __s390x__
/* prefix area: defined by architecture */
psw_t restart_psw; /* 0x000 */
__u32 ccw2[4]; /* 0x008 */
psw_t external_old_psw; /* 0x018 */
psw_t svc_old_psw; /* 0x020 */
psw_t program_old_psw; /* 0x028 */
psw_t mcck_old_psw; /* 0x030 */
psw_t io_old_psw; /* 0x038 */
__u8 pad1[0x58-0x40]; /* 0x040 */
psw_t external_new_psw; /* 0x058 */
psw_t svc_new_psw; /* 0x060 */
psw_t program_new_psw; /* 0x068 */
psw_t mcck_new_psw; /* 0x070 */
psw_t io_new_psw; /* 0x078 */
__u32 ext_params; /* 0x080 */
__u16 cpu_addr; /* 0x084 */
__u16 ext_int_code; /* 0x086 */
__u16 svc_ilc; /* 0x088 */
__u16 svc_code; /* 0x08a */
__u16 pgm_ilc; /* 0x08c */
__u16 pgm_code; /* 0x08e */
__u32 trans_exc_code; /* 0x090 */
__u16 mon_class_num; /* 0x094 */
__u16 per_perc_atmid; /* 0x096 */
__u32 per_address; /* 0x098 */
__u32 monitor_code; /* 0x09c */
__u8 exc_access_id; /* 0x0a0 */
__u8 per_access_id; /* 0x0a1 */
__u8 pad2[0xB8-0xA2]; /* 0x0a2 */
__u16 subchannel_id; /* 0x0b8 */
__u16 subchannel_nr; /* 0x0ba */
__u32 io_int_parm; /* 0x0bc */
__u32 io_int_word; /* 0x0c0 */
__u8 pad3[0xc8-0xc4]; /* 0x0c4 */
__u32 stfl_fac_list; /* 0x0c8 */
__u8 pad4[0xd4-0xcc]; /* 0x0cc */
__u32 extended_save_area_addr; /* 0x0d4 */
__u32 cpu_timer_save_area[2]; /* 0x0d8 */
__u32 clock_comp_save_area[2]; /* 0x0e0 */
__u32 mcck_interruption_code[2]; /* 0x0e8 */
__u8 pad5[0xf4-0xf0]; /* 0x0f0 */
__u32 external_damage_code; /* 0x0f4 */
__u32 failing_storage_address; /* 0x0f8 */
__u8 pad6[0x100-0xfc]; /* 0x0fc */
__u32 st_status_fixed_logout[4];/* 0x100 */
__u8 pad7[0x120-0x110]; /* 0x110 */
__u32 access_regs_save_area[16];/* 0x120 */
__u32 floating_pt_save_area[8]; /* 0x160 */
__u32 gpregs_save_area[16]; /* 0x180 */
__u32 cregs_save_area[16]; /* 0x1c0 */
psw_t return_psw; /* 0x200 */
__u8 irb[64]; /* 0x208 */
__u64 sync_enter_timer; /* 0x248 */
__u64 async_enter_timer; /* 0x250 */
__u64 exit_timer; /* 0x258 */
__u64 user_timer; /* 0x260 */
__u64 system_timer; /* 0x268 */
__u64 steal_timer; /* 0x270 */
__u64 last_update_timer; /* 0x278 */
__u64 last_update_clock; /* 0x280 */
psw_t return_mcck_psw; /* 0x288 */
__u8 pad8[0xc00-0x290]; /* 0x290 */
/* System info area */
__u32 save_area[16]; /* 0xc00 */
__u32 kernel_stack; /* 0xc40 */
__u32 thread_info; /* 0xc44 */
__u32 async_stack; /* 0xc48 */
__u32 kernel_asce; /* 0xc4c */
__u32 user_asce; /* 0xc50 */
__u32 panic_stack; /* 0xc54 */
[S390] noexec protection This provides a noexec protection on s390 hardware. Our hardware does not have any bits left in the pte for a hw noexec bit, so this is a different approach using shadow page tables and a special addressing mode that allows separate address spaces for code and data. As a special feature of our "secondary-space" addressing mode, separate page tables can be specified for the translation of data addresses (storage operands) and instruction addresses. The shadow page table is used for the instruction addresses and the standard page table for the data addresses. The shadow page table is linked to the standard page table by a pointer in page->lru.next of the struct page corresponding to the page that contains the standard page table (since page->private is not really private with the pte_lock and the page table pages are not in the LRU list). Depending on the software bits of a pte, it is either inserted into both page tables or just into the standard (data) page table. Pages of a vma that does not have the VM_EXEC bit set get mapped only in the data address space. Any try to execute code on such a page will cause a page translation exception. The standard reaction to this is a SIGSEGV with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the kernel to the signal stack frame. Unfortunately, the signal return mechanism cannot be modified to use an SA_RESTORER because the exception unwinding code depends on the system call opcode stored behind the signal stack frame. This feature requires that user space is executed in secondary-space mode and the kernel in home-space mode, which means that the addressing modes need to be switched and that the noexec protection only works for user space. After switching the addressing modes, we cannot use the mvcp/mvcs instructions anymore to copy between kernel and user space. A new mvcos instruction has been added to the z9 EC/BC hardware which allows to copy between arbitrary address spaces, but on older hardware the page tables need to be walked manually. Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-02-05 20:18:17 +00:00
__u32 user_exec_asce; /* 0xc58 */
__u8 pad10[0xc60-0xc5c]; /* 0xc5c */
/* entry.S sensitive area start */
cpuid_t cpu_id; /* 0xc60 */
__u32 cpu_nr; /* 0xc68 */
__u8 pad_0xc6c[0xc80-0xc6c]; /* 0xc6c */
/* entry.S sensitive area end */
/* SMP info area: defined by DJB */
__u64 clock_comparator; /* 0xc80 */
__u32 ext_call_fast; /* 0xc88 */
__u32 percpu_offset; /* 0xc8c */
__u32 current_task; /* 0xc90 */
__u32 softirq_pending; /* 0xc94 */
__u64 int_clock; /* 0xc98 */
__u8 pad11[0xe00-0xca0]; /* 0xca0 */
/* 0xe00 contains the address of the IPL Parameter */
/* Information block. Dump tools need IPIB for IPL */
/* after dump. */
__u32 ipib; /* 0xe00 */
__u32 ipib_checksum; /* 0xe04 */
/* Align to the top 1k of prefix area */
__u8 pad12[0x1000-0xe08]; /* 0xe08 */
#else /* !__s390x__ */
/* prefix area: defined by architecture */
__u32 ccw1[2]; /* 0x000 */
__u32 ccw2[4]; /* 0x008 */
__u8 pad1[0x80-0x18]; /* 0x018 */
__u32 ext_params; /* 0x080 */
__u16 cpu_addr; /* 0x084 */
__u16 ext_int_code; /* 0x086 */
__u16 svc_ilc; /* 0x088 */
__u16 svc_code; /* 0x08a */
__u16 pgm_ilc; /* 0x08c */
__u16 pgm_code; /* 0x08e */
__u32 data_exc_code; /* 0x090 */
__u16 mon_class_num; /* 0x094 */
__u16 per_perc_atmid; /* 0x096 */
addr_t per_address; /* 0x098 */
__u8 exc_access_id; /* 0x0a0 */
__u8 per_access_id; /* 0x0a1 */
__u8 op_access_id; /* 0x0a2 */
__u8 ar_access_id; /* 0x0a3 */
__u8 pad2[0xA8-0xA4]; /* 0x0a4 */
addr_t trans_exc_code; /* 0x0a8 */
addr_t monitor_code; /* 0x0b0 */
__u16 subchannel_id; /* 0x0b8 */
__u16 subchannel_nr; /* 0x0ba */
__u32 io_int_parm; /* 0x0bc */
__u32 io_int_word; /* 0x0c0 */
__u8 pad3[0xc8-0xc4]; /* 0x0c4 */
__u32 stfl_fac_list; /* 0x0c8 */
__u8 pad4[0xe8-0xcc]; /* 0x0cc */
__u32 mcck_interruption_code[2]; /* 0x0e8 */
__u8 pad5[0xf4-0xf0]; /* 0x0f0 */
__u32 external_damage_code; /* 0x0f4 */
addr_t failing_storage_address; /* 0x0f8 */
__u8 pad6[0x120-0x100]; /* 0x100 */
psw_t restart_old_psw; /* 0x120 */
psw_t external_old_psw; /* 0x130 */
psw_t svc_old_psw; /* 0x140 */
psw_t program_old_psw; /* 0x150 */
psw_t mcck_old_psw; /* 0x160 */
psw_t io_old_psw; /* 0x170 */
__u8 pad7[0x1a0-0x180]; /* 0x180 */
psw_t restart_psw; /* 0x1a0 */
psw_t external_new_psw; /* 0x1b0 */
psw_t svc_new_psw; /* 0x1c0 */
psw_t program_new_psw; /* 0x1d0 */
psw_t mcck_new_psw; /* 0x1e0 */
psw_t io_new_psw; /* 0x1f0 */
psw_t return_psw; /* 0x200 */
__u8 irb[64]; /* 0x210 */
__u64 sync_enter_timer; /* 0x250 */
__u64 async_enter_timer; /* 0x258 */
__u64 exit_timer; /* 0x260 */
__u64 user_timer; /* 0x268 */
__u64 system_timer; /* 0x270 */
__u64 steal_timer; /* 0x278 */
__u64 last_update_timer; /* 0x280 */
__u64 last_update_clock; /* 0x288 */
psw_t return_mcck_psw; /* 0x290 */
__u8 pad8[0xc00-0x2a0]; /* 0x2a0 */
/* System info area */
__u64 save_area[16]; /* 0xc00 */
__u8 pad9[0xd40-0xc80]; /* 0xc80 */
__u64 kernel_stack; /* 0xd40 */
__u64 thread_info; /* 0xd48 */
__u64 async_stack; /* 0xd50 */
__u64 kernel_asce; /* 0xd58 */
__u64 user_asce; /* 0xd60 */
__u64 panic_stack; /* 0xd68 */
[S390] noexec protection This provides a noexec protection on s390 hardware. Our hardware does not have any bits left in the pte for a hw noexec bit, so this is a different approach using shadow page tables and a special addressing mode that allows separate address spaces for code and data. As a special feature of our "secondary-space" addressing mode, separate page tables can be specified for the translation of data addresses (storage operands) and instruction addresses. The shadow page table is used for the instruction addresses and the standard page table for the data addresses. The shadow page table is linked to the standard page table by a pointer in page->lru.next of the struct page corresponding to the page that contains the standard page table (since page->private is not really private with the pte_lock and the page table pages are not in the LRU list). Depending on the software bits of a pte, it is either inserted into both page tables or just into the standard (data) page table. Pages of a vma that does not have the VM_EXEC bit set get mapped only in the data address space. Any try to execute code on such a page will cause a page translation exception. The standard reaction to this is a SIGSEGV with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the kernel to the signal stack frame. Unfortunately, the signal return mechanism cannot be modified to use an SA_RESTORER because the exception unwinding code depends on the system call opcode stored behind the signal stack frame. This feature requires that user space is executed in secondary-space mode and the kernel in home-space mode, which means that the addressing modes need to be switched and that the noexec protection only works for user space. After switching the addressing modes, we cannot use the mvcp/mvcs instructions anymore to copy between kernel and user space. A new mvcos instruction has been added to the z9 EC/BC hardware which allows to copy between arbitrary address spaces, but on older hardware the page tables need to be walked manually. Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-02-05 20:18:17 +00:00
__u64 user_exec_asce; /* 0xd70 */
__u8 pad10[0xd80-0xd78]; /* 0xd78 */
/* entry.S sensitive area start */
cpuid_t cpu_id; /* 0xd80 */
__u32 cpu_nr; /* 0xd88 */
__u8 pad_0xd8c[0xdc0-0xd8c]; /* 0xd8c */
/* entry.S sensitive area end */
/* SMP info area: defined by DJB */
__u64 clock_comparator; /* 0xdc0 */
__u64 ext_call_fast; /* 0xdc8 */
__u64 percpu_offset; /* 0xdd0 */
__u64 current_task; /* 0xdd8 */
__u32 softirq_pending; /* 0xde0 */
__u32 pad_0x0de4; /* 0xde4 */
__u64 int_clock; /* 0xde8 */
__u8 pad12[0xe00-0xdf0]; /* 0xdf0 */
/* 0xe00 contains the address of the IPL Parameter */
/* Information block. Dump tools need IPIB for IPL */
/* after dump. */
__u64 ipib; /* 0xe00 */
__u32 ipib_checksum; /* 0xe08 */
/* Per cpu primary space access list */
__u8 pad_0xe0c[0xe38-0xe0c]; /* 0xe0c */
__u64 vdso_per_cpu_data; /* 0xe38 */
__u32 paste[16]; /* 0xe40 */
__u8 pad13[0x11b8-0xe80]; /* 0xe80 */
/* 64 bit extparam used for pfault, diag 250 etc */
__u64 ext_params2; /* 0x11B8 */
__u8 pad14[0x1200-0x11C0]; /* 0x11C0 */
/* System info area */
__u64 floating_pt_save_area[16]; /* 0x1200 */
__u64 gpregs_save_area[16]; /* 0x1280 */
__u32 st_status_fixed_logout[4]; /* 0x1300 */
__u8 pad15[0x1318-0x1310]; /* 0x1310 */
__u32 prefixreg_save_area; /* 0x1318 */
__u32 fpt_creg_save_area; /* 0x131c */
__u8 pad16[0x1324-0x1320]; /* 0x1320 */
__u32 tod_progreg_save_area; /* 0x1324 */
__u32 cpu_timer_save_area[2]; /* 0x1328 */
__u32 clock_comp_save_area[2]; /* 0x1330 */
__u8 pad17[0x1340-0x1338]; /* 0x1338 */
__u32 access_regs_save_area[16]; /* 0x1340 */
__u64 cregs_save_area[16]; /* 0x1380 */
/* align to the top of the prefix area */
__u8 pad18[0x2000-0x1400]; /* 0x1400 */
#endif /* !__s390x__ */
} __attribute__((packed)); /* End structure*/
#define S390_lowcore (*((struct _lowcore *) 0))
extern struct _lowcore *lowcore_ptr[];
static inline void set_prefix(__u32 address)
{
asm volatile("spx %0" : : "m" (address) : "memory");
}
2006-12-04 14:40:26 +00:00
static inline __u32 store_prefix(void)
{
__u32 address;
asm volatile("stpx %0" : "=m" (address));
return address;
}
#endif
#endif