linux/arch/sparc/kernel/irq_64.c

1035 lines
25 KiB
C
Raw Normal View History

/* irq.c: UltraSparc IRQ handling/init/registry.
*
* Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/linkage.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/irq.h>
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/iommu.h>
#include <asm/upa.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include <asm/timer.h>
#include <asm/smp.h>
#include <asm/starfire.h>
#include <asm/uaccess.h>
#include <asm/cache.h>
#include <asm/cpudata.h>
#include <asm/auxio.h>
#include <asm/head.h>
#include <asm/hypervisor.h>
#include <asm/cacheflush.h>
#include "entry.h"
sparc64: fix and optimize irq distribution irq_choose_cpu() should compare the affinity mask against cpu_online_map rather than CPU_MASK_ALL, since irq_select_affinity() sets the interrupt's affinity mask to cpu_online_map "and" CPU_MASK_ALL (which ends up being just cpu_online_map). The mask comparison in irq_choose_cpu() will always fail since the two masks are not the same. So the CPU chosen is the first CPU in the intersection of cpu_online_map and CPU_MASK_ALL, which is always CPU0. That means all interrupts are reassigned to CPU0... Distributing interrupts to CPUs in a linearly increasing round robin fashion is not optimal for the UltraSPARC T1/T2. Also, the irq_rover in irq_choose_cpu() causes an interrupt to be assigned to a different processor each time the interrupt is allocated and released. This may lead to an unbalanced distribution over time. A static mapping of interrupts to processors is done to optimize and balance interrupt distribution. For the T1/T2, interrupts are spread to different cores first, and then to strands within a core. The following is some benchmarks showing the effects of interrupt distribution on a T2. The test was done with iperf using a pair of T5220 boxes, each with a 10GBe NIU (XAUI) connected back to back. TCP | Stock Linear RR IRQ Optimized IRQ Streams | 2.6.30-rc5 Distribution Distribution | GBits/sec GBits/sec GBits/sec --------+----------------------------------------- 1 0.839 0.862 0.868 8 1.16 4.96 5.88 16 1.15 6.40 8.04 100 1.09 7.28 8.68 Signed-off-by: Hong H. Pham <hong.pham@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-06-04 09:10:11 +00:00
#include "cpumap.h"
#define NUM_IVECS (IMAP_INR + 1)
struct ino_bucket *ivector_table;
unsigned long ivector_table_pa;
/* On several sun4u processors, it is illegal to mix bypass and
* non-bypass accesses. Therefore we access all INO buckets
* using bypass accesses only.
*/
static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
{
unsigned long ret;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=&r" (ret)
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq_chain_pa)),
"i" (ASI_PHYS_USE_EC));
return ret;
}
static void bucket_clear_chain_pa(unsigned long bucket_pa)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* no outputs */
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq_chain_pa)),
"i" (ASI_PHYS_USE_EC));
}
static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
{
unsigned int ret;
__asm__ __volatile__("lduwa [%1] %2, %0"
: "=&r" (ret)
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__virt_irq)),
"i" (ASI_PHYS_USE_EC));
return ret;
}
static void bucket_set_virt_irq(unsigned long bucket_pa,
unsigned int virt_irq)
{
__asm__ __volatile__("stwa %0, [%1] %2"
: /* no outputs */
: "r" (virt_irq),
"r" (bucket_pa +
offsetof(struct ino_bucket,
__virt_irq)),
"i" (ASI_PHYS_USE_EC));
}
#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
static struct {
unsigned int dev_handle;
unsigned int dev_ino;
unsigned int in_use;
} virt_irq_table[NR_IRQS];
static DEFINE_SPINLOCK(virt_irq_alloc_lock);
unsigned char virt_irq_alloc(unsigned int dev_handle,
unsigned int dev_ino)
{
unsigned long flags;
unsigned char ent;
BUILD_BUG_ON(NR_IRQS >= 256);
spin_lock_irqsave(&virt_irq_alloc_lock, flags);
for (ent = 1; ent < NR_IRQS; ent++) {
if (!virt_irq_table[ent].in_use)
break;
}
if (ent >= NR_IRQS) {
printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
ent = 0;
} else {
virt_irq_table[ent].dev_handle = dev_handle;
virt_irq_table[ent].dev_ino = dev_ino;
virt_irq_table[ent].in_use = 1;
}
spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
return ent;
}
#ifdef CONFIG_PCI_MSI
void virt_irq_free(unsigned int virt_irq)
{
unsigned long flags;
if (virt_irq >= NR_IRQS)
return;
spin_lock_irqsave(&virt_irq_alloc_lock, flags);
virt_irq_table[virt_irq].in_use = 0;
spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
}
#endif
/*
* /proc/interrupts printing:
*/
int show_interrupts(struct seq_file *p, void *v)
{
int i = *(loff_t *) v, j;
struct irqaction * action;
unsigned long flags;
if (i == 0) {
seq_printf(p, " ");
for_each_online_cpu(j)
seq_printf(p, "CPU%d ",j);
seq_putc(p, '\n');
}
if (i < NR_IRQS) {
spin_lock_irqsave(&irq_desc[i].lock, flags);
action = irq_desc[i].action;
if (!action)
goto skip;
seq_printf(p, "%3d: ",i);
#ifndef CONFIG_SMP
seq_printf(p, "%10u ", kstat_irqs(i));
#else
for_each_online_cpu(j)
seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
#endif
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 09:24:36 +00:00
seq_printf(p, " %9s", irq_desc[i].chip->typename);
seq_printf(p, " %s", action->name);
for (action=action->next; action; action = action->next)
seq_printf(p, ", %s", action->name);
seq_putc(p, '\n');
skip:
spin_unlock_irqrestore(&irq_desc[i].lock, flags);
} else if (i == NR_IRQS) {
seq_printf(p, "NMI: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
seq_printf(p, " Non-maskable interrupts\n");
}
return 0;
}
static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
{
unsigned int tid;
if (this_is_starfire) {
tid = starfire_translate(imap, cpuid);
tid <<= IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
} else {
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
unsigned long ver;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID) {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_JBUS;
} else {
unsigned int a = cpuid & 0x1f;
unsigned int n = (cpuid >> 5) & 0x1f;
tid = ((a << IMAP_AID_SHIFT) |
(n << IMAP_NID_SHIFT));
tid &= (IMAP_AID_SAFARI |
IMAP_NID_SAFARI);;
}
} else {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
}
}
return tid;
}
struct irq_handler_data {
unsigned long iclr;
unsigned long imap;
void (*pre_handler)(unsigned int, void *, void *);
void *arg1;
void *arg2;
};
#ifdef CONFIG_SMP
static int irq_choose_cpu(unsigned int virt_irq)
{
cpumask_t mask;
int cpuid;
cpumask_copy(&mask, irq_desc[virt_irq].affinity);
sparc64: fix and optimize irq distribution irq_choose_cpu() should compare the affinity mask against cpu_online_map rather than CPU_MASK_ALL, since irq_select_affinity() sets the interrupt's affinity mask to cpu_online_map "and" CPU_MASK_ALL (which ends up being just cpu_online_map). The mask comparison in irq_choose_cpu() will always fail since the two masks are not the same. So the CPU chosen is the first CPU in the intersection of cpu_online_map and CPU_MASK_ALL, which is always CPU0. That means all interrupts are reassigned to CPU0... Distributing interrupts to CPUs in a linearly increasing round robin fashion is not optimal for the UltraSPARC T1/T2. Also, the irq_rover in irq_choose_cpu() causes an interrupt to be assigned to a different processor each time the interrupt is allocated and released. This may lead to an unbalanced distribution over time. A static mapping of interrupts to processors is done to optimize and balance interrupt distribution. For the T1/T2, interrupts are spread to different cores first, and then to strands within a core. The following is some benchmarks showing the effects of interrupt distribution on a T2. The test was done with iperf using a pair of T5220 boxes, each with a 10GBe NIU (XAUI) connected back to back. TCP | Stock Linear RR IRQ Optimized IRQ Streams | 2.6.30-rc5 Distribution Distribution | GBits/sec GBits/sec GBits/sec --------+----------------------------------------- 1 0.839 0.862 0.868 8 1.16 4.96 5.88 16 1.15 6.40 8.04 100 1.09 7.28 8.68 Signed-off-by: Hong H. Pham <hong.pham@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-06-04 09:10:11 +00:00
if (cpus_equal(mask, cpu_online_map)) {
cpuid = map_to_cpu(virt_irq);
} else {
cpumask_t tmp;
cpus_and(tmp, cpu_online_map, mask);
sparc64: fix and optimize irq distribution irq_choose_cpu() should compare the affinity mask against cpu_online_map rather than CPU_MASK_ALL, since irq_select_affinity() sets the interrupt's affinity mask to cpu_online_map "and" CPU_MASK_ALL (which ends up being just cpu_online_map). The mask comparison in irq_choose_cpu() will always fail since the two masks are not the same. So the CPU chosen is the first CPU in the intersection of cpu_online_map and CPU_MASK_ALL, which is always CPU0. That means all interrupts are reassigned to CPU0... Distributing interrupts to CPUs in a linearly increasing round robin fashion is not optimal for the UltraSPARC T1/T2. Also, the irq_rover in irq_choose_cpu() causes an interrupt to be assigned to a different processor each time the interrupt is allocated and released. This may lead to an unbalanced distribution over time. A static mapping of interrupts to processors is done to optimize and balance interrupt distribution. For the T1/T2, interrupts are spread to different cores first, and then to strands within a core. The following is some benchmarks showing the effects of interrupt distribution on a T2. The test was done with iperf using a pair of T5220 boxes, each with a 10GBe NIU (XAUI) connected back to back. TCP | Stock Linear RR IRQ Optimized IRQ Streams | 2.6.30-rc5 Distribution Distribution | GBits/sec GBits/sec GBits/sec --------+----------------------------------------- 1 0.839 0.862 0.868 8 1.16 4.96 5.88 16 1.15 6.40 8.04 100 1.09 7.28 8.68 Signed-off-by: Hong H. Pham <hong.pham@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-06-04 09:10:11 +00:00
cpuid = cpus_empty(tmp) ? map_to_cpu(virt_irq) : first_cpu(tmp);
}
return cpuid;
}
#else
static int irq_choose_cpu(unsigned int virt_irq)
{
return real_hard_smp_processor_id();
}
#endif
static void sun4u_irq_enable(unsigned int virt_irq)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
if (likely(data)) {
unsigned long cpuid, imap, val;
unsigned int tid;
cpuid = irq_choose_cpu(virt_irq);
imap = data->imap;
tid = sun4u_compute_tid(imap, cpuid);
val = upa_readq(imap);
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
val |= tid | IMAP_VALID;
upa_writeq(val, imap);
upa_writeq(ICLR_IDLE, data->iclr);
}
}
static int sun4u_set_affinity(unsigned int virt_irq,
const struct cpumask *mask)
{
sun4u_irq_enable(virt_irq);
return 0;
}
/* Don't do anything. The desc->status check for IRQ_DISABLED in
* handler_irq() will skip the handler call and that will leave the
* interrupt in the sent state. The next ->enable() call will hit the
* ICLR register to reset the state machine.
*
* This scheme is necessary, instead of clearing the Valid bit in the
* IMAP register, to handle the case of IMAP registers being shared by
* multiple INOs (and thus ICLR registers). Since we use a different
* virtual IRQ for each shared IMAP instance, the generic code thinks
* there is only one user so it prematurely calls ->disable() on
* free_irq().
*
* We have to provide an explicit ->disable() method instead of using
* NULL to get the default. The reason is that if the generic code
* sees that, it also hooks up a default ->shutdown method which
* invokes ->mask() which we do not want. See irq_chip_set_defaults().
*/
static void sun4u_irq_disable(unsigned int virt_irq)
{
}
static void sun4u_irq_eoi(unsigned int virt_irq)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
struct irq_desc *desc = irq_desc + virt_irq;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
if (likely(data))
upa_writeq(ICLR_IDLE, data->iclr);
}
static void sun4v_irq_enable(unsigned int virt_irq)
{
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
unsigned long cpuid = irq_choose_cpu(virt_irq);
int err;
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
"err(%d)\n", ino, cpuid, err);
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
ino, err);
}
static int sun4v_set_affinity(unsigned int virt_irq,
const struct cpumask *mask)
{
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
unsigned long cpuid = irq_choose_cpu(virt_irq);
int err;
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
"err(%d)\n", ino, cpuid, err);
return 0;
}
static void sun4v_irq_disable(unsigned int virt_irq)
{
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
int err;
err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setenabled(%x): "
"err(%d)\n", ino, err);
}
static void sun4v_irq_eoi(unsigned int virt_irq)
{
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
struct irq_desc *desc = irq_desc + virt_irq;
int err;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
}
static void sun4v_virq_enable(unsigned int virt_irq)
{
unsigned long cpuid, dev_handle, dev_ino;
int err;
cpuid = irq_choose_cpu(virt_irq);
dev_handle = virt_irq_table[virt_irq].dev_handle;
dev_ino = virt_irq_table[virt_irq].dev_ino;
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
"err(%d)\n",
dev_handle, dev_ino, cpuid, err);
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_ENABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_ENABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
static int sun4v_virt_set_affinity(unsigned int virt_irq,
const struct cpumask *mask)
{
unsigned long cpuid, dev_handle, dev_ino;
int err;
cpuid = irq_choose_cpu(virt_irq);
dev_handle = virt_irq_table[virt_irq].dev_handle;
dev_ino = virt_irq_table[virt_irq].dev_ino;
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
"err(%d)\n",
dev_handle, dev_ino, cpuid, err);
return 0;
}
static void sun4v_virq_disable(unsigned int virt_irq)
{
unsigned long dev_handle, dev_ino;
int err;
dev_handle = virt_irq_table[virt_irq].dev_handle;
dev_ino = virt_irq_table[virt_irq].dev_ino;
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_DISABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_DISABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
static void sun4v_virq_eoi(unsigned int virt_irq)
{
struct irq_desc *desc = irq_desc + virt_irq;
unsigned long dev_handle, dev_ino;
int err;
if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
return;
dev_handle = virt_irq_table[virt_irq].dev_handle;
dev_ino = virt_irq_table[virt_irq].dev_ino;
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
}
static struct irq_chip sun4u_irq = {
.typename = "sun4u",
.enable = sun4u_irq_enable,
.disable = sun4u_irq_disable,
.eoi = sun4u_irq_eoi,
.set_affinity = sun4u_set_affinity,
};
static struct irq_chip sun4v_irq = {
.typename = "sun4v",
.enable = sun4v_irq_enable,
.disable = sun4v_irq_disable,
.eoi = sun4v_irq_eoi,
.set_affinity = sun4v_set_affinity,
};
static struct irq_chip sun4v_virq = {
.typename = "vsun4v",
.enable = sun4v_virq_enable,
.disable = sun4v_virq_disable,
.eoi = sun4v_virq_eoi,
.set_affinity = sun4v_virt_set_affinity,
};
static void pre_flow_handler(unsigned int virt_irq,
struct irq_desc *desc)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
data->pre_handler(ino, data->arg1, data->arg2);
handle_fasteoi_irq(virt_irq, desc);
}
void irq_install_pre_handler(int virt_irq,
void (*func)(unsigned int, void *, void *),
void *arg1, void *arg2)
{
struct irq_handler_data *data = get_irq_chip_data(virt_irq);
struct irq_desc *desc = irq_desc + virt_irq;
data->pre_handler = func;
data->arg1 = arg1;
data->arg2 = arg2;
desc->handle_irq = pre_flow_handler;
}
unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
{
struct ino_bucket *bucket;
struct irq_handler_data *data;
unsigned int virt_irq;
int ino;
BUG_ON(tlb_type == hypervisor);
ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
bucket = &ivector_table[ino];
virt_irq = bucket_get_virt_irq(__pa(bucket));
if (!virt_irq) {
virt_irq = virt_irq_alloc(0, ino);
bucket_set_virt_irq(__pa(bucket), virt_irq);
set_irq_chip_and_handler_name(virt_irq,
&sun4u_irq,
handle_fasteoi_irq,
"IVEC");
}
data = get_irq_chip_data(virt_irq);
if (unlikely(data))
goto out;
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!data)) {
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
prom_halt();
}
set_irq_chip_data(virt_irq, data);
data->imap = imap;
data->iclr = iclr;
out:
return virt_irq;
}
static unsigned int sun4v_build_common(unsigned long sysino,
struct irq_chip *chip)
{
struct ino_bucket *bucket;
struct irq_handler_data *data;
unsigned int virt_irq;
BUG_ON(tlb_type != hypervisor);
bucket = &ivector_table[sysino];
virt_irq = bucket_get_virt_irq(__pa(bucket));
if (!virt_irq) {
virt_irq = virt_irq_alloc(0, sysino);
bucket_set_virt_irq(__pa(bucket), virt_irq);
set_irq_chip_and_handler_name(virt_irq, chip,
handle_fasteoi_irq,
"IVEC");
}
data = get_irq_chip_data(virt_irq);
if (unlikely(data))
goto out;
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!data)) {
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
prom_halt();
}
set_irq_chip_data(virt_irq, data);
/* Catch accidental accesses to these things. IMAP/ICLR handling
* is done by hypervisor calls on sun4v platforms, not by direct
* register accesses.
*/
data->imap = ~0UL;
data->iclr = ~0UL;
out:
return virt_irq;
}
unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
{
unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
return sun4v_build_common(sysino, &sun4v_irq);
}
unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
{
struct irq_handler_data *data;
unsigned long hv_err, cookie;
struct ino_bucket *bucket;
struct irq_desc *desc;
unsigned int virt_irq;
bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
if (unlikely(!bucket))
return 0;
__flush_dcache_range((unsigned long) bucket,
((unsigned long) bucket +
sizeof(struct ino_bucket)));
virt_irq = virt_irq_alloc(devhandle, devino);
bucket_set_virt_irq(__pa(bucket), virt_irq);
set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
handle_fasteoi_irq,
"IVEC");
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!data))
return 0;
/* In order to make the LDC channel startup sequence easier,
* especially wrt. locking, we do not let request_irq() enable
* the interrupt.
*/
desc = irq_desc + virt_irq;
desc->status |= IRQ_NOAUTOEN;
set_irq_chip_data(virt_irq, data);
/* Catch accidental accesses to these things. IMAP/ICLR handling
* is done by hypervisor calls on sun4v platforms, not by direct
* register accesses.
*/
data->imap = ~0UL;
data->iclr = ~0UL;
cookie = ~__pa(bucket);
hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
if (hv_err) {
prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
"err=%lu\n", devhandle, devino, hv_err);
prom_halt();
}
return virt_irq;
}
void ack_bad_irq(unsigned int virt_irq)
{
unsigned int ino = virt_irq_table[virt_irq].dev_ino;
if (!ino)
ino = 0xdeadbeef;
printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
ino, virt_irq);
}
void *hardirq_stack[NR_CPUS];
void *softirq_stack[NR_CPUS];
static __attribute__((always_inline)) void *set_hardirq_stack(void)
{
void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
__asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
if (orig_sp < sp ||
orig_sp > (sp + THREAD_SIZE)) {
sp += THREAD_SIZE - 192 - STACK_BIAS;
__asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
}
return orig_sp;
}
static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
{
__asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
}
void handler_irq(int irq, struct pt_regs *regs)
{
unsigned long pstate, bucket_pa;
struct pt_regs *old_regs;
void *orig_sp;
clear_softint(1 << irq);
old_regs = set_irq_regs(regs);
irq_enter();
/* Grab an atomic snapshot of the pending IVECs. */
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
"wrpr %0, %3, %%pstate\n\t"
"ldx [%2], %1\n\t"
"stx %%g0, [%2]\n\t"
"wrpr %0, 0x0, %%pstate\n\t"
: "=&r" (pstate), "=&r" (bucket_pa)
: "r" (irq_work_pa(smp_processor_id())),
"i" (PSTATE_IE)
: "memory");
orig_sp = set_hardirq_stack();
while (bucket_pa) {
struct irq_desc *desc;
unsigned long next_pa;
unsigned int virt_irq;
next_pa = bucket_get_chain_pa(bucket_pa);
virt_irq = bucket_get_virt_irq(bucket_pa);
bucket_clear_chain_pa(bucket_pa);
desc = irq_desc + virt_irq;
if (!(desc->status & IRQ_DISABLED))
desc->handle_irq(virt_irq, desc);
bucket_pa = next_pa;
}
restore_hardirq_stack(orig_sp);
irq_exit();
set_irq_regs(old_regs);
}
void do_softirq(void)
{
unsigned long flags;
if (in_interrupt())
return;
local_irq_save(flags);
if (local_softirq_pending()) {
void *orig_sp, *sp = softirq_stack[smp_processor_id()];
sp += THREAD_SIZE - 192 - STACK_BIAS;
__asm__ __volatile__("mov %%sp, %0\n\t"
"mov %1, %%sp"
: "=&r" (orig_sp)
: "r" (sp));
__do_softirq();
__asm__ __volatile__("mov %0, %%sp"
: : "r" (orig_sp));
}
local_irq_restore(flags);
}
#ifdef CONFIG_HOTPLUG_CPU
void fixup_irqs(void)
{
unsigned int irq;
for (irq = 0; irq < NR_IRQS; irq++) {
unsigned long flags;
spin_lock_irqsave(&irq_desc[irq].lock, flags);
if (irq_desc[irq].action &&
!(irq_desc[irq].status & IRQ_PER_CPU)) {
if (irq_desc[irq].chip->set_affinity)
irq_desc[irq].chip->set_affinity(irq,
irq_desc[irq].affinity);
}
spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
}
tick_ops->disable_irq();
}
#endif
struct sun5_timer {
u64 count0;
u64 limit0;
u64 count1;
u64 limit1;
};
static struct sun5_timer *prom_timers;
static u64 prom_limit0, prom_limit1;
static void map_prom_timers(void)
{
struct device_node *dp;
const unsigned int *addr;
/* PROM timer node hangs out in the top level of device siblings... */
dp = of_find_node_by_path("/");
dp = dp->child;
while (dp) {
if (!strcmp(dp->name, "counter-timer"))
break;
dp = dp->sibling;
}
/* Assume if node is not present, PROM uses different tick mechanism
* which we should not care about.
*/
if (!dp) {
prom_timers = (struct sun5_timer *) 0;
return;
}
/* If PROM is really using this, it must be mapped by him. */
addr = of_get_property(dp, "address", NULL);
if (!addr) {
prom_printf("PROM does not have timer mapped, trying to continue.\n");
prom_timers = (struct sun5_timer *) 0;
return;
}
prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
}
static void kill_prom_timer(void)
{
if (!prom_timers)
return;
/* Save them away for later. */
prom_limit0 = prom_timers->limit0;
prom_limit1 = prom_timers->limit1;
/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
* We turn both off here just to be paranoid.
*/
prom_timers->limit0 = 0;
prom_timers->limit1 = 0;
/* Wheee, eat the interrupt packet too... */
__asm__ __volatile__(
" mov 0x40, %%g2\n"
" ldxa [%%g0] %0, %%g1\n"
" ldxa [%%g2] %1, %%g1\n"
" stxa %%g0, [%%g0] %0\n"
" membar #Sync\n"
: /* no outputs */
: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
: "g1", "g2");
}
void notrace init_irqwork_curcpu(void)
{
int cpu = hard_smp_processor_id();
trap_block[cpu].irq_worklist_pa = 0UL;
}
/* Please be very careful with register_one_mondo() and
* sun4v_register_mondo_queues().
*
* On SMP this gets invoked from the CPU trampoline before
* the cpu has fully taken over the trap table from OBP,
* and it's kernel stack + %g6 thread register state is
* not fully cooked yet.
*
* Therefore you cannot make any OBP calls, not even prom_printf,
* from these two routines.
*/
static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
{
unsigned long num_entries = (qmask + 1) / 64;
unsigned long status;
status = sun4v_cpu_qconf(type, paddr, num_entries);
if (status != HV_EOK) {
prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
"err %lu\n", type, paddr, num_entries, status);
prom_halt();
}
}
void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
{
struct trap_per_cpu *tb = &trap_block[this_cpu];
register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
tb->cpu_mondo_qmask);
register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
tb->dev_mondo_qmask);
register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
tb->resum_qmask);
register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
tb->nonresum_qmask);
}
/* Each queue region must be a power of 2 multiple of 64 bytes in
* size. The base real address must be aligned to the size of the
* region. Thus, an 8KB queue must be 8KB aligned, for example.
*/
static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
{
unsigned long size = PAGE_ALIGN(qmask + 1);
unsigned long order = get_order(size);
unsigned long p;
p = __get_free_pages(GFP_KERNEL, order);
if (!p) {
prom_printf("SUN4V: Error, cannot allocate queue.\n");
prom_halt();
}
*pa_ptr = __pa(p);
}
static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
{
#ifdef CONFIG_SMP
unsigned long page;
BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
page = get_zeroed_page(GFP_KERNEL);
if (!page) {
prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
prom_halt();
}
tb->cpu_mondo_block_pa = __pa(page);
tb->cpu_list_pa = __pa(page + 64);
#endif
}
/* Allocate mondo and error queues for all possible cpus. */
static void __init sun4v_init_mondo_queues(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct trap_per_cpu *tb = &trap_block[cpu];
alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
alloc_one_queue(&tb->nonresum_kernel_buf_pa,
tb->nonresum_qmask);
}
}
static void __init init_send_mondo_info(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct trap_per_cpu *tb = &trap_block[cpu];
init_cpu_send_mondo_info(tb);
[SPARC64]: Get SUN4V SMP working. The sibling cpu bringup is extremely fragile. We can only perform the most basic calls until we take over the trap table from the firmware/hypervisor on the new cpu. This means no accesses to %g4, %g5, %g6 since those can't be TLB translated without our trap handlers. In order to achieve this: 1) Change sun4v_init_mondo_queues() so that it can operate in several modes. It can allocate the queues, or install them in the current processor, or both. The boot cpu does both in it's call early on. Later, the boot cpu allocates the sibling cpu queue, starts the sibling cpu, then the sibling cpu loads them in. 2) init_cur_cpu_trap() is changed to take the current_thread_info() as an argument instead of reading %g6 directly on the current cpu. 3) Create a trampoline stack for the sibling cpus. We do our basic kernel calls using this stack, which is locked into the kernel image, then go to our proper thread stack after taking over the trap table. 4) While we are in this delicate startup state, we put 0xdeadbeef into %g4/%g5/%g6 in order to catch accidental accesses. 5) On the final prom_set_trap_table*() call, we put &init_thread_union into %g6. This is a hack to make prom_world(0) work. All that wants to do is restore the %asi register using get_thread_current_ds(). Longer term we should just do the OBP calls to set the trap table by hand just like we do for everything else. This would avoid that silly prom_world(0) issue, then we can remove the init_thread_union hack. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-02-17 09:29:17 +00:00
}
}
static struct irqaction timer_irq_action = {
.name = "timer",
};
/* Only invoked on boot processor. */
void __init init_IRQ(void)
{
unsigned long size;
map_prom_timers();
kill_prom_timer();
size = sizeof(struct ino_bucket) * NUM_IVECS;
ivector_table = kzalloc(size, GFP_KERNEL);
if (!ivector_table) {
prom_printf("Fatal error, cannot allocate ivector_table\n");
prom_halt();
}
__flush_dcache_range((unsigned long) ivector_table,
((unsigned long) ivector_table) + size);
ivector_table_pa = __pa(ivector_table);
if (tlb_type == hypervisor)
sun4v_init_mondo_queues();
init_send_mondo_info();
if (tlb_type == hypervisor) {
/* Load up the boot cpu's entries. */
sun4v_register_mondo_queues(hard_smp_processor_id());
}
/* We need to clear any IRQ's pending in the soft interrupt
* registers, a spurious one could be left around from the
* PROM timer which we just disabled.
*/
clear_softint(get_softint());
/* Now that ivector table is initialized, it is safe
* to receive IRQ vector traps. We will normally take
* one or two right now, in case some device PROM used
* to boot us wants to speak to us. We just ignore them.
*/
__asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"wrpr %%g1, 0x0, %%pstate"
: /* No outputs */
: "i" (PSTATE_IE)
: "g1");
irq_desc[0].action = &timer_irq_action;
}