399538 Commits

Author SHA1 Message Date
Eric Sandeen
10e6e65dfc xfs: be more forgiving of a v4 secondary sb w/ junk in v5 fields
Today, if xfs_sb_read_verify encounters a v4 superblock
with junk past v4 fields which includes data in sb_crc,
it will be treated as a failing checksum and a significant
corruption.

There are known prior bugs which leave junk at the end
of the V4 superblock; we don't need to actually fail the
verification in this case if other checks pan out ok.

So if this is a secondary superblock, and the primary
superblock doesn't indicate that this is a V5 filesystem,
don't treat this as an actual checksum failure.

We should probably check the garbage condition as
we do in xfs_repair, and possibly warn about it
or self-heal, but that's a different scope of work.

Stable folks: This can go back to v3.10, which is what
introduced the sb CRC checking that is tripped up by old,
stale, incorrect V4 superblocks w/ unzeroed bits.

Cc: stable@vger.kernel.org
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Acked-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 16:38:29 -05:00
Geyslan G. Bem
643f7c4e56 xfs: fix possible NULL dereference in xlog_verify_iclog
In xlog_verify_iclog a debug check of the incore log buffers prints an
error if icptr is null and then goes on to dereference the pointer
regardless.  Convert this to an assert so that the intention is clear.
This was reported by Coverty.

Signed-off-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
2013-10-30 16:01:00 -05:00
Denis Efremov
5bf1f439c8 xfs:xfs_dir2_node.c: pointer use before check for null
ASSERT on args takes place after args dereference.
This assertion is redundant since we are going to panic anyway.

Found by Linux Driver Verification project (linuxtesting.org) -
PVS-Studio analyzer.

Signed-off-by: Denis Efremov <yefremov.denis@gmail.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 15:53:14 -05:00
Dave Chinner
ad22c7a043 xfs: prevent stack overflows from page cache allocation
Page cache allocation doesn't always go through ->begin_write and
hence we don't always get the opportunity to set the allocation
context to GFP_NOFS. Failing to do this means we open up the direct
relcaim stack to recurse into the filesystem and consume a
significant amount of stack.

On RHEL6.4 kernels we are seeing ra_submit() and
generic_file_splice_read() from an nfsd context recursing into the
filesystem via the inode cache shrinker and evicting inodes. This is
causing truncation to be run (e.g EOF block freeing) and causing
bmap btree block merges and free space btree block splits to occur.
These btree manipulations are occurring with the call chain already
30 functions deep and hence there is not enough stack space to
complete such operations.

To avoid these specific overruns, we need to prevent the page cache
allocation from recursing via direct reclaim. We can do that because
the allocation functions take the allocation context from that which
is stored in the mapping for the inode. We don't set that right now,
so the default is GFP_HIGHUSER_MOVABLE, which is effectively a
GFP_KERNEL context. We need it to be the equivalent of GFP_NOFS, so
when we initialise an inode, set the mapping gfp mask appropriately.

This makes the use of AOP_FLAG_NOFS redundant from other parts of
the XFS IO path, so get rid of it.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 15:44:51 -05:00
Dave Chinner
632b89e82b xfs: fix static and extern sparse warnings
The kbuild test robot indicated that there were some new sparse
warnings in fs/xfs/xfs_dquot_buf.c. Actually, there were a lot more
that is wasn't warning about, so fix them all up.

Reported-by: kbuild test robot
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:59:56 -05:00
Dave Chinner
a629362105 xfs: validity check the directory block leaf entry count
The directory block format verifier fails to check that the leaf
entry count is in a valid range, and so if it is corrupted then it
can lead to derefencing a pointer outside the block buffer. While we
can't exactly validate the count without first walking the directory
block, we can ensure the count lands in the valid area within the
directory block and hence avoid out-of-block references.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:57:14 -05:00
Dave Chinner
b01ef655d8 xfs: make dir2 ftype offset pointers explicit
Rather than hiding the ftype field size accounting inside the dirent
padding for the ".." and first entry offset functions for v2
directory formats, add explicit functions that calculate it
correctly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:52:38 -05:00
Dave Chinner
1c9a5b2e30 xfs: convert directory vector functions to constants
Many of the vectorised function calls now take no parameters and
return a constant value. There is no reason for these to be vectored
functions, so convert them to constants

Binary sizes:

   text    data     bss     dec     hex filename
 794490   96802    1096  892388   d9de4 fs/xfs/xfs.o.orig
 792986   96802    1096  890884   d9804 fs/xfs/xfs.o.p1
 792350   96802    1096  890248   d9588 fs/xfs/xfs.o.p2
 789293   96802    1096  887191   d8997 fs/xfs/xfs.o.p3
 789005   96802    1096  886903   d8997 fs/xfs/xfs.o.p4
 789061   96802    1096  886959   d88af fs/xfs/xfs.o.p5
 789733   96802    1096  887631   d8b4f fs/xfs/xfs.o.p6
 791421   96802    1096  889319   d91e7 fs/xfs/xfs.o.p7
 791701   96802    1096  889599   d92ff fs/xfs/xfs.o.p8
 791205   96802    1096  889103   d91cf fs/xfs/xfs.o.p9

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:49:18 -05:00
Dave Chinner
24dd0f546c xfs: convert directory vector functions to constants
Next step in the vectorisation process is the directory free block
encode/decode operations. There are relatively few of these, though
there are quite a number of calls to them.

Binary sizes:

   text    data     bss     dec     hex filename
 794490   96802    1096  892388   d9de4 fs/xfs/xfs.o.orig
 792986   96802    1096  890884   d9804 fs/xfs/xfs.o.p1
 792350   96802    1096  890248   d9588 fs/xfs/xfs.o.p2
 789293   96802    1096  887191   d8997 fs/xfs/xfs.o.p3
 789005   96802    1096  886903   d8997 fs/xfs/xfs.o.p4
 789061   96802    1096  886959   d88af fs/xfs/xfs.o.p5
 789733   96802    1096  887631   d8b4f fs/xfs/xfs.o.p6
 791421   96802    1096  889319   d91e7 fs/xfs/xfs.o.p7
 791701   96802    1096  889599   d92ff fs/xfs/xfs.o.p8

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:48:41 -05:00
Dave Chinner
01ba43b873 xfs: vectorise encoding/decoding directory headers
Conversion from on-disk structures to in-core header structures
currently relies on magic number checks. If the magic number is
wrong, but one of the supported values, we do the wrong thing with
the encode/decode operation. Split these functions so that there are
discrete operations for the specific directory format we are
handling.

In doing this, move all the header encode/decode functions to
xfs_da_format.c as they are directly manipulating the on-disk
format. It should be noted that all the growth in binary size is
from xfs_da_format.c - the rest of the code actaully shrinks.

   text    data     bss     dec     hex filename
 794490   96802    1096  892388   d9de4 fs/xfs/xfs.o.orig
 792986   96802    1096  890884   d9804 fs/xfs/xfs.o.p1
 792350   96802    1096  890248   d9588 fs/xfs/xfs.o.p2
 789293   96802    1096  887191   d8997 fs/xfs/xfs.o.p3
 789005   96802    1096  886903   d8997 fs/xfs/xfs.o.p4
 789061   96802    1096  886959   d88af fs/xfs/xfs.o.p5
 789733   96802    1096  887631   d8b4f fs/xfs/xfs.o.p6
 791421   96802    1096  889319   d91e7 fs/xfs/xfs.o.p7

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:47:22 -05:00
Dave Chinner
4bceb18f15 xfs: vectorise DA btree operations
The remaining non-vectorised code for the directory structure is the
node format blocks. This is shared with the attribute tree, and so
is slightly more complex to vectorise.

Introduce a "non-directory" directory ops structure that is attached
to all non-directory inodes so that attribute operations can be
vectorised for all inodes.

Once we do this, we can vectorise all the da btree operations.
Because this patch adds more infrastructure than it removes the
binary size does not decrease:

   text    data     bss     dec     hex filename
 794490   96802    1096  892388   d9de4 fs/xfs/xfs.o.orig
 792986   96802    1096  890884   d9804 fs/xfs/xfs.o.p1
 792350   96802    1096  890248   d9588 fs/xfs/xfs.o.p2
 789293   96802    1096  887191   d8997 fs/xfs/xfs.o.p3
 789005   96802    1096  886903   d8997 fs/xfs/xfs.o.p4
 789061   96802    1096  886959   d88af fs/xfs/xfs.o.p5
 789733   96802    1096  887631   d8b4f fs/xfs/xfs.o.p6

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:43:28 -05:00
Dave Chinner
4141956ae0 xfs: vectorise directory leaf operations
Next step in the vectorisation process is the leaf block
encode/decode operations. Most of the operations on leaves are
handled by the data block vectors, so there are relatively few of
them here.

Because of all the shuffling of code and having to pass more state
to some functions, this patch doesn't directly reduce the size of
the binary. It does open up many more opportunities for factoring
and optimisation, however.

   text    data     bss     dec     hex filename
 794490   96802    1096  892388   d9de4 fs/xfs/xfs.o.orig
 792986   96802    1096  890884   d9804 fs/xfs/xfs.o.p1
 792350   96802    1096  890248   d9588 fs/xfs/xfs.o.p2
 789293   96802    1096  887191   d8997 fs/xfs/xfs.o.p3
 789005   96802    1096  886903   d8997 fs/xfs/xfs.o.p4
 789061   96802    1096  886959   d88af fs/xfs/xfs.o.p5

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:39:43 -05:00
Dave Chinner
2ca9877410 xfs: vectorise directory data operations part 2
Convert the rest of the directory data block encode/decode
operations to vector format.

This further reduces the size of the built binary:

   text    data     bss     dec     hex filename
 794490   96802    1096  892388   d9de4 fs/xfs/xfs.o.orig
 792986   96802    1096  890884   d9804 fs/xfs/xfs.o.p1
 792350   96802    1096  890248   d9588 fs/xfs/xfs.o.p2
 789293   96802    1096  887191   d8997 fs/xfs/xfs.o.p3
 789005   96802    1096  886903   d8997 fs/xfs/xfs.o.p4

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:39:31 -05:00
Dave Chinner
9d23fc8575 xfs: vectorise directory data operations
Following from the initial patches to vectorise the shortform
directory encode/decode operations, convert half the data block
operations to use the vector. The rest will be done in a second
patch.

This further reduces the size of the built binary:

   text    data     bss     dec     hex filename
 794490   96802    1096  892388   d9de4 fs/xfs/xfs.o.orig
 792986   96802    1096  890884   d9804 fs/xfs/xfs.o.p1
 792350   96802    1096  890248   d9588 fs/xfs/xfs.o.p2
 789293   96802    1096  887191   d8997 fs/xfs/xfs.o.p3

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:39:14 -05:00
Dave Chinner
4740175e75 xfs: vectorise remaining shortform dir2 ops
Following from the initial patch to introduce the directory
operations vector, convert the rest of the shortform directory
operations to use vectored ops rather than superblock feature
checks. This further reduces the size of the built binary:

   text    data     bss     dec     hex filename
 794490   96802    1096  892388   d9de4 fs/xfs/xfs.o.orig
 792986   96802    1096  890884   d9804 fs/xfs/xfs.o.p1
 792350   96802    1096  890248   d9588 fs/xfs/xfs.o.p2

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:38:59 -05:00
Dave Chinner
32c5483a8a xfs: abstract the differences in dir2/dir3 via an ops vector
Lots of the dir code now goes through switches to determine what is
the correct on-disk format to parse. It generally involves a
"xfs_sbversion_hasfoo" check, deferencing the superblock version and
feature fields and hence touching several cache lines per operation
in the process. Some operations do multiple checks because they nest
conditional operations and they don't pass the information in a
direct fashion between each other.

Hence, add an ops vector to the xfs_inode structure that is
configured when the inode is initialised to point to all the correct
decode and encoding operations.  This will significantly reduce the
branchiness and cacheline footprint of the directory object decoding
and encoding.

This is the first patch in a series of conversion patches. It will
introduce the ops structure, the setup of it and add the first
operation to the vector. Subsequent patches will convert directory
ops one at a time to keep the changes simple and obvious.

Just this patch shows the benefit of such an approach on code size.
Just converting the two shortform dir operations as this patch does
decreases the built binary size by ~1500 bytes:

$ size fs/xfs/xfs.o.orig fs/xfs/xfs.o.p1
   text    data     bss     dec     hex filename
 794490   96802    1096  892388   d9de4 fs/xfs/xfs.o.orig
 792986   96802    1096  890884   d9804 fs/xfs/xfs.o.p1
$

That's a significant decrease in the instruction cache footprint of
the directory code for such a simple change, and indicates that this
approach is definitely worth pursuing further.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-30 13:37:38 -05:00
Dave Chinner
c963c6193a xfs: split xfs_rtalloc.c for userspace sanity
xfs_rtalloc.c is partially shared with userspace. Split the file up
into two parts - one that is kernel private and the other which is
wholly shared with userspace.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 17:16:32 -05:00
Dave Chinner
a4fbe6ab1e xfs: decouple inode and bmap btree header files
Currently the xfs_inode.h header has a dependency on the definition
of the BMAP btree records as the inode fork includes an array of
xfs_bmbt_rec_host_t objects in it's definition.

Move all the btree format definitions from xfs_btree.h,
xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to
xfs_format.h to continue the process of centralising the on-disk
format definitions. With this done, the xfs inode definitions are no
longer dependent on btree header files.

The enables a massive culling of unnecessary includes, with close to
200 #include directives removed from the XFS kernel code base.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 16:28:49 -05:00
Dave Chinner
239880ef64 xfs: decouple log and transaction headers
xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.

In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.

Note that these are kernel only header files, so this does not
translate to any userspace changes at all.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 16:17:44 -05:00
Dave Chinner
d420e5c810 xfs: remove unused transaction callback variables
We don't do callbacks at transaction commit time, no do we have any
infrastructure to set up or run such callbacks, so remove the
variables and typedefs for these operations. If we ever need to add
callbacks, we can reintroduce the variables at that time.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 14:30:51 -05:00
Dave Chinner
9aede1d81b xfs: split dquot buffer operations out
Parts of userspace want to be able to read and modify dquot buffers
(e.g. xfs_db) so we need to split out the reading and writing of
these buffers so it is easy to shared code with libxfs in userspace.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 14:28:35 -05:00
Dave Chinner
5706278758 xfs: unify directory/attribute format definitions
The on-disk format definitions for the directory and attribute
structures are spread across 3 header files right now, only one of
which is dedicated to defining on-disk structures and their
manipulation (xfs_dir2_format.h). Pull all the format definitions
into a single header file - xfs_da_format.h - and switch all the
code over to point at that.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 14:21:40 -05:00
Dave Chinner
70a9883c5f xfs: create a shared header file for format-related information
All of the buffer operations structures are needed to be exported
for xfs_db, so move them all to a common location rather than
spreading them all over the place. They are verifying the on-disk
format, so while xfs_format.h might be a good place, it is not part
of the on disk format.

Hence we need to create a new header file that we centralise these
related definitions. Start by moving the bffer operations
structures, and then also move all the other definitions that have
crept into xfs_log_format.h and xfs_format.h as there was no other
shared header file to put them in.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 14:11:30 -05:00
Christoph Hellwig
865e9446b4 xfs: fold xfs_change_file_space into xfs_ioc_space
Now that only one caller of xfs_change_file_space is left it can be merged
into said caller.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-21 16:57:03 -05:00
Christoph Hellwig
83aee9e4c2 xfs: simplify the fallocate path
Call xfs_alloc_file_space or xfs_free_file_space directly from
xfs_file_fallocate instead of going through xfs_change_file_space.

This simplified the code by removing the unessecary marshalling of the
arguments into an xfs_flock64_t structure and allows removing checks that
are already done in the VFS code.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-21 16:56:21 -05:00
Christoph Hellwig
5f8aca8b43 xfs: always hold the iolock when calling xfs_change_file_space
Currently fallocate always holds the iolock when calling into
xfs_change_file_space, while the ioctl path lets some of the lower level
functions take it, but leave it out in others.

This patch makes sure the ioctl path also always holds the iolock and
thus introduces consistent locking for the preallocation operations while
simplifying the code and allowing to kill the now unused XFS_ATTR_NOLOCK
flag.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-21 16:54:22 -05:00
Christoph Hellwig
001a3e7370 xfs: remove the unused XFS_ATTR_NONBLOCK flag
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-21 16:53:11 -05:00
Christoph Hellwig
76ca4c238c xfs: always take the iolock around xfs_setattr_size
There is no reason to conditionally take the iolock inside xfs_setattr_size
when we can let the caller handle it unconditionally, which just incrases
the lock hold time for the case where it was previously taken internally
by a few instructions.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-21 16:51:33 -05:00
Eric Sandeen
59e5a0e821 xfs: don't break from growfs ag update loop on error
When xfs_growfs_data_private() is updating backup superblocks,
it bails out on the first error encountered, whether reading or
writing:

* If we get an error writing out the alternate superblocks,
* just issue a warning and continue.  The real work is
* already done and committed.

This can cause a problem later during repair, because repair
looks at all superblocks, and picks the most prevalent one
as correct.  If we bail out early in the backup superblock
loop, we can end up with more "bad" matching superblocks than
good, and a post-growfs repair may revert the filesystem to
the old geometry.

With the combination of superblock verifiers and old bugs,
we're more likely to encounter read errors due to verification.

And perhaps even worse, we don't even properly write any of the
newly-added superblocks in the new AGs.

Even with this change, growfs will still say:

  xfs_growfs: XFS_IOC_FSGROWFSDATA xfsctl failed: Structure needs cleaning
  data blocks changed from 319815680 to 335216640

which might be confusing to the user, but it at least communicates
that something has gone wrong, and dmesg will probably highlight
the need for an xfs_repair.

And this is still best-effort; if verifiers fail on more than
half the backup supers, they may still "win" - but that's probably
best left to repair to more gracefully handle by doing its own
strict verification as part of the backup super "voting."

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Acked-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com> 
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-17 13:31:42 -05:00
Eric Sandeen
31625f28ad xfs: don't emit corruption noise on fs probes
If we get EWRONGFS due to probing of non-xfs filesystems,
there's no need to issue the scary corruption error and backtrace.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-17 13:31:25 -05:00
Eric Sandeen
08e96e1a3c xfs: remove newlines from strings passed to __xfs_printk
__xfs_printk adds its own "\n".  Having it in the original string
leads to unintentional blank lines from these messages.

Most format strings have no newline, but a few do, leading to
i.e.:

[ 7347.119911] XFS (sdb2): Access to block zero in inode 132 start_block: 0 start_off: 0 blkcnt: 0 extent-state: 0 lastx: 1a05
[ 7347.119911] 
[ 7347.119919] XFS (sdb2): Access to block zero in inode 132 start_block: 0 start_off: 0 blkcnt: 0 extent-state: 0 lastx: 1a05
[ 7347.119919] 

Fix them all.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-17 13:30:29 -05:00
Dave Chinner
2c6e24ce1a xfs: prevent deadlock trying to cover an active log
Recent analysis of a deadlocked XFS filesystem from a kernel
crash dump indicated that the filesystem was stuck waiting for log
space. The short story of the hang on the RHEL6 kernel is this:

	- the tail of the log is pinned by an inode
	- the inode has been pushed by the xfsaild
	- the inode has been flushed to it's backing buffer and is
	  currently flush locked and hence waiting for backing
	  buffer IO to complete and remove it from the AIL
	- the backing buffer is marked for write - it is on the
	  delayed write queue
	- the inode buffer has been modified directly and logged
	  recently due to unlinked inode list modification
	- the backing buffer is pinned in memory as it is in the
	  active CIL context.
	- the xfsbufd won't start buffer writeback because it is
	  pinned
	- xfssyncd won't force the log because it sees the log as
	  needing to be covered and hence wants to issue a dummy
	  transaction to move the log covering state machine along.

Hence there is no trigger to force the CIL to the log and hence
unpin the inode buffer and therefore complete the inode IO, remove
it from the AIL and hence move the tail of the log along, allowing
transactions to start again.

Mainline kernels also have the same deadlock, though the signature
is slightly different - the inode buffer never reaches the delayed
write lists because xfs_buf_item_push() sees that it is pinned and
hence never adds it to the delayed write list that the xfsaild
flushes.

There are two possible solutions here. The first is to simply force
the log before trying to cover the log and so ensure that the CIL is
emptied before we try to reserve space for the dummy transaction in
the xfs_log_worker(). While this might work most of the time, it is
still racy and is no guarantee that we don't get stuck in
xfs_trans_reserve waiting for log space to come free. Hence it's not
the best way to solve the problem.

The second solution is to modify xfs_log_need_covered() to be aware
of the CIL. We only should be attempting to cover the log if there
is no current activity in the log - covering the log is the process
of ensuring that the head and tail in the log on disk are identical
(i.e. the log is clean and at idle). Hence, by definition, if there
are items in the CIL then the log is not at idle and so we don't
need to attempt to cover it.

When we don't need to cover the log because it is active or idle, we
issue a log force from xfs_log_worker() - if the log is idle, then
this does nothing.  However, if the log is active due to there being
items in the CIL, it will force the items in the CIL to the log and
unpin them.

In the case of the above deadlock scenario, instead of
xfs_log_worker() getting stuck in xfs_trans_reserve() attempting to
cover the log, it will instead force the log, thereby unpinning the
inode buffer, allowing IO to be issued and complete and hence
removing the inode that was pinning the tail of the log from the
AIL. At that point, everything will start moving along again. i.e.
the xfs_log_worker turns back into a watchdog that can alleviate
deadlocks based around pinned items that prevent the tail of the log
from being moved...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-17 10:56:17 -05:00
Brian Foster
74564fb48c xfs: clean up xfs_inactive() error handling, kill VN_INACTIVE_[NO]CACHE
The xfs_inactive() return value is meaningless. Turn xfs_inactive()
into a void function and clean up the error handling appropriately.
Kill the VN_INACTIVE_[NO]CACHE directives as they are not relevant
to Linux.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-08 17:20:41 -05:00
Brian Foster
88877d2b97 xfs: push down inactive transaction mgmt for ifree
Push the inode free work performed during xfs_inactive() down into
a new xfs_inactive_ifree() helper. This clears xfs_inactive() from
all inode locking and transaction management more directly
associated with freeing the inode xattrs, extents and the inode
itself.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-08 17:15:01 -05:00
Brian Foster
f7be2d7f59 xfs: push down inactive transaction mgmt for truncate
Create the new xfs_inactive_truncate() function to handle the
truncate portion of xfs_inactive(). Push the locking and
transaction management into the new function.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-08 15:32:11 -05:00
Brian Foster
36b21dde6e xfs: push down inactive transaction mgmt for remote symlinks
Push down the transaction management for remote symlinks from
xfs_inactive() down to xfs_inactive_symlink_rmt(). The latter is
cleaned up to avoid transaction management intended for the
calling context (i.e., trans duplication, reservation, item
attachment).

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-08 14:53:02 -05:00
Mark Tinguely
2900a579ab xfs: add the inode directory type support to XFS_IOC_FSGEOM
Add the inode type directory type support to XFS_IOC_FSGEOM
so that xfs_repair/xfs_info knows if the superblock v4 filesystem
enabled the feature.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-08 14:28:09 -05:00
Ben Myers
d948709b8e xfs: remove usage of is_bad_inode
XFS never calls mark_inode_bad or iget_failed, so it will never see a
bad inode.  Remove all checks for is_bad_inode because they are
unnecessary.

Signed-off-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2013-10-01 17:38:16 -05:00
Jie Liu
17ec81c15f xfs: fix the wrong new_size/rnew_size at xfs_iext_realloc_direct()
At xfs_iext_realloc_direct(), the new_size is changed by adding
if_bytes if originally the extent records are stored at the inline
extent buffer, and we have to switch from it to a direct extent
list for those new allocated extents, this is wrong. e.g,

Create a file with three extents which was showing as following,

xfs_io -f -c "truncate 100m" /xfs/testme

for i in $(seq 0 5 10); do
	offset=$(($i * $((1 << 20))))
	xfs_io -c "pwrite $offset 1m" /xfs/testme
done

Inline
------
irec:	if_bytes	bytes_diff	new_size
1st	0		16		16
2nd	16		16		32

Switching
---------						rnew_size
3rd	32		16		48 + 32 = 80	roundup=128

In this case, the desired value of new_size should be 48, and then
it will be roundup to 64 and be assigned to rnew_size.

However, this issue has been covered by resetting the if_bytes to
the new_size which is calculated at the begnning of xfs_iext_add()
before leaving out this function, and in turn make the rnew_size
correctly again. Hence, this can not be detected via xfstestes.

This patch fix above problem and revise the new_size comments at
xfs_iext_realloc_direct() to make it more readable.  Also, fix the
comments while switching from the inline extent buffer to a direct
extent list to reflect this change.

Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-01 17:33:10 -05:00
Jie Liu
0799a3e808 xfs: get rid of count from xfs_iomap_write_allocate()
Get rid of function variable count from xfs_iomap_write_allocate() as
it is unused.

Additionally, checkpatch warn me of the following for this change:
WARNING: extern prototypes should be avoided in .h files
+extern int xfs_iomap_write_allocate(struct xfs_inode *, xfs_off_t,

So this patch also remove all extern function prototypes at xfs_iomap.h
to suppress it to make this code style in consistent manner in this file.

Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-01 15:42:34 -05:00
Thierry Reding
aaaae98022 xfs: Use kmem_free() instead of free()
This fixes a build failure caused by calling the free() function which
does not exist in the Linux kernel.

Signed-off-by: Thierry Reding <treding@nvidia.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-01 10:26:24 -05:00
tinguely@sgi.com
519ccb81ac xfs: fix memory leak in xlog_recover_add_to_trans
Free the memory in error path of xlog_recover_add_to_trans().
Normally this memory is freed in recovery pass2, but is leaked
in the error path.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-30 17:52:43 -05:00
Dave Chinner
367993e7c6 xfs: dirent dtype presence is dependent on directory magic numbers
The determination of whether a directory entry contains a dtype
field originally was dependent on the filesystem having CRCs
enabled. This meant that the format for dtype beign enabled could be
determined by checking the directory block magic number rather than
doing a feature bit check. This was useful in that it meant that we
didn't need to pass a struct xfs_mount around to functions that
were already supplied with a directory block header.

Unfortunately, the introduction of dtype fields into the v4
structure via a feature bit meant this "use the directory block
magic number" method of discriminating the dirent entry sizes is
broken. Hence we need to convert the places that use magic number
checks to use feature bit checks so that they work correctly and not
by chance.

The current code works on v4 filesystems only because the dirent
size roundup covers the extra byte needed by the dtype field in the
places where this problem occurs.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-30 17:49:28 -05:00
Dave Chinner
f112a04971 xfs: lockdep needs to know about 3 dquot-deep nesting
Michael Semon reported that xfs/299 generated this lockdep warning:

=============================================
[ INFO: possible recursive locking detected ]
3.12.0-rc2+ #2 Not tainted
---------------------------------------------
touch/21072 is trying to acquire lock:
 (&xfs_dquot_other_class){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64

but task is already holding lock:
 (&xfs_dquot_other_class){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64

other info that might help us debug this:
 Possible unsafe locking scenario:

       CPU0
       ----
  lock(&xfs_dquot_other_class);
  lock(&xfs_dquot_other_class);

 *** DEADLOCK ***

 May be due to missing lock nesting notation

7 locks held by touch/21072:
 #0:  (sb_writers#10){++++.+}, at: [<c11185b6>] mnt_want_write+0x1e/0x3e
 #1:  (&type->i_mutex_dir_key#4){+.+.+.}, at: [<c11078ee>] do_last+0x245/0xe40
 #2:  (sb_internal#2){++++.+}, at: [<c122c9e0>] xfs_trans_alloc+0x1f/0x35
 #3:  (&(&ip->i_lock)->mr_lock/1){+.+...}, at: [<c126cd1b>] xfs_ilock+0x100/0x1f1
 #4:  (&(&ip->i_lock)->mr_lock){++++-.}, at: [<c126cf52>] xfs_ilock_nowait+0x105/0x22f
 #5:  (&dqp->q_qlock){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64
 #6:  (&xfs_dquot_other_class){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64

The lockdep annotation for dquot lock nesting only understands
locking for user and "other" dquots, not user, group and quota
dquots. Fix the annotations to match the locking heirarchy we now
have.

Reported-by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-30 17:48:25 -05:00
Mark Tinguely
997def25e4 xfs: fix node forward in xfs_node_toosmall
Commit f5ea1100 cleans up the disk to host conversions for
node directory entries, but because a variable is reused in
xfs_node_toosmall() the next node is not correctly found.
If the original node is small enough (<= 3/8 of the node size),
this change may incorrectly cause a node collapse when it should
not. That will cause an assert in xfstest generic/319:

   Assertion failed: first <= last && last < BBTOB(bp->b_length),
   file: /root/newest/xfs/fs/xfs/xfs_trans_buf.c, line: 569

Keep the original node header to get the correct forward node.

(When a node is considered for a merge with a sibling, it overwrites the
 sibling pointers of the original incore nodehdr with the sibling's
 pointers.  This leads to loop considering the original node as a merge
 candidate with itself in the second pass, and so it incorrectly
 determines a merge should occur.)

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>

[v3: added Dave Chinner's (slightly modified) suggestion to the commit header,
	cleaned up whitespace.  -bpm]
2013-09-26 10:38:17 -05:00
Dave Chinner
566055d33a xfs: log recovery lsn ordering needs uuid check
After a fair number of xfstests runs, xfs/182 started to fail
regularly with a corrupted directory - a directory read verifier was
failing after recovery because it found a block with a XARM magic
number (remote attribute block) rather than a directory data block.

The first time I saw this repeated failure I did /something/ and the
problem went away, so I was never able to find the underlying
problem. Test xfs/182 failed again today, and I found the root
cause before I did /something else/ that made it go away.

Tracing indicated that the block in question was being correctly
logged, the log was being flushed by sync, but the buffer was not
being written back before the shutdown occurred. Tracing also
indicated that log recovery was also reading the block, but then
never writing it before log recovery invalidated the cache,
indicating that it was not modified by log recovery.

More detailed analysis of the corpse indicated that the filesystem
had a uuid of "a4131074-1872-4cac-9323-2229adbcb886" but the XARM
block had a uuid of "8f32f043-c3c9-e7f8-f947-4e7f989c05d3", which
indicated it was a block from an older filesystem. The reason that
log recovery didn't replay it was that the LSN in the XARM block was
larger than the LSN of the transaction being replayed, and so the
block was not overwritten by log recovery.

Hence, log recovery cant blindly trust the magic number and LSN in
the block - it must verify that it belongs to the filesystem being
recovered before using the LSN. i.e. if the UUIDs don't match, we
need to unconditionally recovery the change held in the log.

This patch was first tested on a block device that was repeatedly
causing xfs/182 to fail with the same failure on the same block with
the same directory read corruption signature (i.e. XARM block). It
did not fail, and hasn't failed since.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-24 12:35:57 -05:00
Dave Chinner
b771af2fcb xfs: fix XFS_IOC_FREE_EOFBLOCKS definition
It uses a kernel internal structure in it's definition rather than
the user visible structure that is passed to the ioctl.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-24 12:35:08 -05:00
Dave Chinner
b313a5f1cb xfs: asserting lock not held during freeing not valid
When we free an inode, we do so via RCU. As an RCU lookup can occur
at any time before we free an inode, and that lookup takes the inode
flags lock, we cannot safely assert that the flags lock is not held
just before marking it dead and running call_rcu() to free the
inode.

We check on allocation of a new inode structre that the lock is not
held, so we still have protection against locks being leaked and
hence not correctly initialised when allocated out of the slab.
Hence just remove the assert...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-24 12:32:57 -05:00
Dave Chinner
4885235806 xfs: lock the AIL before removing the buffer item
Regression introduced by commit 46f9d2e ("xfs: aborted buf items can
be in the AIL") which fails to lock the AIL before removing the
item. Spinlock debugging throws a warning about this.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-24 12:31:41 -05:00
Linus Torvalds
272b98c645 Linux 3.12-rc1 v3.12-rc1 2013-09-16 16:17:51 -04:00