"pagemap from the Userspace Perspective" is not very descriptive for
unaware readers. Since the document describes how to examine a process page
tables, let's title it "Examining Process Page Tables"
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
The hugetlbpage describes hugetlbfs from the user perspective and newer
hugetlbfs_reserv document targets kernel developers. Hence the section
about hugetlbfs kernel development naturally belongs there.
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Mike Rapoport says:
These patches convert files in Documentation/vm to ReST format, add an
initial index and link it to the top level documentation.
There are no contents changes in the documentation, except few spelling
fixes. The relatively large diffstat stems from the indentation and
paragraph wrapping changes.
I've tried to keep the formatting as consistent as possible, but I could
miss some places that needed markup and add some markup where it was not
necessary.
[jc: significant conflicts in vm/hmm.rst]
Just add a label for cross-referencing and indent the text to make it
``literal``
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Remove the address_space ->tree_lock and use the xa_lock newly added to
the radix_tree_root. Rename the address_space ->page_tree to ->i_pages,
since we don't really care that it's a tree.
[willy@infradead.org: fix nds32, fs/dax.c]
Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fix typos and syntaxes, thanks to Randy Dunlap for pointing them out
(they were all my faults).
Link: http://lkml.kernel.org/r/20180409151859.4713-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the documentation for HMM to fix minor typos and phrasing to be a
bit more readable.
Link: http://lkml.kernel.org/r/20180323005527.758-2-jglisse@redhat.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Stephen Bates <sbates@raithlin.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several files were added to Documentation/vm without updates to 00-INDEX.
Fill in the missing documents
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
documentation, errseq documentation, kernel-doc support for nested
structure definitions, the removal of lots of crufty kernel-doc support for
unused formats, SPDX tag documentation, the beginnings of a manual for
subsystem maintainers, and lots of fixes and updates.
As usual, some of the changesets reach outside of Documentation/ to effect
kerneldoc comment fixes. It also adds the new LICENSES directory, of which
Thomas promises I do not need to be the maintainer.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJab11TAAoJEI3ONVYwIuV6i1UP/1LgGPHW9Ygq5qaLFbReZd/u
Mx/orrhHX0PdkbCCE+CbL8Vm1m4UKFDTBdlpk3s542zxeeG0ZBXuTnvq4Kyk+cTN
p4/vsIEzk/Ih13/glGE5MlV+EjiEK+8hK69TIUj7bAyuHmpzofjRz9/1M6RLDGDC
HY6UI58AXG0yOQWMWCGRMYpQAFUGij2equ7Doe1ugXRq14dx7V4RsOhI140iRk7t
bquAq1rS2fXniiuPFmLBUe4dWW28isVa/Vl/aXcaWQDKMyT0OLhjOMW36wWKqtPi
WdVCpHv1NLZNyZZr9S3kvfOwW+BUqpEzfVwssyBLW4h0tsnIx0U0HVhSTY8/TvFZ
QD9yCSana4LB/e5CHXIX5lBHbjHxf+rETXqVV4MgwDaMvM3mCo4X6WUTJDmZADo6
vQISEKeb4su5uWAbc9T9xwRSLhZnFVdJ/QuYdNQ5+EpFJYLhzQ9eBvEz6JstSIXL
p9ASBiPNY3ulpVZ8q0JOHJRBhq5mHJH6Dy8achzbILy2l/ZI4b8lJ53mw9II04cp
puF96E6HpvuZ8Tgjjrg9U3ZdxXNrUgc/tjk2ZDkyTglk1XF2jKSq2tiNSZ3oLrJm
XqJPnpCeyJM5UDvwkIBzgC41WEHwe8uvoNbUnc4X7UJSZegFzcSLQXf5qaprHS5k
XeQ7sbd+S+jzVVjFi0W5
=Z15Z
-----END PGP SIGNATURE-----
Merge tag 'docs-4.16' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"Documentation updates for 4.16.
New stuff includes refcount_t documentation, errseq documentation,
kernel-doc support for nested structure definitions, the removal of
lots of crufty kernel-doc support for unused formats, SPDX tag
documentation, the beginnings of a manual for subsystem maintainers,
and lots of fixes and updates.
As usual, some of the changesets reach outside of Documentation/ to
effect kerneldoc comment fixes. It also adds the new LICENSES
directory, of which Thomas promises I do not need to be the
maintainer"
* tag 'docs-4.16' of git://git.lwn.net/linux: (65 commits)
linux-next: docs-rst: Fix typos in kfigure.py
linux-next: DOC: HWPOISON: Fix path to debugfs in hwpoison.txt
Documentation: Fix misconversion of #if
docs: add index entry for networking/msg_zerocopy
Documentation: security/credentials.rst: explain need to sort group_list
LICENSES: Add MPL-1.1 license
LICENSES: Add the GPL 1.0 license
LICENSES: Add Linux syscall note exception
LICENSES: Add the MIT license
LICENSES: Add the BSD-3-clause "Clear" license
LICENSES: Add the BSD 3-clause "New" or "Revised" License
LICENSES: Add the BSD 2-clause "Simplified" license
LICENSES: Add the LGPL-2.1 license
LICENSES: Add the LGPL 2.0 license
LICENSES: Add the GPL 2.0 license
Documentation: Add license-rules.rst to describe how to properly identify file licenses
scripts: kernel_doc: better handle show warnings logic
fs/*/Kconfig: drop links to 404-compliant http://acl.bestbits.at
doc: md: Fix a file name to md-fault.c in fault-injection.txt
errseq: Add to documentation tree
...
Currently we display some hugepage statistics (total, free, etc) in
/proc/meminfo, but only for default hugepage size (e.g. 2Mb).
If hugepages of different sizes are used (like 2Mb and 1Gb on x86-64),
/proc/meminfo output can be confusing, as non-default sized hugepages
are not reflected at all, and there are no signs that they are existing
and consuming system memory.
To solve this problem, let's display the total amount of memory,
consumed by hugetlb pages of all sized (both free and used). Let's call
it "Hugetlb", and display size in kB to match generic /proc/meminfo
style.
For example, (1024 2Mb pages and 2 1Gb pages are pre-allocated):
$ cat /proc/meminfo
MemTotal: 8168984 kB
MemFree: 3789276 kB
<...>
CmaFree: 0 kB
HugePages_Total: 1024
HugePages_Free: 1024
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 4194304 kB
DirectMap4k: 32632 kB
DirectMap2M: 4161536 kB
DirectMap1G: 6291456 kB
Also, this patch updates corresponding docs to reflect Hugetlb entry
meaning and difference between Hugetlb and HugePages_Total * Hugepagesize.
Link: http://lkml.kernel.org/r/20171115231409.12131-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes an incorrect path for debugfs in hwpoison.txt
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This patch only affects users of mmu_notifier->invalidate_range callback
which are device drivers related to ATS/PASID, CAPI, IOMMUv2, SVM ...
and it is an optimization for those users. Everyone else is unaffected
by it.
When clearing a pte/pmd we are given a choice to notify the event under
the page table lock (notify version of *_clear_flush helpers do call the
mmu_notifier_invalidate_range). But that notification is not necessary
in all cases.
This patch removes almost all cases where it is useless to have a call
to mmu_notifier_invalidate_range before
mmu_notifier_invalidate_range_end. It also adds documentation in all
those cases explaining why.
Below is a more in depth analysis of why this is fine to do this:
For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when
device use thing like ATS/PASID to get the IOMMU to walk the CPU page
table to access a process virtual address space). There is only 2 cases
when you need to notify those secondary TLB while holding page table
lock when clearing a pte/pmd:
A) page backing address is free before mmu_notifier_invalidate_range_end
B) a page table entry is updated to point to a new page (COW, write fault
on zero page, __replace_page(), ...)
Case A is obvious you do not want to take the risk for the device to write
to a page that might now be used by something completely different.
Case B is more subtle. For correctness it requires the following sequence
to happen:
- take page table lock
- clear page table entry and notify (pmd/pte_huge_clear_flush_notify())
- set page table entry to point to new page
If clearing the page table entry is not followed by a notify before setting
the new pte/pmd value then you can break memory model like C11 or C++11 for
the device.
Consider the following scenario (device use a feature similar to ATS/
PASID):
Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we
assume they are write protected for COW (other case of B apply too).
[Time N] -----------------------------------------------------------------
CPU-thread-0 {try to write to addrA}
CPU-thread-1 {try to write to addrB}
CPU-thread-2 {}
CPU-thread-3 {}
DEV-thread-0 {read addrA and populate device TLB}
DEV-thread-2 {read addrB and populate device TLB}
[Time N+1] ---------------------------------------------------------------
CPU-thread-0 {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}}
CPU-thread-1 {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}}
CPU-thread-2 {}
CPU-thread-3 {}
DEV-thread-0 {}
DEV-thread-2 {}
[Time N+2] ---------------------------------------------------------------
CPU-thread-0 {COW_step1: {update page table point to new page for addrA}}
CPU-thread-1 {COW_step1: {update page table point to new page for addrB}}
CPU-thread-2 {}
CPU-thread-3 {}
DEV-thread-0 {}
DEV-thread-2 {}
[Time N+3] ---------------------------------------------------------------
CPU-thread-0 {preempted}
CPU-thread-1 {preempted}
CPU-thread-2 {write to addrA which is a write to new page}
CPU-thread-3 {}
DEV-thread-0 {}
DEV-thread-2 {}
[Time N+3] ---------------------------------------------------------------
CPU-thread-0 {preempted}
CPU-thread-1 {preempted}
CPU-thread-2 {}
CPU-thread-3 {write to addrB which is a write to new page}
DEV-thread-0 {}
DEV-thread-2 {}
[Time N+4] ---------------------------------------------------------------
CPU-thread-0 {preempted}
CPU-thread-1 {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}}
CPU-thread-2 {}
CPU-thread-3 {}
DEV-thread-0 {}
DEV-thread-2 {}
[Time N+5] ---------------------------------------------------------------
CPU-thread-0 {preempted}
CPU-thread-1 {}
CPU-thread-2 {}
CPU-thread-3 {}
DEV-thread-0 {read addrA from old page}
DEV-thread-2 {read addrB from new page}
So here because at time N+2 the clear page table entry was not pair with a
notification to invalidate the secondary TLB, the device see the new value
for addrB before seing the new value for addrA. This break total memory
ordering for the device.
When changing a pte to write protect or to point to a new write protected
page with same content (KSM) it is ok to delay invalidate_range callback
to mmu_notifier_invalidate_range_end() outside the page table lock. This
is true even if the thread doing page table update is preempted right
after releasing page table lock before calling
mmu_notifier_invalidate_range_end
Thanks to Andrea for thinking of a problematic scenario for COW.
[jglisse@redhat.com: v2]
Link: http://lkml.kernel.org/r/20171017031003.7481-2-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20170901173011.10745-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Alistair Popple <alistair@popple.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "HMM (Heterogeneous Memory Management)", v25.
Heterogeneous Memory Management (HMM) (description and justification)
Today device driver expose dedicated memory allocation API through their
device file, often relying on a combination of IOCTL and mmap calls.
The device can only access and use memory allocated through this API.
This effectively split the program address space into object allocated
for the device and useable by the device and other regular memory
(malloc, mmap of a file, share memory, â) only accessible by
CPU (or in a very limited way by a device by pinning memory).
Allowing different isolated component of a program to use a device thus
require duplication of the input data structure using device memory
allocator. This is reasonable for simple data structure (array, grid,
image, â) but this get extremely complex with advance data
structure (list, tree, graph, â) that rely on a web of memory
pointers. This is becoming a serious limitation on the kind of work
load that can be offloaded to device like GPU.
New industry standard like C++, OpenCL or CUDA are pushing to remove
this barrier. This require a shared address space between GPU device
and CPU so that GPU can access any memory of a process (while still
obeying memory protection like read only). This kind of feature is also
appearing in various other operating systems.
HMM is a set of helpers to facilitate several aspects of address space
sharing and device memory management. Unlike existing sharing mechanism
that rely on pining pages use by a device, HMM relies on mmu_notifier to
propagate CPU page table update to device page table.
Duplicating CPU page table is only one aspect necessary for efficiently
using device like GPU. GPU local memory have bandwidth in the TeraBytes/
second range but they are connected to main memory through a system bus
like PCIE that is limited to 32GigaBytes/second (PCIE 4.0 16x). Thus it
is necessary to allow migration of process memory from main system memory
to device memory. Issue is that on platform that only have PCIE the
device memory is not accessible by the CPU with the same properties as
main memory (cache coherency, atomic operations, ...).
To allow migration from main memory to device memory HMM provides a set of
helper to hotplug device memory as a new type of ZONE_DEVICE memory which
is un-addressable by CPU but still has struct page representing it. This
allow most of the core kernel logic that deals with a process memory to
stay oblivious of the peculiarity of device memory.
When page backing an address of a process is migrated to device memory the
CPU page table entry is set to a new specific swap entry. CPU access to
such address triggers a migration back to system memory, just like if the
page was swap on disk. HMM also blocks any one from pinning a ZONE_DEVICE
page so that it can always be migrated back to system memory if CPU access
it. Conversely HMM does not migrate to device memory any page that is pin
in system memory.
To allow efficient migration between device memory and main memory a new
migrate_vma() helpers is added with this patchset. It allows to leverage
device DMA engine to perform the copy operation.
This feature will be use by upstream driver like nouveau mlx5 and probably
other in the future (amdgpu is next suspect in line). We are actively
working on nouveau and mlx5 support. To test this patchset we also worked
with NVidia close source driver team, they have more resources than us to
test this kind of infrastructure and also a bigger and better userspace
eco-system with various real industry workload they can be use to test and
profile HMM.
The expected workload is a program builds a data set on the CPU (from
disk, from network, from sensors, â). Program uses GPU API (OpenCL,
CUDA, ...) to give hint on memory placement for the input data and also
for the output buffer. Program call GPU API to schedule a GPU job, this
happens using device driver specific ioctl. All this is hidden from
programmer point of view in case of C++ compiler that transparently
offload some part of a program to GPU. Program can keep doing other stuff
on the CPU while the GPU is crunching numbers.
It is expected that CPU will not access the same data set as the GPU while
GPU is working on it, but this is not mandatory. In fact we expect some
small memory object to be actively access by both GPU and CPU concurrently
as synchronization channel and/or for monitoring purposes. Such object
will stay in system memory and should not be bottlenecked by system bus
bandwidth (rare write and read access from both CPU and GPU).
As we are relying on device driver API, HMM does not introduce any new
syscall nor does it modify any existing ones. It does not change any
POSIX semantics or behaviors. For instance the child after a fork of a
process that is using HMM will not be impacted in anyway, nor is there any
data hazard between child COW or parent COW of memory that was migrated to
device prior to fork.
HMM assume a numbers of hardware features. Device must allow device page
table to be updated at any time (ie device job must be preemptable).
Device page table must provides memory protection such as read only.
Device must track write access (dirty bit). Device must have a minimum
granularity that match PAGE_SIZE (ie 4k).
Reviewer (just hint):
Patch 1 HMM documentation
Patch 2 introduce core infrastructure and definition of HMM, pretty
small patch and easy to review
Patch 3 introduce the mirror functionality of HMM, it relies on
mmu_notifier and thus someone familiar with that part would be
in better position to review
Patch 4 is an helper to snapshot CPU page table while synchronizing with
concurrent page table update. Understanding mmu_notifier makes
review easier.
Patch 5 is mostly a wrapper around handle_mm_fault()
Patch 6 add new add_pages() helper to avoid modifying each arch memory
hot plug function
Patch 7 add a new memory type for ZONE_DEVICE and also add all the logic
in various core mm to support this new type. Dan Williams and
any core mm contributor are best people to review each half of
this patchset
Patch 8 special case HMM ZONE_DEVICE pages inside put_page() Kirill and
Dan Williams are best person to review this
Patch 9 allow to uncharge a page from memory group without using the lru
list field of struct page (best reviewer: Johannes Weiner or
Vladimir Davydov or Michal Hocko)
Patch 10 Add support to uncharge ZONE_DEVICE page from a memory cgroup (best
reviewer: Johannes Weiner or Vladimir Davydov or Michal Hocko)
Patch 11 add helper to hotplug un-addressable device memory as new type
of ZONE_DEVICE memory (new type introducted in patch 3 of this
serie). This is boiler plate code around memory hotplug and it
also pick a free range of physical address for the device memory.
Note that the physical address do not point to anything (at least
as far as the kernel knows).
Patch 12 introduce a new hmm_device class as an helper for device driver
that want to expose multiple device memory under a common fake
device driver. This is usefull for multi-gpu configuration.
Anyone familiar with device driver infrastructure can review
this. Boiler plate code really.
Patch 13 add a new migrate mode. Any one familiar with page migration is
welcome to review.
Patch 14 introduce a new migration helper (migrate_vma()) that allow to
migrate a range of virtual address of a process using device DMA
engine to perform the copy. It is not limited to do copy from and
to device but can also do copy between any kind of source and
destination memory. Again anyone familiar with migration code
should be able to verify the logic.
Patch 15 optimize the new migrate_vma() by unmapping pages while we are
collecting them. This can be review by any mm folks.
Patch 16 add unaddressable memory migration to helper introduced in patch
7, this can be review by anyone familiar with migration code
Patch 17 add a feature that allow device to allocate non-present page on
the GPU when migrating a range of address to device memory. This
is an helper for device driver to avoid having to first allocate
system memory before migration to device memory
Patch 18 add a new kind of ZONE_DEVICE memory for cache coherent device
memory (CDM)
Patch 19 add an helper to hotplug CDM memory
Previous patchset posting :
v1 http://lwn.net/Articles/597289/
v2 https://lkml.org/lkml/2014/6/12/559
v3 https://lkml.org/lkml/2014/6/13/633
v4 https://lkml.org/lkml/2014/8/29/423
v5 https://lkml.org/lkml/2014/11/3/759
v6 http://lwn.net/Articles/619737/
v7 http://lwn.net/Articles/627316/
v8 https://lwn.net/Articles/645515/
v9 https://lwn.net/Articles/651553/
v10 https://lwn.net/Articles/654430/
v11 http://www.gossamer-threads.com/lists/linux/kernel/2286424
v12 http://www.kernelhub.org/?msg=972982&p=2
v13 https://lwn.net/Articles/706856/
v14 https://lkml.org/lkml/2016/12/8/344
v15 http://www.mail-archive.com/linux-kernel@xxxxxxxxxxxxxxx/msg1304107.html
v16 http://www.spinics.net/lists/linux-mm/msg119814.html
v17 https://lkml.org/lkml/2017/1/27/847
v18 https://lkml.org/lkml/2017/3/16/596
v19 https://lkml.org/lkml/2017/4/5/831
v20 https://lwn.net/Articles/720715/
v21 https://lkml.org/lkml/2017/4/24/747
v22 http://lkml.iu.edu/hypermail/linux/kernel/1705.2/05176.html
v23 https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1404788.html
v24 https://lwn.net/Articles/726691/
This patch (of 19):
This adds documentation for HMM (Heterogeneous Memory Management). It
presents the motivation behind it, the features necessary for it to be
useful and and gives an overview of how this is implemented.
Link: http://lkml.kernel.org/r/20170817000548.32038-2-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the system has more than one swap device and swap device has the node
information, we can make use of this information to decide which swap
device to use in get_swap_pages() to get better performance.
The current code uses a priority based list, swap_avail_list, to decide
which swap device to use and if multiple swap devices share the same
priority, they are used round robin. This patch changes the previous
single global swap_avail_list into a per-numa-node list, i.e. for each
numa node, it sees its own priority based list of available swap
devices. Swap device's priority can be promoted on its matching node's
swap_avail_list.
The current swap device's priority is set as: user can set a >=0 value,
or the system will pick one starting from -1 then downwards. The
priority value in the swap_avail_list is the negated value of the swap
device's due to plist being sorted from low to high. The new policy
doesn't change the semantics for priority >=0 cases, the previous
starting from -1 then downwards now becomes starting from -2 then
downwards and -1 is reserved as the promoted value.
Take 4-node EX machine as an example, suppose 4 swap devices are
available, each sit on a different node:
swapA on node 0
swapB on node 1
swapC on node 2
swapD on node 3
After they are all swapped on in the sequence of ABCD.
Current behaviour:
their priorities will be:
swapA: -1
swapB: -2
swapC: -3
swapD: -4
And their position in the global swap_avail_list will be:
swapA -> swapB -> swapC -> swapD
prio:1 prio:2 prio:3 prio:4
New behaviour:
their priorities will be(note that -1 is skipped):
swapA: -2
swapB: -3
swapC: -4
swapD: -5
And their positions in the 4 swap_avail_lists[nid] will be:
swap_avail_lists[0]: /* node 0's available swap device list */
swapA -> swapB -> swapC -> swapD
prio:1 prio:3 prio:4 prio:5
swap_avali_lists[1]: /* node 1's available swap device list */
swapB -> swapA -> swapC -> swapD
prio:1 prio:2 prio:4 prio:5
swap_avail_lists[2]: /* node 2's available swap device list */
swapC -> swapA -> swapB -> swapD
prio:1 prio:2 prio:3 prio:5
swap_avail_lists[3]: /* node 3's available swap device list */
swapD -> swapA -> swapB -> swapC
prio:1 prio:2 prio:3 prio:4
To see the effect of the patch, a test that starts N process, each mmap
a region of anonymous memory and then continually write to it at random
position to trigger both swap in and out is used.
On a 2 node Skylake EP machine with 64GiB memory, two 170GB SSD drives
are used as swap devices with each attached to a different node, the
result is:
runtime=30m/processes=32/total test size=128G/each process mmap region=4G
kernel throughput
vanilla 13306
auto-binding 15169 +14%
runtime=30m/processes=64/total test size=128G/each process mmap region=2G
kernel throughput
vanilla 11885
auto-binding 14879 +25%
[aaron.lu@intel.com: v2]
Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com
Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.com
[akpm@linux-foundation.org: use kmalloc_array()]
Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com
Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: "Chen, Tim C" <tim.c.chen@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "cleanup zonelists initialization", v1.
This is aimed at cleaning up the zonelists initialization code we have
but the primary motivation was bug report [2] which got resolved but the
usage of stop_machine is just too ugly to live. Most patches are
straightforward but 3 of them need a special consideration.
Patch 1 removes zone ordered zonelists completely. I am CCing linux-api
because this is a user visible change. As I argue in the patch
description I do not think we have a strong usecase for it these days.
I have kept sysctl in place and warn into the log if somebody tries to
configure zone lists ordering. If somebody has a real usecase for it we
can revert this patch but I do not expect anybody will actually notice
runtime differences. This patch is not strictly needed for the rest but
it made patch 6 easier to implement.
Patch 7 removes stop_machine from build_all_zonelists without adding any
special synchronization between iterators and updater which I _believe_
is acceptable as explained in the changelog. I hope I am not missing
anything.
Patch 8 then removes zonelists_mutex which is kind of ugly as well and
not really needed AFAICS but a care should be taken when double checking
my thinking.
This patch (of 9):
Supporting zone ordered zonelists costs us just a lot of code while the
usefulness is arguable if existent at all. Mel has already made node
ordering default on 64b systems. 32b systems are still using
ZONELIST_ORDER_ZONE because it is considered better to fallback to a
different NUMA node rather than consume precious lowmem zones.
This argument is, however, weaken by the fact that the memory reclaim
has been reworked to be node rather than zone oriented. This means that
lowmem requests have to skip over all highmem pages on LRUs already and
so zone ordering doesn't save the reclaim time much. So the only
advantage of the zone ordering is under a light memory pressure when
highmem requests do not ever hit into lowmem zones and the lowmem
pressure doesn't need to reclaim.
Considering that 32b NUMA systems are rather suboptimal already and it
is generally advisable to use 64b kernel on such a HW I believe we
should rather care about the code maintainability and just get rid of
ZONELIST_ORDER_ZONE altogether. Keep systcl in place and warn if
somebody tries to set zone ordering either from kernel command line or
the sysctl.
[mhocko@suse.com: reading vm.numa_zonelist_order will never terminate]
Link: http://lkml.kernel.org/r/20170721143915.14161-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Without a max deduplication limit for each KSM page, the list of the
rmap_items associated to each stable_node can grow infinitely large.
During the rmap walk each entry can take up to ~10usec to process
because of IPIs for the TLB flushing (both for the primary MMU and the
secondary MMUs with the MMU notifier). With only 16GB of address space
shared in the same KSM page, that would amount to dozens of seconds of
kernel runtime.
A ~256 max deduplication factor will reduce the latencies of the rmap
walks on KSM pages to order of a few msec. Just doing the
cond_resched() during the rmap walks is not enough, the list size must
have a limit too, otherwise the caller could get blocked in (schedule
friendly) kernel computations for seconds, unexpectedly.
There's room for optimization to significantly reduce the IPI delivery
cost during the page_referenced(), but at least for page_migration in
the KSM case (used by hard NUMA bindings, compaction and NUMA balancing)
it may be inevitable to send lots of IPIs if each rmap_item->mm is
active on a different CPU and there are lots of CPUs. Even if we ignore
the IPI delivery cost, we've still to walk the whole KSM rmap list, so
we can't allow millions or billions (ulimited) number of entries in the
KSM stable_node rmap_item lists.
The limit is enforced efficiently by adding a second dimension to the
stable rbtree. So there are three types of stable_nodes: the regular
ones (identical as before, living in the first flat dimension of the
stable rbtree), the "chains" and the "dups".
Every "chain" and all "dups" linked into a "chain" enforce the invariant
that they represent the same write protected memory content, even if
each "dup" will be pointed by a different KSM page copy of that content.
This way the stable rbtree lookup computational complexity is unaffected
if compared to an unlimited max_sharing_limit. It is still enforced
that there cannot be KSM page content duplicates in the stable rbtree
itself.
Adding the second dimension to the stable rbtree only after the
max_page_sharing limit hits, provides for a zero memory footprint
increase on 64bit archs. The memory overhead of the per-KSM page
stable_tree and per virtual mapping rmap_item is unchanged. Only after
the max_page_sharing limit hits, we need to allocate a stable_tree
"chain" and rb_replace() the "regular" stable_node with the newly
allocated stable_node "chain". After that we simply add the "regular"
stable_node to the chain as a stable_node "dup" by linking hlist_dup in
the stable_node_chain->hlist. This way the "regular" (flat) stable_node
is converted to a stable_node "dup" living in the second dimension of
the stable rbtree.
During stable rbtree lookups the stable_node "chain" is identified as
stable_node->rmap_hlist_len == STABLE_NODE_CHAIN (aka
is_stable_node_chain()).
When dropping stable_nodes, the stable_node "dup" is identified as
stable_node->head == STABLE_NODE_DUP_HEAD (aka is_stable_node_dup()).
The STABLE_NODE_DUP_HEAD must be an unique valid pointer never used
elsewhere in any stable_node->head/node to avoid a clashes with the
stable_node->node.rb_parent_color pointer, and different from
&migrate_nodes. So the second field of &migrate_nodes is picked and
verified as always safe with a BUILD_BUG_ON in case the list_head
implementation changes in the future.
The STABLE_NODE_DUP is picked as a random negative value in
stable_node->rmap_hlist_len. rmap_hlist_len cannot become negative when
it's a "regular" stable_node or a stable_node "dup".
The stable_node_chain->nid is irrelevant. The stable_node_chain->kpfn
is aliased in a union with a time field used to rate limit the
stable_node_chain->hlist prunes.
The garbage collection of the stable_node_chain happens lazily during
stable rbtree lookups (as for all other kind of stable_nodes), or while
disabling KSM with "echo 2 >/sys/kernel/mm/ksm/run" while collecting the
entire stable rbtree.
While the "regular" stable_nodes and the stable_node "dups" must wait
for their underlying tree_page to be freed before they can be freed
themselves, the stable_node "chains" can be freed immediately if the
stable_node->hlist turns empty. This is because the "chains" are never
pointed by any page->mapping and they're effectively stable rbtree KSM
self contained metadata.
[akpm@linux-foundation.org: fix non-NUMA build]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Petr Holasek <pholasek@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Evgheni Dereveanchin <ederevea@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Gavin Guo <gavin.guo@canonical.com>
Cc: Jay Vosburgh <jay.vosburgh@canonical.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>