Both of these functions deal with freeing of slab objects.
However, kasan_poison_kfree() mishandles SLAB_TYPESAFE_BY_RCU
(must also not poison such objects) and does not detect double-frees.
Unify code between these functions.
This solves both of the problems and allows to add more common code
(e.g. detection of invalid frees).
Link: http://lkml.kernel.org/r/385493d863acf60408be219a021c3c8e27daa96f.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Detect frees of pointers into middle of mempool objects.
I did a one-off test, but it turned out to be very tricky, so I reverted
it. First, mempool does not call kasan_poison_kfree() unless allocation
function fails. I stubbed an allocation function to fail on second and
subsequent allocations. But then mempool stopped to call
kasan_poison_kfree() at all, because it does it only when allocation
function is mempool_kmalloc(). We could support this special failing
test allocation function in mempool, but it also can't live with kasan
tests, because these are in a module.
Link: http://lkml.kernel.org/r/bf7a7d035d7a5ed62d2dd0e3d2e8a4fcdf456aa7.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__builtin_return_address(1) is unreliable without frame pointers.
With defconfig on kmalloc_pagealloc_invalid_free test I am getting:
BUG: KASAN: double-free or invalid-free in (null)
Pass caller PC from callers explicitly.
Link: http://lkml.kernel.org/r/9b01bc2d237a4df74ff8472a3bf6b7635908de01.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kasan: detect invalid frees".
KASAN detects double-frees, but does not detect invalid-frees (when a
pointer into a middle of heap object is passed to free). We recently had
a very unpleasant case in crypto code which freed an inner object inside
of a heap allocation. This left unnoticed during free, but totally
corrupted heap and later lead to a bunch of random crashes all over kernel
code.
Detect invalid frees.
This patch (of 5):
Detect frees of pointers into middle of large heap objects.
I dropped const from kasan_kfree_large() because it starts propagating
through a bunch of functions in kasan_report.c, slab/slub nearest_obj(),
all of their local variables, fixup_red_left(), etc.
Link: http://lkml.kernel.org/r/1b45b4fe1d20fc0de1329aab674c1dd973fee723.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As a code-size optimization, LLVM builds since r279383 may bulk-manipulate
the shadow region when (un)poisoning large memory blocks. This requires
new callbacks that simply do an uninstrumented memset().
This fixes linking the Clang-built kernel when using KASAN.
[arnd@arndb.de: add declarations for internal functions]
Link: http://lkml.kernel.org/r/20180105094112.2690475-1-arnd@arndb.de
[fengguang.wu@intel.com: __asan_set_shadow_00 can be static]
Link: http://lkml.kernel.org/r/20171223125943.GA74341@lkp-ib03
[ghackmann@google.com: fix memset() parameters, and tweak commit message to describe new callbacks]
Link: http://lkml.kernel.org/r/20171204191735.132544-6-paullawrence@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Paul Lawrence <paullawrence@google.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
clang's AddressSanitizer implementation adds redzones on either side of
alloca()ed buffers. These redzones are 32-byte aligned and at least 32
bytes long.
__asan_alloca_poison() is passed the size and address of the allocated
buffer, *excluding* the redzones on either side. The left redzone will
always be to the immediate left of this buffer; but AddressSanitizer may
need to add padding between the end of the buffer and the right redzone.
If there are any 8-byte chunks inside this padding, we should poison
those too.
__asan_allocas_unpoison() is just passed the top and bottom of the dynamic
stack area, so unpoisoning is simpler.
Link: http://lkml.kernel.org/r/20171204191735.132544-4-paullawrence@google.com
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Paul Lawrence <paullawrence@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Require struct page by default for filesystem DAX to remove a number of
surprising failure cases. This includes failures with direct I/O, gdb and
fork(2).
* Add support for the new Platform Capabilities Structure added to the NFIT in
ACPI 6.2a. This new table tells us whether the platform supports flushing
of CPU and memory controller caches on unexpected power loss events.
* Revamp vmem_altmap and dev_pagemap handling to clean up code and better
support future future PCI P2P uses.
* Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has become
out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL spec, and
instead rely on the generic ND_CMD_CALL approach used by the two other IOCTL
families, NVDIMM_FAMILY_{HPE,MSFT}.
* Enhance nfit_test so we can test some of the new things added in version 1.6
of the DSM specification. This includes testing firmware download and
simulating the Last Shutdown State (LSS) status.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJaeOg0AAoJEJ/BjXdf9fLBAFoQAI/IgcgJ2h9lfEpgjBRTC44t
2p8dxwT1Ofw3Y1aR/tI8nYRXjRtAGuP4UIeRVnb1CL/N7PagJyoMGU+6hmzg+ptY
c7cEDvw6nZOhrFwXx/xn7R53sYG8zH+UE6+jTR/PP/G4mQJfFCg4iF9R72Y7z0n7
aurf82Kz137NPUy6dNr4V9bmPMJWAaOci9WOj5SKddR5ZSNbjoxylTwQRvre5y4r
7HQTScEkirABOdSf1JoXTSUXCH/RC9UFFXR03ScHstGb1HjCj3KdcicVc50Q++Ub
qsEudhE6i44PEW1Hh4Qkg6hjHMEa8qHP+ShBuRuVaUmlghYTQn66niJAYLZilwdz
EVjE7vR+toHA5g3YCalEmYVutUEhIDkh/xfpd7vM6ZorUGJy95a2elEJs2fHBffC
gEhnCip7FROPcK5RDNUM8hBgnG/q5wwWPQMKY+6rKDZQx3mXssCrKp2Vlx7kBwMG
rpblkEpYjPonbLEHxsSU8yTg9Uq55ciIWgnOToffcjZvjbihi8WUVlHcwHUMPf/o
DWElg+4qmG0Sdd4S2NeAGwTl1Ewrf2RrtUGMjHtH4OUFs1wo6ZmfrxFzzMfoZ1Od
ko/s65v4uwtTzECh2o+XQaNsReR5YETXxmA40N/Jpo7/7twABIoZ/ASvj/3ZBYj+
sie+u2rTod8/gQWSfHpJ
=MIMX
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Ross Zwisler:
- Require struct page by default for filesystem DAX to remove a number
of surprising failure cases. This includes failures with direct I/O,
gdb and fork(2).
- Add support for the new Platform Capabilities Structure added to the
NFIT in ACPI 6.2a. This new table tells us whether the platform
supports flushing of CPU and memory controller caches on unexpected
power loss events.
- Revamp vmem_altmap and dev_pagemap handling to clean up code and
better support future future PCI P2P uses.
- Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has
become out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL
spec, and instead rely on the generic ND_CMD_CALL approach used by
the two other IOCTL families, NVDIMM_FAMILY_{HPE,MSFT}.
- Enhance nfit_test so we can test some of the new things added in
version 1.6 of the DSM specification. This includes testing firmware
download and simulating the Last Shutdown State (LSS) status.
* tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (37 commits)
libnvdimm, namespace: remove redundant initialization of 'nd_mapping'
acpi, nfit: fix register dimm error handling
libnvdimm, namespace: make min namespace size 4K
tools/testing/nvdimm: force nfit_test to depend on instrumented modules
libnvdimm/nfit_test: adding support for unit testing enable LSS status
libnvdimm/nfit_test: add firmware download emulation
nfit-test: Add platform cap support from ACPI 6.2a to test
libnvdimm: expose platform persistence attribute for nd_region
acpi: nfit: add persistent memory control flag for nd_region
acpi: nfit: Add support for detect platform CPU cache flush on power loss
device-dax: Fix trailing semicolon
libnvdimm, btt: fix uninitialized err_lock
dax: require 'struct page' by default for filesystem dax
ext2: auto disable dax instead of failing mount
ext4: auto disable dax instead of failing mount
mm, dax: introduce pfn_t_special()
mm: Fix devm_memremap_pages() collision handling
mm: Fix memory size alignment in devm_memremap_pages_release()
memremap: merge find_dev_pagemap into get_dev_pagemap
memremap: change devm_memremap_pages interface to use struct dev_pagemap
...
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs. To further
restrict what memory is available for copying, this creates a way to
whitelist specific areas of a given slab cache object for copying to/from
userspace, allowing much finer granularity of access control. Slab caches
that are never exposed to userspace can declare no whitelist for their
objects, thereby keeping them unavailable to userspace via dynamic copy
operations. (Note, an implicit form of whitelisting is the use of constant
sizes in usercopy operations and get_user()/put_user(); these bypass all
hardened usercopy checks since these sizes cannot change at runtime.)
This new check is WARN-by-default, so any mistakes can be found over the
next several releases without breaking anyone's system.
The series has roughly the following sections:
- remove %p and improve reporting with offset
- prepare infrastructure and whitelist kmalloc
- update VFS subsystem with whitelists
- update SCSI subsystem with whitelists
- update network subsystem with whitelists
- update process memory with whitelists
- update per-architecture thread_struct with whitelists
- update KVM with whitelists and fix ioctl bug
- mark all other allocations as not whitelisted
- update lkdtm for more sensible test overage
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJabvleAAoJEIly9N/cbcAmO1kQAJnjVPutnLSbnUteZxtsv7W4
43Cggvokfxr6l08Yh3hUowNxZVKjhF9uwMVgRRg9Nl5WdYCN+vCQbHz+ZdzGJXKq
cGqdKWgexMKX+aBdNDrK7BphUeD46sH7JWR+a/lDV/BgPxBCm9i5ZZCgXbPP89AZ
NpLBji7gz49wMsnm/x135xtNlZ3dG0oKETzi7MiR+NtKtUGvoIszSKy5JdPZ4m8q
9fnXmHqmwM6uQFuzDJPt1o+D1fusTuYnjI7EgyrJRRhQ+BB3qEFZApXnKNDRS9Dm
uB7jtcwefJCjlZVCf2+PWTOEifH2WFZXLPFlC8f44jK6iRW2Nc+wVRisJ3vSNBG1
gaRUe/FSge68eyfQj5OFiwM/2099MNkKdZ0fSOjEBeubQpiFChjgWgcOXa5Bhlrr
C4CIhFV2qg/tOuHDAF+Q5S96oZkaTy5qcEEwhBSW15ySDUaRWFSrtboNt6ZVOhug
d8JJvDCQWoNu1IQozcbv6xW/Rk7miy8c0INZ4q33YUvIZpH862+vgDWfTJ73Zy9H
jR/8eG6t3kFHKS1vWdKZzOX1bEcnd02CGElFnFYUEewKoV7ZeeLsYX7zodyUAKyi
Yp5CImsDbWWTsptBg6h9nt2TseXTxYCt2bbmpJcqzsqSCUwOQNQ4/YpuzLeG0ihc
JgOmUnQNJWCTwUUw5AS1
=tzmJ
-----END PGP SIGNATURE-----
Merge tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardened usercopy whitelisting from Kees Cook:
"Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs.
To further restrict what memory is available for copying, this creates
a way to whitelist specific areas of a given slab cache object for
copying to/from userspace, allowing much finer granularity of access
control.
Slab caches that are never exposed to userspace can declare no
whitelist for their objects, thereby keeping them unavailable to
userspace via dynamic copy operations. (Note, an implicit form of
whitelisting is the use of constant sizes in usercopy operations and
get_user()/put_user(); these bypass all hardened usercopy checks since
these sizes cannot change at runtime.)
This new check is WARN-by-default, so any mistakes can be found over
the next several releases without breaking anyone's system.
The series has roughly the following sections:
- remove %p and improve reporting with offset
- prepare infrastructure and whitelist kmalloc
- update VFS subsystem with whitelists
- update SCSI subsystem with whitelists
- update network subsystem with whitelists
- update process memory with whitelists
- update per-architecture thread_struct with whitelists
- update KVM with whitelists and fix ioctl bug
- mark all other allocations as not whitelisted
- update lkdtm for more sensible test overage"
* tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits)
lkdtm: Update usercopy tests for whitelisting
usercopy: Restrict non-usercopy caches to size 0
kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
kvm: whitelist struct kvm_vcpu_arch
arm: Implement thread_struct whitelist for hardened usercopy
arm64: Implement thread_struct whitelist for hardened usercopy
x86: Implement thread_struct whitelist for hardened usercopy
fork: Provide usercopy whitelisting for task_struct
fork: Define usercopy region in thread_stack slab caches
fork: Define usercopy region in mm_struct slab caches
net: Restrict unwhitelisted proto caches to size 0
sctp: Copy struct sctp_sock.autoclose to userspace using put_user()
sctp: Define usercopy region in SCTP proto slab cache
caif: Define usercopy region in caif proto slab cache
ip: Define usercopy region in IP proto slab cache
net: Define usercopy region in struct proto slab cache
scsi: Define usercopy region in scsi_sense_cache slab cache
cifs: Define usercopy region in cifs_request slab cache
vxfs: Define usercopy region in vxfs_inode slab cache
ufs: Define usercopy region in ufs_inode_cache slab cache
...
This patch effectively reverts commit 9f1c2674b3 ("net: memcontrol:
defer call to mem_cgroup_sk_alloc()").
Moving mem_cgroup_sk_alloc() to the inet_csk_accept() completely breaks
memcg socket memory accounting, as packets received before memcg
pointer initialization are not accounted and are causing refcounting
underflow on socket release.
Actually the free-after-use problem was fixed by
commit c0576e3975 ("net: call cgroup_sk_alloc() earlier in
sk_clone_lock()") for the cgroup pointer.
So, let's revert it and call mem_cgroup_sk_alloc() just before
cgroup_sk_alloc(). This is safe, as we hold a reference to the socket
we're cloning, and it holds a reference to the memcg.
Also, let's drop BUG_ON(mem_cgroup_is_root()) check from
mem_cgroup_sk_alloc(). I see no reasons why bumping the root
memcg counter is a good reason to panic, and there are no realistic
ways to hit it.
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix some basic kernel-doc notation in mm/swap.c:
- for function lru_cache_add_anon(), make its kernel-doc function name
match its function name and change colon to hyphen following the
function name
- for function pagevec_lookup_entries(), change the function parameter
name from nr_pages to nr_entries since that is more descriptive of
what the parameter actually is and then it matches the kernel-doc
comments also
Fix function kernel-doc to match the change in commit 67fd707f46:
- drop the kernel-doc notation for @nr_pages from
pagevec_lookup_range() and correct the function description for that
change
Link: http://lkml.kernel.org/r/3b42ee3e-04a9-a6ca-6be4-f00752a114fe@infradead.org
Fixes: 67fd707f46 ("mm: remove nr_pages argument from pagevec_lookup_{,range}_tag()")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bharata has noticed that onlining a newly added memory doesn't increase
the total memory, pointing to commit f7f99100d8 ("mm: stop zeroing
memory during allocation in vmemmap") as a culprit. This commit has
changed the way how the memory for memmaps is initialized and moves it
from the allocation time to the initialization time. This works
properly for the early memmap init path.
It doesn't work for the memory hotplug though because we need to mark
page as reserved when the sparsemem section is created and later
initialize it completely during onlining. memmap_init_zone is called in
the early stage of onlining. With the current code it calls
__init_single_page and as such it clears up the whole stage and
therefore online_pages_range skips those pages.
Fix this by skipping mm_zero_struct_page in __init_single_page for
memory hotplug path. This is quite uggly but unifying both early init
and memory hotplug init paths is a large project. Make sure we plug the
regression at least.
Link: http://lkml.kernel.org/r/20180130101141.GW21609@dhcp22.suse.cz
Fixes: f7f99100d8 ("mm: stop zeroing memory during allocation in vmemmap")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Tested-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are multiple comments surrounding do_fault_around that memtion
fault_around_pages() and fault_around_mask(), two routines that do not
exist. These comments should be reworded to reference
fault_around_bytes, the value which is used to determine how much
do_fault_around() will attempt to read when processing a fault.
These comments should have been updated when fault_around_pages() and
fault_around_mask() were removed in commit aecd6f4426 ("mm: close race
between do_fault_around() and fault_around_bytes_set()").
Fixes: aecd6f4426 ("mm: close race between do_fault_around() and fault_around_bytes_set()")
Link: http://lkml.kernel.org/r/302D0B14-C7E9-44C6-8BED-033F9ACBD030@oracle.com
Signed-off-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Larry Bassel <larry.bassel@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Workloads consisting of a large number of processes running the same
program with a very large shared data segment may experience performance
problems when numa balancing attempts to migrate the shared cow pages.
This manifests itself with many processes or tasks in
TASK_UNINTERRUPTIBLE state waiting for the shared pages to be migrated.
The program listed below simulates the conditions with these results
when run with 288 processes on a 144 core/8 socket machine.
Average throughput Average throughput Average throughput
with numa_balancing=0 with numa_balancing=1 with numa_balancing=1
without the patch with the patch
--------------------- --------------------- ---------------------
2118782 2021534 2107979
Complex production environments show less variability and fewer poorly
performing outliers accompanied with a smaller number of processes
waiting on NUMA page migration with this patch applied. In some cases,
%iowait drops from 16%-26% to 0.
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017 Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/time.h>
#include <stdio.h>
#include <wait.h>
#include <sys/mman.h>
int a[1000000] = {13};
int main(int argc, const char **argv)
{
int n = 0;
int i;
pid_t pid;
int stat;
int *count_array;
int cpu_count = 288;
long total = 0;
struct timeval t1, t2 = {(argc > 1 ? atoi(argv[1]) : 10), 0};
if (argc > 2)
cpu_count = atoi(argv[2]);
count_array = mmap(NULL, cpu_count * sizeof(int),
(PROT_READ|PROT_WRITE),
(MAP_SHARED|MAP_ANONYMOUS), 0, 0);
if (count_array == MAP_FAILED) {
perror("mmap:");
return 0;
}
for (i = 0; i < cpu_count; ++i) {
pid = fork();
if (pid <= 0)
break;
if ((i & 0xf) == 0)
usleep(2);
}
if (pid != 0) {
if (i == 0) {
perror("fork:");
return 0;
}
for (;;) {
pid = wait(&stat);
if (pid < 0)
break;
}
for (i = 0; i < cpu_count; ++i)
total += count_array[i];
printf("Total %ld\n", total);
munmap(count_array, cpu_count * sizeof(int));
return 0;
}
gettimeofday(&t1, 0);
timeradd(&t1, &t2, &t1);
while (timercmp(&t2, &t1, <)) {
int b = 0;
int j;
for (j = 0; j < 1000000; j++)
b += a[j];
gettimeofday(&t2, 0);
n++;
}
count_array[i] = n;
return 0;
}
This patch changes change_pte_range() to skip shared copy-on-write pages
when called from change_prot_numa().
NOTE: change_prot_numa() is nominally called from task_numa_work() and
queue_pages_test_walk(). task_numa_work() is the auto NUMA balancing
path, and queue_pages_test_walk() is part of explicit NUMA policy
management. However, queue_pages_test_walk() only calls
change_prot_numa() when MPOL_MF_LAZY is specified and currently that is
not allowed, so change_prot_numa() is only called from auto NUMA
balancing.
In the case of explicit NUMA policy management, shared pages are not
migrated unless MPOL_MF_MOVE_ALL is specified, and MPOL_MF_MOVE_ALL
depends on CAP_SYS_NICE. Currently, there is no way to pass information
about MPOL_MF_MOVE_ALL to change_pte_range. This will have to be fixed
if MPOL_MF_LAZY is enabled and MPOL_MF_MOVE_ALL is to be honored in lazy
migration mode.
task_numa_work() skips the read-only VMAs of programs and shared
libraries.
Link: http://lkml.kernel.org/r/1516751617-7369-1-git-send-email-henry.willard@oracle.com
Signed-off-by: Henry Willard <henry.willard@oracle.com>
Reviewed-by: Håkon Bugge <haakon.bugge@oracle.com>
Reviewed-by: Steve Sistare <steven.sistare@oracle.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dan Carpenter has noticed that mbind migration callback (new_page) can
get a NULL vma pointer and choke on it inside alloc_huge_page_vma which
relies on the VMA to get the hstate. We used to BUG_ON this case but
the BUG_+ON has been removed recently by "hugetlb, mempolicy: fix the
mbind hugetlb migration".
The proper way to handle this is to get the hstate from the migrated
page and rely on huge_node (resp. get_vma_policy) do the right thing
with null VMA. We are currently falling back to the default mempolicy
in that case which is in line what THP path is doing here.
Link: http://lkml.kernel.org/r/20180110104712.GR1732@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_mbind migration code relies on alloc_huge_page_noerr for hugetlb
pages. alloc_huge_page_noerr uses alloc_huge_page which is a highlevel
allocation function which has to take care of reserves, overcommit or
hugetlb cgroup accounting. None of that is really required for the page
migration because the new page is only temporal and either will replace
the original page or it will be dropped. This is essentially as for
other migration call paths and there shouldn't be any reason to handle
mbind in a special way.
The current implementation is even suboptimal because the migration
might fail just because the hugetlb cgroup limit is reached, or the
overcommit is saturated.
Fix this by making mbind like other hugetlb migration paths. Add a new
migration helper alloc_huge_page_vma as a wrapper around
alloc_huge_page_nodemask with additional mempolicy handling.
alloc_huge_page_noerr has no more users and it can go.
Link: http://lkml.kernel.org/r/20180103093213.26329-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugetlb allocator has several layer of allocation functions depending
and the purpose of the allocation. There are two allocators depending
on whether the page can be allocated from the page allocator or we need
a contiguous allocator. This is currently opencoded in
alloc_fresh_huge_page which is the only path that might allocate giga
pages which require the later allocator. Create alloc_fresh_huge_page
which hides this implementation detail and use it in all callers which
hardcoded the buddy allocator path (__hugetlb_alloc_buddy_huge_page).
This shouldn't introduce any funtional change because both migration and
surplus allocators exlude giga pages explicitly.
While we are at it let's do some renaming. The current scheme is not
consistent and overly painfull to read and understand. Get rid of
prefix underscores from most functions. There is no real reason to make
names longer.
* alloc_fresh_huge_page is the new layer to abstract underlying
allocator
* __hugetlb_alloc_buddy_huge_page becomes shorter and neater
alloc_buddy_huge_page.
* Former alloc_fresh_huge_page becomes alloc_pool_huge_page because we put
the new page directly to the pool
* alloc_surplus_huge_page can drop the opencoded prep_new_huge_page code
as it uses alloc_fresh_huge_page now
* others lose their excessive prefix underscores to make names shorter
[dan.carpenter@oracle.com: fix double unlock bug in alloc_surplus_huge_page()]
Link: http://lkml.kernel.org/r/20180109200559.g3iz5kvbdrz7yydp@mwanda
Link: http://lkml.kernel.org/r/20180103093213.26329-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_surplus_huge_page increases the pool size and the number of
surplus pages opportunistically to prevent from races with the pool size
change. See commit d1c3fb1f8f ("hugetlb: introduce
nr_overcommit_hugepages sysctl") for more details.
The resulting code is unnecessarily hairy, cause code duplication and
doesn't allow to share the allocation paths. Moreover pool size changes
tend to be very seldom so optimizing for them is not really reasonable.
Simplify the code and allow to allocate a fresh surplus page as long as
we are under the overcommit limit and then recheck the condition after
the allocation and drop the new page if the situation has changed. This
should provide a reasonable guarantee that an abrupt allocation requests
will not go way off the limit.
If we consider races with the pool shrinking and enlarging then we
should be reasonably safe as well. In the first case we are off by one
in the worst case and the second case should work OK because the page is
not yet visible. We can waste CPU cycles for the allocation but that
should be acceptable for a relatively rare condition.
Link: http://lkml.kernel.org/r/20180103093213.26329-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugepage migration relies on __alloc_buddy_huge_page to get a new page.
This has 2 main disadvantages.
1) it doesn't allow to migrate any huge page if the pool is used
completely which is not an exceptional case as the pool is static and
unused memory is just wasted.
2) it leads to a weird semantic when migration between two numa nodes
might increase the pool size of the destination NUMA node while the
page is in use. The issue is caused by per NUMA node surplus pages
tracking (see free_huge_page).
Address both issues by changing the way how we allocate and account
pages allocated for migration. Those should temporal by definition. So
we mark them that way (we will abuse page flags in the 3rd page) and
update free_huge_page to free such pages to the page allocator. Page
migration path then just transfers the temporal status from the new page
to the old one which will be freed on the last reference. The global
surplus count will never change during this path but we still have to be
careful when migrating a per-node suprlus page. This is now handled in
move_hugetlb_state which is called from the migration path and it copies
the hugetlb specific page state and fixes up the accounting when needed
Rename __alloc_buddy_huge_page to __alloc_surplus_huge_page to better
reflect its purpose. The new allocation routine for the migration path
is __alloc_migrate_huge_page.
The user visible effect of this patch is that migrated pages are really
temporal and they travel between NUMA nodes as per the migration
request:
Before migration
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:1
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0
After
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:1
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0
with the previous implementation, both nodes would have nr_hugepages:1
until the page is freed.
Link: http://lkml.kernel.org/r/20180103093213.26329-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Gigantic hugetlb pages were ingrown to the hugetlb code as an alien
specie with a lot of special casing. The allocation path is not an
exception. Unnecessarily so to be honest. It is true that the
underlying allocator is different but that is an implementation detail.
This patch unifies the hugetlb allocation path that a prepares fresh
pool pages. alloc_fresh_gigantic_page basically copies
alloc_fresh_huge_page logic so we can move everything there. This will
simplify set_max_huge_pages which doesn't have to care about what kind
of huge page we allocate.
Link: http://lkml.kernel.org/r/20180103093213.26329-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm, hugetlb: allocation API and migration improvements"
Motivation:
this is a follow up for [3] for the allocation API and [4] for the
hugetlb migration. It wasn't really easy to split those into two
separate patch series as they share some code.
My primary motivation to touch this code is to make the gigantic pages
migration working. The giga pages allocation code is just too fragile
and hacked into the hugetlb code now. This series tries to move giga
pages closer to the first class citizen. We are not there yet but
having 5 patches is quite a lot already and it will already make the
code much easier to follow. I will come with other changes on top after
this sees some review.
The first two patches should be trivial to review. The third patch
changes the way how we migrate huge pages. Newly allocated pages are a
subject of the overcommit check and they participate surplus accounting
which is quite unfortunate as the changelog explains. This patch
doesn't change anything wrt. giga pages.
Patch #4 removes the surplus accounting hack from
__alloc_surplus_huge_page. I hope I didn't miss anything there and a
deeper review is really due there.
Patch #5 finally unifies allocation paths and giga pages shouldn't be
any special anymore. There is also some renaming going on as well.
This patch (of 6):
hugetlb allocator has two entry points to the page allocator
- alloc_fresh_huge_page_node
- __hugetlb_alloc_buddy_huge_page
The two differ very subtly in two aspects. The first one doesn't care
about HTLB_BUDDY_* stats and it doesn't initialize the huge page.
prep_new_huge_page is not used because it not only initializes hugetlb
specific stuff but because it also put_page and releases the page to the
hugetlb pool which is not what is required in some contexts. This makes
things more complicated than necessary.
Simplify things by a) removing the page allocator entry point duplicity
and only keep __hugetlb_alloc_buddy_huge_page and b) make
prep_new_huge_page more reusable by removing the put_page which moves
the page to the allocator pool. All current callers are updated to call
put_page explicitly. Later patches will add new callers which won't
need it.
This patch shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20180103093213.26329-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_resize_[memsw]_limit() tries to free only 32
(SWAP_CLUSTER_MAX) pages on each iteration. This makes it practically
impossible to decrease limit of memory cgroup. Tasks could easily
allocate back 32 pages, so we can't reduce memory usage, and once
retry_count reaches zero we return -EBUSY.
Easy to reproduce the problem by running the following commands:
mkdir /sys/fs/cgroup/memory/test
echo $$ >> /sys/fs/cgroup/memory/test/tasks
cat big_file > /dev/null &
sleep 1 && echo $((100*1024*1024)) > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
-bash: echo: write error: Device or resource busy
Instead of relying on retry_count, keep retrying the reclaim until the
desired limit is reached or fail if the reclaim doesn't make any
progress or a signal is pending.
Link: http://lkml.kernel.org/r/20180119132544.19569-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following sparse warning:
mm/memcontrol.c:1097:14: warning: symbol 'memcg1_stats' was not declared. Should it be static?
Link: http://lkml.kernel.org/r/20180118193327.14200-1-chrisadr@gentoo.org
Signed-off-by: Christopher Díaz Riveros <chrisadr@gentoo.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The variable 'entry' is used before being initialized in
hmm_vma_walk_pmd().
No bad effect (beside performance hit) so !non_swap_entry(0) evaluate to
true which trigger a fault as if CPU was trying to access migrated
memory and migrate memory back from device memory to regular memory.
This function (hmm_vma_walk_pmd()) is called when a device driver tries
to populate its own page table. For migrated memory it should not
happen as the device driver should already have populated its page table
correctly during the migration.
Only case I can think of is multi-GPU where a second GPU triggers
migration back to regular memory. Again this would just result in a
performance hit, nothing bad would happen.
Link: http://lkml.kernel.org/r/20180122185759.26286-1-jglisse@redhat.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment is confusing. On the one hand, it refers to 32-bit
alignment (struct page alignment on 32-bit platforms), but this would
only guarantee that the 2 lowest bits must be zero. On the other hand,
it claims that at least 3 bits are available, and 3 bits are actually
used.
This is not broken, because there is a stronger alignment guarantee,
just less obvious. Let's fix the comment to make it clear how many bits
are available and why.
Although memmap arrays are allocated in various places, the resulting
pointer is encoded eventually, so I am adding a BUG_ON() here to enforce
at runtime that all expected bits are indeed available.
I have also added a BUILD_BUG_ON to check that PFN_SECTION_SHIFT is
sufficient, because this part of the calculation can be easily checked
at build time.
[ptesarik@suse.com: v2]
Link: http://lkml.kernel.org/r/20180125100516.589ea6af@ezekiel.suse.cz
Link: http://lkml.kernel.org/r/20180119080908.3a662e6f@ezekiel.suse.cz
Signed-off-by: Petr Tesarik <ptesarik@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"mode" argument is not used by try_to_compact_pages() and sub functions
anymore, it has been replaced by "prio". Fix the comment to explain the
use of "prio" argument.
Link: http://lkml.kernel.org/r/1515801336-20611-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
static struct page_ext_operations *page_ext_ops[] always contains debug_guardpage_ops,
static struct page_ext_operations *page_ext_ops[] = {
&debug_guardpage_ops,
#ifdef CONFIG_PAGE_OWNER
&page_owner_ops,
#endif
...
}
but for it to work, CONFIG_DEBUG_PAGEALLOC must be enabled first. If
someone has CONFIG_PAGE_EXTENSION, but has none of its users, eg:
(CONFIG_PAGE_OWNER, CONFIG_DEBUG_PAGEALLOC, CONFIG_IDLE_PAGE_TRACKING),
we can shrink page_ext_init() to a simple retq.
$ size vmlinux (before patch)
text data bss dec hex filename
14356698 5681582 1687748 21726028 14b834c vmlinux
$ size vmlinux (after patch)
text data bss dec hex filename
14356008 5681538 1687748 21725294 14b806e vmlinux
On the other hand, it might does not even make sense, since if someone
enables CONFIG_PAGE_EXTENSION, I would expect him to enable also at
least one of its users.
Link: http://lkml.kernel.org/r/20180105130235.GA21241@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_resize_limit() and mem_cgroup_resize_memsw_limit() have
identical logics. Refactor code so we don't need to keep two pieces of
code that does same thing.
Link: http://lkml.kernel.org/r/20180108224238.14583-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We waste sizeof(swp_entry_t) for zswap header when using zsmalloc as
zpool driver because zsmalloc doesn't support eviction.
Add zpool_evictable() to detect if zpool is potentially evictable, and
use it in zswap to avoid waste memory for zswap header.
[yuzhao@google.com: The zpool->" prefix is a result of copy & paste]
Link: http://lkml.kernel.org/r/20180110225626.110330-1-yuzhao@google.com
Link: http://lkml.kernel.org/r/20180110224741.83751-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Dan Streetman <ddstreet@ieee.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During our recent testing with fadvise(FADV_DONTNEED), we find that if
given offset/length is not page-aligned, the last page will not be
discarded. The tool we use is vmtouch (https://hoytech.com/vmtouch/),
we map a 10KB-sized file into memory and then try to run this tool to
evict the whole file mapping, but the last single page always remains
staying in the memory:
$./vmtouch -e test_10K
Files: 1
Directories: 0
Evicted Pages: 3 (12K)
Elapsed: 2.1e-05 seconds
$./vmtouch test_10K
Files: 1
Directories: 0
Resident Pages: 1/3 4K/12K 33.3%
Elapsed: 5.5e-05 seconds
However when we test with an older kernel, say 3.10, this problem is
gone. So we wonder if this is a regression:
$./vmtouch -e test_10K
Files: 1
Directories: 0
Evicted Pages: 3 (12K)
Elapsed: 8.2e-05 seconds
$./vmtouch test_10K
Files: 1
Directories: 0
Resident Pages: 0/3 0/12K 0% <-- partial page also discarded
Elapsed: 5e-05 seconds
After digging a little bit into this problem, we find it seems not a
regression. Not discarding partial page is likely to be on purpose
according to commit 441c228f81 ("mm: fadvise: document the
fadvise(FADV_DONTNEED) behaviour for partial pages") written by Mel
Gorman. He explained why partial pages should be preserved instead of
being discarded when using fadvise(FADV_DONTNEED).
However, the interesting part is that the actual code did NOT work as
the same as it was described, the partial page was still discarded
anyway, due to a calculation mistake of `end_index' passed to
invalidate_mapping_pages(). This mistake has not been fixed until
recently, that's why we fail to reproduce our problem in old kernels.
The fix is done in commit 18aba41cbf ("mm/fadvise.c: do not discard
partial pages with POSIX_FADV_DONTNEED") by Oleg Drokin.
Back to the original testing, our problem becomes that there is a
special case that, if the page-unaligned `endbyte' is also the end of
file, it is not necessary at all to preserve the last partial page, as
we all know no one else will use the rest of it. It should be safe
enough if we just discard the whole page. So we add an EOF check in
this patch.
We also find a poosbile real world issue in mainline kernel. Assume
such scenario: A userspace backup application want to backup a huge
amount of small files (<4k) at once, the developer might (I guess) want
to use fadvise(FADV_DONTNEED) to save memory. However, FADV_DONTNEED
won't really happen since the only page mapped is a partial page, and
kernel will preserve it. Our patch also fixes this problem, since we
know the endbyte is EOF, so we discard it.
Here is a simple reproducer to reproduce and verify each scenario we
described above:
test_fadvise.c
==============================
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
int main(int argc, char **argv)
{
int i, fd, ret, len;
struct stat buf;
void *addr;
unsigned char *vec;
char *strbuf;
ssize_t pagesize = getpagesize();
ssize_t filesize;
fd = open(argv[1], O_RDWR|O_CREAT, S_IRUSR|S_IWUSR);
if (fd < 0)
return -1;
filesize = strtoul(argv[2], NULL, 10);
strbuf = malloc(filesize);
memset(strbuf, 42, filesize);
write(fd, strbuf, filesize);
free(strbuf);
fsync(fd);
len = (filesize + pagesize - 1) / pagesize;
printf("length of pages: %d\n", len);
addr = mmap(NULL, filesize, PROT_READ, MAP_SHARED, fd, 0);
if (addr == MAP_FAILED)
return -1;
ret = posix_fadvise(fd, 0, filesize, POSIX_FADV_DONTNEED);
if (ret < 0)
return -1;
vec = malloc(len);
ret = mincore(addr, filesize, (void *)vec);
if (ret < 0)
return -1;
for (i = 0; i < len; i++)
printf("pages[%d]: %x\n", i, vec[i] & 0x1);
free(vec);
close(fd);
return 0;
}
==============================
Test 1: running on kernel with commit 18aba41cbf reverted:
[root@caspar ~]# uname -r
4.15.0-rc6.revert+
[root@caspar ~]# ./test_fadvise file1 1024
length of pages: 1
pages[0]: 0 # <-- partial page discarded
[root@caspar ~]# ./test_fadvise file2 8192
length of pages: 2
pages[0]: 0
pages[1]: 0
[root@caspar ~]# ./test_fadvise file3 10240
length of pages: 3
pages[0]: 0
pages[1]: 0
pages[2]: 0 # <-- partial page discarded
Test 2: running on mainline kernel:
[root@caspar ~]# uname -r
4.15.0-rc6+
[root@caspar ~]# ./test_fadvise test1 1024
length of pages: 1
pages[0]: 1 # <-- partial and the only page not discarded
[root@caspar ~]# ./test_fadvise test2 8192
length of pages: 2
pages[0]: 0
pages[1]: 0
[root@caspar ~]# ./test_fadvise test3 10240
length of pages: 3
pages[0]: 0
pages[1]: 0
pages[2]: 1 # <-- partial page not discarded
Test 3: running on kernel with this patch:
[root@caspar ~]# uname -r
4.15.0-rc6.patched+
[root@caspar ~]# ./test_fadvise test1 1024
length of pages: 1
pages[0]: 0 # <-- partial page and EOF, discarded
[root@caspar ~]# ./test_fadvise test2 8192
length of pages: 2
pages[0]: 0
pages[1]: 0
[root@caspar ~]# ./test_fadvise test3 10240
length of pages: 3
pages[0]: 0
pages[1]: 0
pages[2]: 0 # <-- partial page and EOF, discarded
[akpm@linux-foundation.org: tweak code comment]
Link: http://lkml.kernel.org/r/5222da9ee20e1695eaabb69f631f200d6e6b8876.1515132470.git.jinli.zjl@alibaba-inc.com
Signed-off-by: shidao.ytt <shidao.ytt@alibaba-inc.com>
Signed-off-by: Caspar Zhang <jinli.zjl@alibaba-inc.com>
Reviewed-by: Oliver Yang <zhiche.yy@alibaba-inc.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minchan Kim asked the following question -- what locks protects
address_space destroying when race happens between inode trauncation and
__isolate_lru_page? Jan Kara clarified by describing the race as follows
CPU1 CPU2
truncate(inode) __isolate_lru_page()
...
truncate_inode_page(mapping, page);
delete_from_page_cache(page)
spin_lock_irqsave(&mapping->tree_lock, flags);
__delete_from_page_cache(page, NULL)
page_cache_tree_delete(..)
... mapping = page_mapping(page);
page->mapping = NULL;
...
spin_unlock_irqrestore(&mapping->tree_lock, flags);
page_cache_free_page(mapping, page)
put_page(page)
if (put_page_testzero(page)) -> false
- inode now has no pages and can be freed including embedded address_space
if (mapping && !mapping->a_ops->migratepage)
- we've dereferenced mapping which is potentially already free.
The race is theoretically possible but unlikely. Before the
delete_from_page_cache, truncate_cleanup_page is called so the page is
likely to be !PageDirty or PageWriteback which gets skipped by the only
caller that checks the mappping in __isolate_lru_page. Even if the race
occurs, a substantial amount of work has to happen during a tiny window
with no preemption but it could potentially be done using a virtual
machine to artifically slow one CPU or halt it during the critical
window.
This patch should eliminate the race with truncation by try-locking the
page before derefencing mapping and aborting if the lock was not
acquired. There was a suggestion from Huang Ying to use RCU as a
side-effect to prevent mapping being freed. However, I do not like the
solution as it's an unconventional means of preserving a mapping and
it's not a context where rcu_read_lock is obviously protecting rcu data.
Link: http://lkml.kernel.org/r/20180104102512.2qos3h5vqzeisrek@techsingularity.net
Fixes: c824493528 ("mm: compaction: make isolate_lru_page() filter-aware again")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adapt add_seals()/get_seals() to work with hugetbfs-backed memory.
Teach memfd_create() to allow sealing operations on MFD_HUGETLB.
Link: http://lkml.kernel.org/r/20171107122800.25517-6-marcandre.lureau@redhat.com
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Those functions are called for memfd files, backed by shmem or hugetlb
(the next patches will handle hugetlb).
Link: http://lkml.kernel.org/r/20171107122800.25517-3-marcandre.lureau@redhat.com
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memfd: add sealing to hugetlb-backed memory", v3.
Recently, Mike Kravetz added hugetlbfs support to memfd. However, he
didn't add sealing support. One of the reasons to use memfd is to have
shared memory sealing when doing IPC or sharing memory with another
process with some extra safety. qemu uses shared memory & hugetables
with vhost-user (used by dpdk), so it is reasonable to use memfd now
instead for convenience and security reasons.
This patch (of 9):
The functions are called through shmem_fcntl() only. And no danger in
removing the EXPORTs as the routines only work with shmem file structs.
Link: http://lkml.kernel.org/r/20171107122800.25517-2-marcandre.lureau@redhat.com
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Structure zs_pool has special flag to indicate success of shrinker
initialization. unregister_shrinker() has improved and can detect by
itself whether actual deinitialization should be performed or not, so
extra flag becomes redundant.
[akpm@linux-foundation.org: update comment (Aliaksei), remove unneeded cast]
Link: http://lkml.kernel.org/r/1513680552-9798-1-git-send-email-akaraliou.dev@gmail.com
Signed-off-by: Aliaksei Karaliou <akaraliou.dev@gmail.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This uses the new annotation to determine if an mm has mmu notifiers
with blockable invalidate range callbacks to avoid oom reaping.
Otherwise, the callbacks are used around unmap_page_range().
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1712141330120.74052@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dimitri Sivanich <sivanich@hpe.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 4d4bbd8526 ("mm, oom_reaper: skip mm structs with mmu
notifiers") prevented the oom reaper from unmapping private anonymous
memory with the oom reaper when the oom victim mm had mmu notifiers
registered.
The rationale is that doing mmu_notifier_invalidate_range_{start,end}()
around the unmap_page_range(), which is needed, can block and the oom
killer will stall forever waiting for the victim to exit, which may not
be possible without reaping.
That concern is real, but only true for mmu notifiers that have
blockable invalidate_range_{start,end}() callbacks. This patch adds a
"flags" field to mmu notifier ops that can set a bit to indicate that
these callbacks do not block.
The implementation is steered toward an expensive slowpath, such as
after the oom reaper has grabbed mm->mmap_sem of a still alive oom
victim.
[rientjes@google.com: mmu_notifier_invalidate_range_end() can also call the invalidate_range() must not block, fix comment]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1801091339570.240101@chino.kir.corp.google.com
[akpm@linux-foundation.org: make mm_has_blockable_invalidate_notifiers() return bool, use rwsem_is_locked()]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1712141329500.74052@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the current design, khugepaged needs to acquire mmap_sem before
scanning an mm. But in some corner cases, khugepaged may scan a process
which is modifying its memory mapping, so khugepaged blocks in
uninterruptible state. But the process might hold the mmap_sem for a
long time when modifying a huge memory space and it may trigger the
below khugepaged hung issue:
INFO: task khugepaged:270 blocked for more than 120 seconds.
Tainted: G E 4.9.65-006.ali3000.alios7.x86_64 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
khugepaged D 0 270 2 0x00000000
ffff883f3deae4c0 0000000000000000 ffff883f610596c0 ffff883f7d359440
ffff883f63818000 ffffc90019adfc78 ffffffff817079a5 d67e5aa8c1860a64
0000000000000246 ffff883f7d359440 ffffc90019adfc88 ffff883f610596c0
Call Trace:
schedule+0x36/0x80
rwsem_down_read_failed+0xf0/0x150
call_rwsem_down_read_failed+0x18/0x30
down_read+0x20/0x40
khugepaged+0x476/0x11d0
kthread+0xe6/0x100
ret_from_fork+0x25/0x30
So it sounds pointless to just block khugepaged waiting for the
semaphore so replace down_read() with down_read_trylock() to move to
scan the next mm quickly instead of just blocking on the semaphore so
that other processes can get more chances to install THP. Then
khugepaged can come back to scan the skipped mm when it has finished the
current round full_scan.
And it appears that the change can improve khugepaged efficiency a
little bit.
Below is the test result when running LTP on a 24 cores 4GB memory 2
nodes NUMA VM:
pristine w/ trylock
full_scan 197 187
pages_collapsed 21 26
thp_fault_alloc 40818 44466
thp_fault_fallback 18413 16679
thp_collapse_alloc 21 150
thp_collapse_alloc_failed 14 16
thp_file_alloc 369 369
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: tweak comment]
[arnd@arndb.de: avoid uninitialized variable use]
Link: http://lkml.kernel.org/r/20171215125129.2948634-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/1513281203-54878-1-git-send-email-yang.s@alibaba-inc.com
Signed-off-by: Yang Shi <yang.s@alibaba-inc.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of marking the pmd ready for split, invalidate the pmd. This
should take care of powerpc requirement. Only side effect is that we
mark the pmd invalid early. This can result in us blocking access to
the page a bit longer if we race against a thp split.
[kirill.shutemov@linux.intel.com: rebased, dirty THP once]
Link: http://lkml.kernel.org/r/20171213105756.69879-13-kirill.shutemov@linux.intel.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Daney <david.daney@cavium.com>
Cc: David Miller <davem@davemloft.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitin Gupta <nitin.m.gupta@oracle.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the modifed pmdp_invalidate() that returns the previous value of pmd
to transfer dirty and accessed bits.
Link: http://lkml.kernel.org/r/20171213105756.69879-12-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Daney <david.daney@cavium.com>
Cc: David Miller <davem@davemloft.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitin Gupta <nitin.m.gupta@oracle.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil noted that pmdp_invalidate() is not atomic and we can lose
dirty and access bits if CPU sets them after pmdp dereference, but
before set_pmd_at().
The patch change pmdp_invalidate() to make the entry non-present
atomically and return previous value of the entry. This value can be
used to check if CPU set dirty/accessed bits under us.
The race window is very small and I haven't seen any reports that can be
attributed to the bug. For this reason, I don't think backporting to
stable trees needed.
Link: http://lkml.kernel.org/r/20171213105756.69879-11-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Daney <david.daney@cavium.com>
Cc: David Miller <davem@davemloft.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitin Gupta <nitin.m.gupta@oracle.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several users of unmap_mapping_range() would prefer to express their
range in pages rather than bytes. Unfortuately, on a 32-bit kernel, you
have to remember to cast your page number to a 64-bit type before
shifting it, and four places in the current tree didn't remember to do
that. That's a sign of a bad interface.
Conveniently, unmap_mapping_range() actually converts from bytes into
pages, so hoist the guts of unmap_mapping_range() into a new function
unmap_mapping_pages() and convert the callers which want to use pages.
Link: http://lkml.kernel.org/r/20171206142627.GD32044@bombadil.infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reported-by: "zhangyi (F)" <yi.zhang@huawei.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pmd_trans_splitting() was removed after THP refcounting redesign,
therefore related comment should be updated.
Link: http://lkml.kernel.org/r/1512625745-59451-1-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In register_page_bootmem_info_section() we call __nr_to_section() in
order to get the mem_section struct at the beginning of the function.
Since we already got it, there is no need for a second call to
__nr_to_section().
Link: http://lkml.kernel.org/r/20171207102914.GA12396@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment describes @fullmm argument, but the function has no such
parameter.
Update the comment to match the code and convert it to kernel-doc
markup.
Link: http://lkml.kernel.org/r/1512394531-2264-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we call register_page_bootmem_info_section() having
CONFIG_SPARSEMEM_VMEMMAP enabled, we check if the pfn is valid.
This check is redundant as we already checked this in
register_page_bootmem_info_node() before calling
register_page_bootmem_info_section(), so let's get rid of it.
Link: http://lkml.kernel.org/r/20171205143422.GA31458@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugepages_treat_as_movable has been introduced by 396faf0303 ("Allow
huge page allocations to use GFP_HIGH_MOVABLE") to allow hugetlb
allocations from ZONE_MOVABLE even when hugetlb pages were not
migrateable. The purpose of the movable zone was different at the time.
It aimed at reducing memory fragmentation and hugetlb pages being long
lived and large werre not contributing to the fragmentation so it was
acceptable to use the zone back then.
Things have changed though and the primary purpose of the zone became
migratability guarantee. If we allow non migrateable hugetlb pages to
be in ZONE_MOVABLE memory hotplug might fail to offline the memory.
Remove the knob and only rely on hugepage_migration_supported to allow
movable zones.
Mel said:
: Primarily it was aimed at allowing the hugetlb pool to safely shrink with
: the ability to grow it again. The use case was for batched jobs, some of
: which needed huge pages and others that did not but didn't want the memory
: useless pinned in the huge pages pool.
:
: I suspect that more users rely on THP than hugetlbfs for flexible use of
: huge pages with fallback options so I think that removing the option
: should be ok.
Link: http://lkml.kernel.org/r/20171003072619.8654-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Alexandru Moise <00moses.alexander00@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Alexandru Moise <00moses.alexander00@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove unused function pgdat_reclaimable_pages() and
node_page_state_snapshot() which becomes unused as well.
Link: http://lkml.kernel.org/r/20171122094416.26019-1-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Shakeel Butt reported he has observed in production systems that the job
loader gets stuck for 10s of seconds while doing a mount operation. It
turns out that it was stuck in register_shrinker() because some
unrelated job was under memory pressure and was spending time in
shrink_slab(). Machines have a lot of shrinkers registered and jobs
under memory pressure have to traverse all of those memcg-aware
shrinkers and affect unrelated jobs which want to register their own
shrinkers.
To solve the issue, this patch simply bails out slab shrinking if it is
found that someone wants to register a shrinker in parallel. A downside
is it could cause unfair shrinking between shrinkers. However, it
should be rare and we can add compilcated logic if we find it's not
enough.
[akpm@linux-foundation.org: tweak code comment]
Link: http://lkml.kernel.org/r/20171115005602.GB23810@bbox
Link: http://lkml.kernel.org/r/1511481899-20335-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Shakeel Butt <shakeelb@google.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__get_free_pages() will return a virtual address, but it is not just a
32-bit address, for example on a 64-bit system. And this comment really
confuses new readers of mm.
Link: http://lkml.kernel.org/r/1511780964-64864-1-git-send-email-chenjiankang1@huawei.com
Signed-off-by: Jiankang Chen <chenjiankang1@huawei.com>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We've seen memory.stat reads in top-level cgroups take up to fourteen
seconds during a userspace bug that created tens of thousands of ghost
cgroups pinned by lingering page cache.
Even with a more reasonable number of cgroups, aggregating memory.stat
is unnecessarily heavy. The complexity is this:
nr_cgroups * nr_stat_items * nr_possible_cpus
where the stat items are ~70 at this point. With 128 cgroups and 128
CPUs - decent, not enormous setups - reading the top-level memory.stat
has to aggregate over a million per-cpu counters. This doesn't scale.
Instead of spreading the source of truth across all CPUs, use the
per-cpu counters merely to batch updates to shared atomic counters.
This is the same as the per-cpu stocks we use for charging memory to the
shared atomic page_counters, and also the way the global vmstat counters
are implemented.
Vmstat has elaborate spilling thresholds that depend on the number of
CPUs, amount of memory, and memory pressure - carefully balancing the
cost of counter updates with the amount of per-cpu error. That's
because the vmstat counters are system-wide, but also used for decisions
inside the kernel (e.g. NR_FREE_PAGES in the allocator). Neither is
true for the memory controller.
Use the same static batch size we already use for page_counter updates
during charging. The per-cpu error in the stats will be 128k, which is
an acceptable ratio of cores to memory accounting granularity.
[hannes@cmpxchg.org: fix warning in __this_cpu_xchg() calls]
Link: http://lkml.kernel.org/r/20171201135750.GB8097@cmpxchg.org
Link: http://lkml.kernel.org/r/20171103153336.24044-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace all raw 'this_cpu_' modifications of the stat and event per-cpu
counters with API functions such as mod_memcg_state().
This makes the code easier to read, but is also in preparation for the
next patch, which changes the per-cpu implementation of those counters.
Link: http://lkml.kernel.org/r/20171103153336.24044-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
in_atomic() has been moved to include/linux/preempt.h, and the filemap.c
doesn't use in_atomic() directly at all, so it sounds unnecessary to
include hardirq.h.
Link: http://lkml.kernel.org/r/1509985319-38633-1-git-send-email-yang.s@alibaba-inc.com
Signed-off-by: Yang Shi <yang.s@alibaba-inc.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In deferred_init_range() we initialize struct pages, and also free them
to buddy allocator. We do it in separate loops, because buddy page is
computed ahead, so we do not want to access a struct page that has not
been initialized yet.
There is still, however, a corner case where it is potentially possible
to access uninitialized struct page: this is when buddy page is from the
next memblock range.
This patch fixes this problem by splitting deferred_init_range() into
two functions: one to initialize struct pages, and another to free them.
In addition, this patch brings the following improvements:
- Get rid of __def_free() helper function. And simplifies loop logic by
adding a new pfn validity check function: deferred_pfn_valid().
- Reduces number of variables that we track. So, there is a higher
chance that we will avoid using stack to store/load variables inside
hot loops.
- Enables future multi-threading of these functions: do initialization
in multiple threads, wait for all threads to finish, do freeing part
in multithreading.
Tested on x86 with 1T of memory to make sure no regressions are
introduced.
[akpm@linux-foundation.org: fix spello in comment]
Link: http://lkml.kernel.org/r/20171107150446.32055-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously we were using the ratio of the number of lru pages scanned to
the number of eligible lru pages to determine the number of slab objects
to scan. The problem with this is that these two things have nothing to
do with each other, so in slab heavy work loads where there is little to
no page cache we can end up with the pages scanned being a very low
number. This means that we reclaim next to no slab pages and waste a
lot of time reclaiming small amounts of space.
Consider the following scenario, where we have the following values and
the rest of the memory usage is in slab
Active: 58840 kB
Inactive: 46860 kB
Every time we do a get_scan_count() we do this
scan = size >> sc->priority
where sc->priority starts at DEF_PRIORITY, which is 12. The first loop
through reclaim would result in a scan target of 2 pages to 11715 total
inactive pages, and 3 pages to 14710 total active pages. This is a
really really small target for a system that is entirely slab pages.
And this is super optimistic, this assumes we even get to scan these
pages. We don't increment sc->nr_scanned unless we 1) isolate the page,
which assumes it's not in use, and 2) can lock the page. Under pressure
these numbers could probably go down, I'm sure there's some random pages
from daemons that aren't actually in use, so the targets get even
smaller.
Instead use sc->priority in the same way we use it to determine scan
amounts for the lru's. This generally equates to pages. Consider the
following
slab_pages = (nr_objects * object_size) / PAGE_SIZE
What we would like to do is
scan = slab_pages >> sc->priority
but we don't know the number of slab pages each shrinker controls, only
the objects. However say that theoretically we knew how many pages a
shrinker controlled, we'd still have to convert this to objects, which
would look like the following
scan = shrinker_pages >> sc->priority
scan_objects = (PAGE_SIZE / object_size) * scan
or written another way
scan_objects = (shrinker_pages >> sc->priority) *
(PAGE_SIZE / object_size)
which can thus be written
scan_objects = ((shrinker_pages * PAGE_SIZE) / object_size) >>
sc->priority
which is just
scan_objects = nr_objects >> sc->priority
We don't need to know exactly how many pages each shrinker represents,
it's objects are all the information we need. Making this change allows
us to place an appropriate amount of pressure on the shrinker pools for
their relative size.
Link: http://lkml.kernel.org/r/1510780549-6812-1-git-send-email-josef@toxicpanda.com
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Dave Chinner <david@fromorbit.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we display some hugepage statistics (total, free, etc) in
/proc/meminfo, but only for default hugepage size (e.g. 2Mb).
If hugepages of different sizes are used (like 2Mb and 1Gb on x86-64),
/proc/meminfo output can be confusing, as non-default sized hugepages
are not reflected at all, and there are no signs that they are existing
and consuming system memory.
To solve this problem, let's display the total amount of memory,
consumed by hugetlb pages of all sized (both free and used). Let's call
it "Hugetlb", and display size in kB to match generic /proc/meminfo
style.
For example, (1024 2Mb pages and 2 1Gb pages are pre-allocated):
$ cat /proc/meminfo
MemTotal: 8168984 kB
MemFree: 3789276 kB
<...>
CmaFree: 0 kB
HugePages_Total: 1024
HugePages_Free: 1024
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 4194304 kB
DirectMap4k: 32632 kB
DirectMap2M: 4161536 kB
DirectMap1G: 6291456 kB
Also, this patch updates corresponding docs to reflect Hugetlb entry
meaning and difference between Hugetlb and HugePages_Total * Hugepagesize.
Link: http://lkml.kernel.org/r/20171115231409.12131-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pulling cpu hotplug locks inside the mm core function like
lru_add_drain_all just asks for problems and the recent lockdep splat
[1] just proves this. While the usage in that particular case might be
wrong we should avoid the locking as lru_add_drain_all() is used in many
places. It seems that this is not all that hard to achieve actually.
We have done the same thing for drain_all_pages which is analogous by
commit a459eeb7b8 ("mm, page_alloc: do not depend on cpu hotplug locks
inside the allocator"). All we have to care about is to handle
- the work item might be executed on a different cpu in worker from
unbound pool so it doesn't run on pinned on the cpu
- we have to make sure that we do not race with page_alloc_cpu_dead
calling lru_add_drain_cpu
the first part is already handled because the worker calls lru_add_drain
which disables preemption when calling lru_add_drain_cpu on the local
cpu it is draining. The later is true because page_alloc_cpu_dead is
called on the controlling CPU after the hotplugged CPU vanished
completely.
[1] http://lkml.kernel.org/r/089e0825eec8955c1f055c83d476@google.com
[add a cpu hotplug locking interaction as per tglx]
Link: http://lkml.kernel.org/r/20171116120535.23765-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As in manpage of migrate_pages, the errno should be set to EINVAL when
none of the node IDs specified by new_nodes are on-line and allowed by
the process's current cpuset context, or none of the specified nodes
contain memory. However, when test by following case:
new_nodes = 0;
old_nodes = 0xf;
ret = migrate_pages(pid, old_nodes, new_nodes, MAX);
The ret will be 0 and no errno is set. As the new_nodes is empty, we
should expect EINVAL as documented.
To fix the case like above, this patch check whether target nodes AND
current task_nodes is empty, and then check whether AND
node_states[N_MEMORY] is empty.
Link: http://lkml.kernel.org/r/1510882624-44342-4-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Chris Salls <salls@cs.ucsb.edu>
Cc: Christopher Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tan Xiaojun <tanxiaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As Xiaojun reported the ltp of migrate_pages01 will fail on arm64 system
which has 4 nodes[0...3], all have memory and CONFIG_NODES_SHIFT=2:
migrate_pages01 0 TINFO : test_invalid_nodes
migrate_pages01 14 TFAIL : migrate_pages_common.c:45: unexpected failure - returned value = 0, expected: -1
migrate_pages01 15 TFAIL : migrate_pages_common.c:55: call succeeded unexpectedly
In this case the test_invalid_nodes of migrate_pages01 will call:
SYSC_migrate_pages as:
migrate_pages(0, , {0x0000000000000001}, 64, , {0x0000000000000010}, 64) = 0
The new nodes specifies one or more node IDs that are greater than the
maximum supported node ID, however, the errno is not set to EINVAL as
expected.
As man pages of set_mempolicy[1], mbind[2], and migrate_pages[3]
mentioned, when nodemask specifies one or more node IDs that are greater
than the maximum supported node ID, the errno should set to EINVAL.
However, get_nodes only check whether the part of bits
[BITS_PER_LONG*BITS_TO_LONGS(MAX_NUMNODES), maxnode) is zero or not, and
remain [MAX_NUMNODES, BITS_PER_LONG*BITS_TO_LONGS(MAX_NUMNODES)
unchecked.
This patch is to check the bits of [MAX_NUMNODES, maxnode) in get_nodes
to let migrate_pages set the errno to EINVAL when nodemask specifies one
or more node IDs that are greater than the maximum supported node ID,
which follows the manpage's guide.
[1] http://man7.org/linux/man-pages/man2/set_mempolicy.2.html
[2] http://man7.org/linux/man-pages/man2/mbind.2.html
[3] http://man7.org/linux/man-pages/man2/migrate_pages.2.html
Link: http://lkml.kernel.org/r/1510882624-44342-3-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Reported-by: Tan Xiaojun <tanxiaojun@huawei.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Chris Salls <salls@cs.ucsb.edu>
Cc: Christopher Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have already checked whether maxnode is a page worth of bits, by:
maxnode > PAGE_SIZE*BITS_PER_BYTE
So no need to check it once more.
Link: http://lkml.kernel.org/r/1510882624-44342-2-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Chris Salls <salls@cs.ucsb.edu>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Tan Xiaojun <tanxiaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to have ARCH_SUPPORTS_DEFERRED_STRUCT_PAGE_INIT, as all
the page initialization code is in common code.
Also, there is no need to depend on MEMORY_HOTPLUG, as initialization
code does not really use hotplug memory functionality. So, we can
remove this requirement as well.
This patch allows to use deferred struct page initialization on all
platforms with memblock allocator.
Tested on x86, arm64, and sparc. Also, verified that code compiles on
PPC with CONFIG_MEMORY_HOTPLUG disabled.
Link: http://lkml.kernel.org/r/20171117014601.31606-1-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Zswap is a cache which compresses the pages that are being swapped out
and stores them into a dynamically allocated RAM-based memory pool.
Experiments have shown that around 10-20% of pages stored in zswap are
same-filled pages (i.e. contents of the page are all same), but these
pages are handled as normal pages by compressing and allocating memory
in the pool.
This patch adds a check in zswap_frontswap_store() to identify
same-filled page before compression of the page. If the page is a
same-filled page, set zswap_entry.length to zero, save the same-filled
value and skip the compression of the page and alloction of memory in
zpool. In zswap_frontswap_load(), check if value of zswap_entry.length
is zero corresponding to the page to be loaded. If zswap_entry.length
is zero, fill the page with same-filled value. This saves the
decompression time during load.
On a ARM Quad Core 32-bit device with 1.5GB RAM by launching and
relaunching different applications, out of ~64000 pages stored in zswap,
~11000 pages were same-value filled pages (including zero-filled pages)
and ~9000 pages were zero-filled pages.
An average of 17% of pages(including zero-filled pages) in zswap are
same-value filled pages and 14% pages are zero-filled pages. An average
of 3% of pages are same-filled non-zero pages.
The below table shows the execution time profiling with the patch.
Baseline With patch % Improvement
-----------------------------------------------------------------
*Zswap Store Time 26.5ms 18ms 32%
(of same value pages)
*Zswap Load Time
(of same value pages) 25.5ms 13ms 49%
-----------------------------------------------------------------
On Ubuntu PC with 2GB RAM, while executing kernel build and other test
scripts and running multimedia applications, out of 360000 pages stored
in zswap 78000(~22%) of pages were found to be same-value filled pages
(including zero-filled pages) and 64000(~17%) are zero-filled pages. So
an average of %5 of pages are same-filled non-zero pages.
The below table shows the execution time profiling with the patch.
Baseline With patch % Improvement
-----------------------------------------------------------------
*Zswap Store Time 91ms 74ms 19%
(of same value pages)
*Zswap Load Time 50ms 7.5ms 85%
(of same value pages)
-----------------------------------------------------------------
*The execution times may vary with test device used.
Dan said:
: I did test this patch out this week, and I added some instrumentation to
: check the performance impact, and tested with a small program to try to
: check the best and worst cases.
:
: When doing a lot of swap where all (or almost all) pages are same-value, I
: found this patch does save both time and space, significantly. The exact
: improvement in time and space depends on which compressor is being used,
: but roughly agrees with the numbers you listed.
:
: In the worst case situation, where all (or almost all) pages have the
: same-value *except* the final long (meaning, zswap will check each long on
: the entire page but then still have to pass the page to the compressor),
: the same-value check is around 10-15% of the total time spent in
: zswap_frontswap_store(). That's a not-insignificant amount of time, but
: it's not huge. Considering that most systems will probably be swapping
: pages that aren't similar to the worst case (although I don't have any
: data to know that), I'd say the improvement is worth the possible
: worst-case performance impact.
[srividya.dr@samsung.com: add memset_l instead of for loop]
Link: http://lkml.kernel.org/r/20171018104832epcms5p1b2232e2236258de3d03d1344dde9fce0@epcms5p1
Signed-off-by: Srividya Desireddy <srividya.dr@samsung.com>
Acked-by: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Dinakar Reddy Pathireddy <dinakar.p@samsung.com>
Cc: SHARAN ALLUR <sharan.allur@samsung.com>
Cc: RAJIB BASU <rajib.basu@samsung.com>
Cc: JUHUN KIM <juhunkim@samsung.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Timofey Titovets <nefelim4ag@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Preempt counter APIs have been split out, currently, hardirq.h just
includes irq_enter/exit APIs which are not used by kmemleak at all.
So, remove the unused hardirq.h.
Link: http://lkml.kernel.org/r/1510959741-31109-1-git-send-email-yang.s@alibaba-inc.com
Signed-off-by: Yang Shi <yang.s@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit d6e0b7fa11 ("slub: make dead caches discard free slabs
immediately") makes put_cpu_partial() run with preemption disabled and
interrupts disabled when calling unfreeze_partials().
The comment: "put_cpu_partial() is done without interrupts disabled and
without preemption disabled" looks obsolete, so remove it.
Link: http://lkml.kernel.org/r/1516968550-1520-1-git-send-email-miles.chen@mediatek.com
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Start address calculated for slab padding restoration was wrong. Wrong
address would point to some section before padding and could cause
corruption
Link: http://lkml.kernel.org/r/1516604578-4577-1-git-send-email-balasubramani_vivekanandan@mentor.com
Signed-off-by: Balasubramani Vivekanandan <balasubramani_vivekanandan@mentor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
slab_state is being set to "UP" in create_kmalloc_caches(), and later on
we set it again in kmem_cache_init_late(), but slab_state does not
change in the meantime.
Remove the redundant assignment from kmem_cache_init_late().
And unless I overlooked anything, the same goes for "slab_state = FULL".
slab_state is set to "FULL" in kmem_cache_init_late(), but it is later
being set again in cpucache_init(), which gets called from
do_initcall_level(). So remove the assignment from cpucache_init() as
well.
Link: http://lkml.kernel.org/r/20171215134452.GA1920@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
calculate_alignment() function is only used inside slab_common.c. So
make it static and let the compiler do more optimizations.
After this patch there's a small improvement in text and data size.
$ gcc --version
gcc (GCC) 7.2.1 20171128
Before:
text data bss dec hex filename
9890457 3828702 1212364 14931523 e3d643 vmlinux
After:
text data bss dec hex filename
9890437 3828670 1212364 14931471 e3d60f vmlinux
Also I fixed a style problem reported by checkpatch.
WARNING: Missing a blank line after declarations
#53: FILE: mm/slab_common.c:286:
+ unsigned long ralign = cache_line_size();
+ while (size <= ralign / 2)
Link: http://lkml.kernel.org/r/20171210080132.406-1-bhlee.kernel@gmail.com
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull get_user_pages_fast updates from Al Viro:
"A bit more get_user_pages work"
* 'work.get_user_pages_fast' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
kvm: switch get_user_page_nowait() to get_user_pages_unlocked()
__get_user_pages_locked(): get rid of notify_drop argument
get_user_pages_unlocked(): pass true to __get_user_pages_locked() notify_drop
cris: switch to get_user_pages_fast()
fold __get_user_pages_unlocked() into its sole remaining caller
Pull misc vfs updates from Al Viro:
"All kinds of misc stuff, without any unifying topic, from various
people.
Neil's d_anon patch, several bugfixes, introduction of kvmalloc
analogue of kmemdup_user(), extending bitfield.h to deal with
fixed-endians, assorted cleanups all over the place..."
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (28 commits)
alpha: osf_sys.c: use timespec64 where appropriate
alpha: osf_sys.c: fix put_tv32 regression
jffs2: Fix use-after-free bug in jffs2_iget()'s error handling path
dcache: delete unused d_hash_mask
dcache: subtract d_hash_shift from 32 in advance
fs/buffer.c: fold init_buffer() into init_page_buffers()
fs: fold __inode_permission() into inode_permission()
fs: add RWF_APPEND
sctp: use vmemdup_user() rather than badly open-coding memdup_user()
snd_ctl_elem_init_enum_names(): switch to vmemdup_user()
replace_user_tlv(): switch to vmemdup_user()
new primitive: vmemdup_user()
memdup_user(): switch to GFP_USER
eventfd: fold eventfd_ctx_get() into eventfd_ctx_fileget()
eventfd: fold eventfd_ctx_read() into eventfd_read()
eventfd: convert to use anon_inode_getfd()
nfs4file: get rid of pointless include of btrfs.h
uvc_v4l2: clean copyin/copyout up
vme_user: don't use __copy_..._user()
usx2y: don't bother with memdup_user() for 16-byte structure
...
Pull poll annotations from Al Viro:
"This introduces a __bitwise type for POLL### bitmap, and propagates
the annotations through the tree. Most of that stuff is as simple as
'make ->poll() instances return __poll_t and do the same to local
variables used to hold the future return value'.
Some of the obvious brainos found in process are fixed (e.g. POLLIN
misspelled as POLL_IN). At that point the amount of sparse warnings is
low and most of them are for genuine bugs - e.g. ->poll() instance
deciding to return -EINVAL instead of a bitmap. I hadn't touched those
in this series - it's large enough as it is.
Another problem it has caught was eventpoll() ABI mess; select.c and
eventpoll.c assumed that corresponding POLL### and EPOLL### were
equal. That's true for some, but not all of them - EPOLL### are
arch-independent, but POLL### are not.
The last commit in this series separates userland POLL### values from
the (now arch-independent) kernel-side ones, converting between them
in the few places where they are copied to/from userland. AFAICS, this
is the least disruptive fix preserving poll(2) ABI and making epoll()
work on all architectures.
As it is, it's simply broken on sparc - try to give it EPOLLWRNORM and
it will trigger only on what would've triggered EPOLLWRBAND on other
architectures. EPOLLWRBAND and EPOLLRDHUP, OTOH, are never triggered
at all on sparc. With this patch they should work consistently on all
architectures"
* 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (37 commits)
make kernel-side POLL... arch-independent
eventpoll: no need to mask the result of epi_item_poll() again
eventpoll: constify struct epoll_event pointers
debugging printk in sg_poll() uses %x to print POLL... bitmap
annotate poll(2) guts
9p: untangle ->poll() mess
->si_band gets POLL... bitmap stored into a user-visible long field
ring_buffer_poll_wait() return value used as return value of ->poll()
the rest of drivers/*: annotate ->poll() instances
media: annotate ->poll() instances
fs: annotate ->poll() instances
ipc, kernel, mm: annotate ->poll() instances
net: annotate ->poll() instances
apparmor: annotate ->poll() instances
tomoyo: annotate ->poll() instances
sound: annotate ->poll() instances
acpi: annotate ->poll() instances
crypto: annotate ->poll() instances
block: annotate ->poll() instances
x86: annotate ->poll() instances
...
Pull siginfo cleanups from Eric Biederman:
"Long ago when 2.4 was just a testing release copy_siginfo_to_user was
made to copy individual fields to userspace, possibly for efficiency
and to ensure initialized values were not copied to userspace.
Unfortunately the design was complex, it's assumptions unstated, and
humans are fallible and so while it worked much of the time that
design failed to ensure unitialized memory is not copied to userspace.
This set of changes is part of a new design to clean up siginfo and
simplify things, and hopefully make the siginfo handling robust enough
that a simple inspection of the code can be made to ensure we don't
copy any unitializied fields to userspace.
The design is to unify struct siginfo and struct compat_siginfo into a
single definition that is shared between all architectures so that
anyone adding to the set of information shared with struct siginfo can
see the whole picture. Hopefully ensuring all future si_code
assignments are arch independent.
The design is to unify copy_siginfo_to_user32 and
copy_siginfo_from_user32 so that those function are complete and cope
with all of the different cases documented in signinfo_layout. I don't
think there was a single implementation of either of those functions
that was complete and correct before my changes unified them.
The design is to introduce a series of helpers including
force_siginfo_fault that take the values that are needed in struct
siginfo and build the siginfo structure for their callers. Ensuring
struct siginfo is built correctly.
The remaining work for 4.17 (unless someone thinks it is post -rc1
material) is to push usage of those helpers down into the
architectures so that architecture specific code will not need to deal
with the fiddly work of intializing struct siginfo, and then when
struct siginfo is guaranteed to be fully initialized change copy
siginfo_to_user into a simple wrapper around copy_to_user.
Further there is work in progress on the issues that have been
documented requires arch specific knowledge to sort out.
The changes below fix or at least document all of the issues that have
been found with siginfo generation. Then proceed to unify struct
siginfo the 32 bit helpers that copy siginfo to and from userspace,
and generally clean up anything that is not arch specific with regards
to siginfo generation.
It is a lot but with the unification you can of siginfo you can
already see the code reduction in the kernel"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (45 commits)
signal/memory-failure: Use force_sig_mceerr and send_sig_mceerr
mm/memory_failure: Remove unused trapno from memory_failure
signal/ptrace: Add force_sig_ptrace_errno_trap and use it where needed
signal/powerpc: Remove unnecessary signal_code parameter of do_send_trap
signal: Helpers for faults with specialized siginfo layouts
signal: Add send_sig_fault and force_sig_fault
signal: Replace memset(info,...) with clear_siginfo for clarity
signal: Don't use structure initializers for struct siginfo
signal/arm64: Better isolate the COMPAT_TASK portion of ptrace_hbptriggered
ptrace: Use copy_siginfo in setsiginfo and getsiginfo
signal: Unify and correct copy_siginfo_to_user32
signal: Remove the code to clear siginfo before calling copy_siginfo_from_user32
signal: Unify and correct copy_siginfo_from_user32
signal/blackfin: Remove pointless UID16_SIGINFO_COMPAT_NEEDED
signal/blackfin: Move the blackfin specific si_codes to asm-generic/siginfo.h
signal/tile: Move the tile specific si_codes to asm-generic/siginfo.h
signal/frv: Move the frv specific si_codes to asm-generic/siginfo.h
signal/ia64: Move the ia64 specific si_codes to asm-generic/siginfo.h
signal/powerpc: Remove redefinition of NSIGTRAP on powerpc
signal: Move addr_lsb into the _sigfault union for clarity
...
Pull RCU updates from Ingo Molnar:
"The main RCU changes in this cycle were:
- Updates to use cond_resched() instead of cond_resched_rcu_qs()
where feasible (currently everywhere except in kernel/rcu and in
kernel/torture.c). Also a couple of fixes to avoid sending IPIs to
offline CPUs.
- Updates to simplify RCU's dyntick-idle handling.
- Updates to remove almost all uses of smp_read_barrier_depends() and
read_barrier_depends().
- Torture-test updates.
- Miscellaneous fixes"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
torture: Save a line in stutter_wait(): while -> for
torture: Eliminate torture_runnable and perf_runnable
torture: Make stutter less vulnerable to compilers and races
locking/locktorture: Fix num reader/writer corner cases
locking/locktorture: Fix rwsem reader_delay
torture: Place all torture-test modules in one MAINTAINERS group
rcutorture/kvm-build.sh: Skip build directory check
rcutorture: Simplify functions.sh include path
rcutorture: Simplify logging
rcutorture/kvm-recheck-*: Improve result directory readability check
rcutorture/kvm.sh: Support execution from any directory
rcutorture/kvm.sh: Use consistent help text for --qemu-args
rcutorture/kvm.sh: Remove unused variable, `alldone`
rcutorture: Remove unused script, config2frag.sh
rcutorture/configinit: Fix build directory error message
rcutorture: Preempt RCU-preempt readers more vigorously
torture: Reduce #ifdefs for preempt_schedule()
rcu: Remove have_rcu_nocb_mask from tree_plugin.h
rcu: Add comment giving debug strategy for double call_rcu()
tracing, rcu: Hide trace event rcu_nocb_wake when not used
...
Pull block updates from Jens Axboe:
"This is the main pull request for block IO related changes for the
4.16 kernel. Nothing major in this pull request, but a good amount of
improvements and fixes all over the map. This contains:
- BFQ improvements, fixes, and cleanups from Angelo, Chiara, and
Paolo.
- Support for SMR zones for deadline and mq-deadline from Damien and
Christoph.
- Set of fixes for bcache by way of Michael Lyle, including fixes
from himself, Kent, Rui, Tang, and Coly.
- Series from Matias for lightnvm with fixes from Hans Holmberg,
Javier, and Matias. Mostly centered around pblk, and the removing
rrpc 1.2 in preparation for supporting 2.0.
- A couple of NVMe pull requests from Christoph. Nothing major in
here, just fixes and cleanups, and support for command tracing from
Johannes.
- Support for blk-throttle for tracking reads and writes separately.
From Joseph Qi. A few cleanups/fixes also for blk-throttle from
Weiping.
- Series from Mike Snitzer that enables dm to register its queue more
logically, something that's alwways been problematic on dm since
it's a stacked device.
- Series from Ming cleaning up some of the bio accessor use, in
preparation for supporting multipage bvecs.
- Various fixes from Ming closing up holes around queue mapping and
quiescing.
- BSD partition fix from Richard Narron, fixing a problem where we
can't mount newer (10/11) FreeBSD partitions.
- Series from Tejun reworking blk-mq timeout handling. The previous
scheme relied on atomic bits, but it had races where we would think
a request had timed out if it to reused at the wrong time.
- null_blk now supports faking timeouts, to enable us to better
exercise and test that functionality separately. From me.
- Kill the separate atomic poll bit in the request struct. After
this, we don't use the atomic bits on blk-mq anymore at all. From
me.
- sgl_alloc/free helpers from Bart.
- Heavily contended tag case scalability improvement from me.
- Various little fixes and cleanups from Arnd, Bart, Corentin,
Douglas, Eryu, Goldwyn, and myself"
* 'for-4.16/block' of git://git.kernel.dk/linux-block: (186 commits)
block: remove smart1,2.h
nvme: add tracepoint for nvme_complete_rq
nvme: add tracepoint for nvme_setup_cmd
nvme-pci: introduce RECONNECTING state to mark initializing procedure
nvme-rdma: remove redundant boolean for inline_data
nvme: don't free uuid pointer before printing it
nvme-pci: Suspend queues after deleting them
bsg: use pr_debug instead of hand crafted macros
blk-mq-debugfs: don't allow write on attributes with seq_operations set
nvme-pci: Fix queue double allocations
block: Set BIO_TRACE_COMPLETION on new bio during split
blk-throttle: use queue_is_rq_based
block: Remove kblockd_schedule_delayed_work{,_on}()
blk-mq: Avoid that blk_mq_delay_run_hw_queue() introduces unintended delays
blk-mq: Rename blk_mq_request_direct_issue() into blk_mq_request_issue_directly()
lib/scatterlist: Fix chaining support in sgl_alloc_order()
blk-throttle: track read and write request individually
block: add bdev_read_only() checks to common helpers
block: fail op_is_write() requests to read-only partitions
blk-throttle: export io_serviced_recursive, io_service_bytes_recursive
...
Today 4 architectures set ARCH_SUPPORTS_MEMORY_FAILURE (arm64, parisc,
powerpc, and x86), while 4 other architectures set __ARCH_SI_TRAPNO
(alpha, metag, sparc, and tile). These two sets of architectures do
not interesect so remove the trapno paramater to remove confusion.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The new helper would check if the pfn belongs to the page. For huge
pages it checks if the PFN is within range covered by the huge page.
The helper is used in check_pte(). The original code the helper replaces
had two call to page_to_pfn(). page_to_pfn() is relatively costly.
Although current GCC is able to optimize code to have one call, it's
better to do this explicitly.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo reported random crashes under memory pressure on 32-bit x86
system and tracked down to change that introduced
page_vma_mapped_walk().
The root cause of the issue is the faulty pointer math in check_pte().
As ->pte may point to an arbitrary page we have to check that they are
belong to the section before doing math. Otherwise it may lead to weird
results.
It wasn't noticed until now as mem_map[] is virtually contiguous on
flatmem or vmemmap sparsemem. Pointer arithmetic just works against all
'struct page' pointers. But with classic sparsemem, it doesn't because
each section memap is allocated separately and so consecutive pfns
crossing two sections might have struct pages at completely unrelated
addresses.
Let's restructure code a bit and replace pointer arithmetic with
operations on pfns.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-and-tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Fixes: ace71a19ce ("mm: introduce page_vma_mapped_walk()")
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In support of removing the VM_MIXEDMAP indication from DAX VMAs,
introduce pfn_t_special() for drivers to indicate that _PAGE_SPECIAL
should be used for DAX ptes. This also helps identify drivers like
dccssblk that only want to use DAX in a read-only fashion without
get_user_pages() support.
Ideally we could delete axonram and dcssblk DAX support, but if we need
to keep it better make it explicit that axonram and dcssblk only support
a sub-set of DAX due to missing _PAGE_DEVMAP support.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When setting page_owner = on, the following warning can be seen in the
boot log:
WARNING: CPU: 0 PID: 0 at mm/page_alloc.c:2537 drain_all_pages+0x171/0x1a0
Modules linked in:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.15.0-rc7-next-20180109-1-default+ #7
Hardware name: Dell Inc. Latitude E7470/0T6HHJ, BIOS 1.11.3 11/09/2016
RIP: 0010:drain_all_pages+0x171/0x1a0
Call Trace:
init_page_owner+0x4e/0x260
start_kernel+0x3e6/0x4a6
? set_init_arg+0x55/0x55
secondary_startup_64+0xa5/0xb0
Code: c5 ed ff 89 df 48 c7 c6 20 3b 71 82 e8 f9 4b 52 00 3b 05 d7 0b f8 00 89 c3 72 d5 5b 5d 41 5
This warning is shown because we are calling drain_all_pages() in
init_early_allocated_pages(), but mm_percpu_wq is not up yet, it is being
set up later on in kernel_init_freeable() -> init_mm_internals().
Link: http://lkml.kernel.org/r/20180109153921.GA13070@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ayush Mittal <ayush.m@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
James reported a bug in swap paging-in from his testing. It is that
do_swap_page doesn't release locked page so system hang-up happens due
to a deadlock on PG_locked.
It was introduced by 0bcac06f27 ("mm, swap: skip swapcache for swapin
of synchronous device") because I missed swap cache hit places to update
swapcache variable to work well with other logics against swapcache in
do_swap_page.
This patch fixes it.
Debugged by James Bottomley.
Link: http://lkml.kernel.org/r/<1514407817.4169.4.camel@HansenPartnership.com>
Link: http://lkml.kernel.org/r/20180102235606.GA19438@bbox
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: James Bottomley <James.Bottomley@hansenpartnership.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With all known usercopied cache whitelists now defined in the
kernel, switch the default usercopy region of kmem_cache_create()
to size 0. Any new caches with usercopy regions will now need to use
kmem_cache_create_usercopy() instead of kmem_cache_create().
This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code are
mine and don't reflect the original grsecurity/PaX code.
Cc: David Windsor <dave@nullcore.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Mark the kmalloc slab caches as entirely whitelisted. These caches
are frequently used to fulfill kernel allocations that contain data
to be copied to/from userspace. Internal-only uses are also common,
but are scattered in the kernel. For now, mark all the kmalloc caches
as whitelisted.
This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code are
mine and don't reflect the original grsecurity/PaX code.
Signed-off-by: David Windsor <dave@nullcore.net>
[kees: merged in moved kmalloc hunks, adjust commit log]
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Cc: linux-xfs@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Christoph Lameter <cl@linux.com>
This introduces CONFIG_HARDENED_USERCOPY_FALLBACK to control the
behavior of hardened usercopy whitelist violations. By default, whitelist
violations will continue to WARN() so that any bad or missing usercopy
whitelists can be discovered without being too disruptive.
If this config is disabled at build time or a system is booted with
"slab_common.usercopy_fallback=0", usercopy whitelists will BUG() instead
of WARN(). This is useful for admins that want to use usercopy whitelists
immediately.
Suggested-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
This patch adds checking of usercopy cache whitelisting, and is modified
from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the
last public patch of grsecurity/PaX based on my understanding of the
code. Changes or omissions from the original code are mine and don't
reflect the original grsecurity/PaX code.
The SLAB and SLUB allocators are modified to WARN() on all copy operations
in which the kernel heap memory being modified falls outside of the cache's
defined usercopy region.
Based on an earlier patch from David Windsor.
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-mm@kvack.org
Cc: linux-xfs@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
This patch prepares the slab allocator to handle caches having annotations
(useroffset and usersize) defining usercopy regions.
This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on
my understanding of the code. Changes or omissions from the original
code are mine and don't reflect the original grsecurity/PaX code.
Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs. To further
restrict what memory is available for copying, this creates a way to
whitelist specific areas of a given slab cache object for copying to/from
userspace, allowing much finer granularity of access control. Slab caches
that are never exposed to userspace can declare no whitelist for their
objects, thereby keeping them unavailable to userspace via dynamic copy
operations. (Note, an implicit form of whitelisting is the use of constant
sizes in usercopy operations and get_user()/put_user(); these bypass
hardened usercopy checks since these sizes cannot change at runtime.)
To support this whitelist annotation, usercopy region offset and size
members are added to struct kmem_cache. The slab allocator receives a
new function, kmem_cache_create_usercopy(), that creates a new cache
with a usercopy region defined, suitable for declaring spans of fields
within the objects that get copied to/from userspace.
In this patch, the default kmem_cache_create() marks the entire allocation
as whitelisted, leaving it semantically unchanged. Once all fine-grained
whitelists have been added (in subsequent patches), this will be changed
to a usersize of 0, making caches created with kmem_cache_create() not
copyable to/from userspace.
After the entire usercopy whitelist series is applied, less than 15%
of the slab cache memory remains exposed to potential usercopy bugs
after a fresh boot:
Total Slab Memory: 48074720
Usercopyable Memory: 6367532 13.2%
task_struct 0.2% 4480/1630720
RAW 0.3% 300/96000
RAWv6 2.1% 1408/64768
ext4_inode_cache 3.0% 269760/8740224
dentry 11.1% 585984/5273856
mm_struct 29.1% 54912/188448
kmalloc-8 100.0% 24576/24576
kmalloc-16 100.0% 28672/28672
kmalloc-32 100.0% 81920/81920
kmalloc-192 100.0% 96768/96768
kmalloc-128 100.0% 143360/143360
names_cache 100.0% 163840/163840
kmalloc-64 100.0% 167936/167936
kmalloc-256 100.0% 339968/339968
kmalloc-512 100.0% 350720/350720
kmalloc-96 100.0% 455616/455616
kmalloc-8192 100.0% 655360/655360
kmalloc-1024 100.0% 812032/812032
kmalloc-4096 100.0% 819200/819200
kmalloc-2048 100.0% 1310720/1310720
After some kernel build workloads, the percentage (mainly driven by
dentry and inode caches expanding) drops under 10%:
Total Slab Memory: 95516184
Usercopyable Memory: 8497452 8.8%
task_struct 0.2% 4000/1456000
RAW 0.3% 300/96000
RAWv6 2.1% 1408/64768
ext4_inode_cache 3.0% 1217280/39439872
dentry 11.1% 1623200/14608800
mm_struct 29.1% 73216/251264
kmalloc-8 100.0% 24576/24576
kmalloc-16 100.0% 28672/28672
kmalloc-32 100.0% 94208/94208
kmalloc-192 100.0% 96768/96768
kmalloc-128 100.0% 143360/143360
names_cache 100.0% 163840/163840
kmalloc-64 100.0% 245760/245760
kmalloc-256 100.0% 339968/339968
kmalloc-512 100.0% 350720/350720
kmalloc-96 100.0% 563520/563520
kmalloc-8192 100.0% 655360/655360
kmalloc-1024 100.0% 794624/794624
kmalloc-4096 100.0% 819200/819200
kmalloc-2048 100.0% 1257472/1257472
Signed-off-by: David Windsor <dave@nullcore.net>
[kees: adjust commit log, split out a few extra kmalloc hunks]
[kees: add field names to function declarations]
[kees: convert BUGs to WARNs and fail closed]
[kees: add attack surface reduction analysis to commit log]
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Cc: linux-xfs@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Christoph Lameter <cl@linux.com>
This refactors the hardened usercopy code so that failure reporting can
happen within the checking functions instead of at the top level. This
simplifies the return value handling and allows more details and offsets
to be included in the report. Having the offset can be much more helpful
in understanding hardened usercopy bugs.
Signed-off-by: Kees Cook <keescook@chromium.org>
In preparation for refactoring the usercopy checks to pass offset to
the hardened usercopy report, this renames report_usercopy() to the
more accurate usercopy_abort(), marks it as noreturn because it is,
adds a hopefully helpful comment for anyone investigating such reports,
makes the function available to the slab allocators, and adds new "detail"
and "offset" arguments.
Signed-off-by: Kees Cook <keescook@chromium.org>
Using %p was already mostly useless in the usercopy overflow reports,
so this removes it entirely to avoid confusion now that %p-hashing
is enabled.
Fixes: ad67b74d24 ("printk: hash addresses printed with %p")
Signed-off-by: Kees Cook <keescook@chromium.org>
kmemleak does one slab allocation per user allocation. So if slab fault
injection is enabled to any degree, kmemleak instantly fails to allocate
and turns itself off. However, it's useful to use kmemleak with fault
injection to find leaks on error paths. On the other hand, checking
kmemleak itself is not so useful because (1) it's a debugging tool and
(2) it has a very regular allocation pattern (basically a single
allocation site, so it either works or not).
Turn off fault injection for kmemleak allocations.
Link: http://lkml.kernel.org/r/20180109192243.19316-1-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
'struct page_map' is a private structure of 'struct dev_pagemap' but the
latter replicates all the same fields as the former so there isn't much
value in it. Thus drop it in favour of a completely public struct.
This is a clean up in preperation for a more generally useful
'devm_memeremap_pages' interface.
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Change the calling convention so that get_dev_pagemap always consumes the
previous reference instead of doing this using an explicit earlier call to
put_dev_pagemap in the callers.
The callers will still need to put the final reference after finishing the
loop over the pages.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
There is no clear separation between the two, so merge them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
No functional changes, just untangling the call chain and document
why the altmap is passed around the hotplug code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pass the vmem_altmap two levels down instead of needing a lookup.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We can just pass this on instead of having to do a radix tree lookup
without proper locking 2 levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We can just pass this on instead of having to do a radix tree lookup
without proper locking 2 levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This function isn't used by any modules, and is only to be called
from core MM code. This includes the calls for the add_pages wrapper
that might be inlined.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
similar to memdup_user(), but does *not* guarantee that result will
be physically contiguous; use only in cases where that's not a requirement
and free it with kvfree().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs fixes from Al Viro:
- untangle sys_close() abuses in xt_bpf
- deal with register_shrinker() failures in sget()
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fix "netfilter: xt_bpf: Fix XT_BPF_MODE_FD_PINNED mode of 'xt_bpf_info_v1'"
sget(): handle failures of register_shrinker()
mm,vmscan: Make unregister_shrinker() no-op if register_shrinker() failed.
This patch converts to bio_first_bvec_all() & bio_first_page_all() for
retrieving the 1st bvec/page, and prepares for supporting multipage bvec.
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In commit 83e3c48729 ("mm/sparsemem: Allocate mem_section at runtime
for CONFIG_SPARSEMEM_EXTREME=y") mem_section is allocated at runtime to
save memory.
It allocates the first dimension of array with sizeof(struct mem_section).
It costs extra memory, should be sizeof(struct mem_section *).
Fix it.
Link: http://lkml.kernel.org/r/1513932498-20350-1-git-send-email-bhe@redhat.com
Fixes: 83e3c48729 ("mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y")
Signed-off-by: Baoquan He <bhe@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Atsushi Kumagai <ats-kumagai@wm.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
`struct file_system_type' and alloc_anon_inode() function are defined in
fs.h, include it directly.
Link: http://lkml.kernel.org/r/20171219104219.3017-1-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the recent addition of hashed kernel pointers, places which need to
produce useful debug output have to specify %px, not %p. This patch
fixes all the VM debug to use %px. This is appropriate because it's
debug output that the user should never be able to trigger, and kernel
developers need to see the actual pointers.
Link: http://lkml.kernel.org/r/20171219133236.GE13680@bombadil.infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Tobin C. Harding" <me@tobin.cc>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With latest kernel I get below bug while testing kdump:
BUG: unable to handle kernel paging request at ffffea00034b1040
IP: zero_resv_unavail+0xbd/0x126
PGD 37b98067 P4D 37b98067 PUD 37b97067 PMD 0
Oops: 0002 [#1] SMP
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 4.15.0-rc1+ #316
Hardware name: LENOVO 20ARS1BJ02/20ARS1BJ02, BIOS GJET92WW (2.42 ) 03/03/2017
task: ffffffff81a0e4c0 task.stack: ffffffff81a00000
RIP: 0010:zero_resv_unavail+0xbd/0x126
RSP: 0000:ffffffff81a03d88 EFLAGS: 00010006
RAX: 0000000000000000 RBX: ffffea00034b1040 RCX: 0000000000000010
RDX: 0000000000000000 RSI: 0000000000000092 RDI: ffffea00034b1040
RBP: 00000000000d2c41 R08: 00000000000000c0 R09: 0000000000000a0d
R10: 0000000000000002 R11: 0000000000007f01 R12: ffffffff81a03d90
R13: ffffea0000000000 R14: 0000000000000063 R15: 0000000000000062
FS: 0000000000000000(0000) GS:ffffffff81c73000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffea00034b1040 CR3: 0000000037609000 CR4: 00000000000606b0
Call Trace:
? free_area_init_nodes+0x640/0x664
? zone_sizes_init+0x58/0x72
? setup_arch+0xb50/0xc6c
? start_kernel+0x64/0x43d
? secondary_startup_64+0xa5/0xb0
Code: c1 e8 0c 48 39 d8 76 27 48 89 de 48 c1 e3 06 48 c7 c7 7a 87 79 81 e8 b0 c0 3e ff 4c 01 eb b9 10 00 00 00 31 c0 48 89 df 49 ff c6 <f3> ab eb bc 6a 00 49 c7 c0 f0 93 d1 81 31 d2 83 ce ff 41 54 49
RIP: zero_resv_unavail+0xbd/0x126 RSP: ffffffff81a03d88
CR2: ffffea00034b1040
---[ end trace f5ba9e8f73c7ee26 ]---
This is introduced by commit a4a3ede213 ("mm: zero reserved and
unavailable struct pages").
The reason is some efi reserved boot ranges is not reported in E820 ram.
In my case it is a bgrt buffer:
efi: mem00: [Boot Data |RUN| | | | | | | |WB|WT|WC|UC] range=[0x00000000d2c41000-0x00000000d2c85fff] (0MB)
Use "add_efi_memmap" can workaround the problem with another fix:
http://lkml.kernel.org/r/20171130052327.GA3500@dhcp-128-65.nay.redhat.com
In zero_resv_unavail it would be better to check pfn_valid first before
zero the page struct. This fixes the problem and potential other
similar problems. Also as Pavel Tatashin suggested checks pfn_valid at
the beginning of the section.
The range is backed by real memory. The memory range is efi "Boot
Service Data", that means after ExitBootServices() these ranges can be
used as system ram. But some of them need to be reserved, for example
the bgrt image address in an acpi table, if the image memory is freed
then kexec reboot will fail because kexec inherit same acpi table to
initialize the driver.
Link: http://lkml.kernel.org/r/20171201095048.GA3084@dhcp-128-65.nay.redhat.com
Fixes: a4a3ede213 ("mm: zero reserved and unavailable struct pages")
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull RCU updates from Paul E. McKenney:
- Updates to use cond_resched() instead of cond_resched_rcu_qs()
where feasible (currently everywhere except in kernel/rcu and
in kernel/torture.c). Also a couple of fixes to avoid sending
IPIs to offline CPUs.
- Updates to simplify RCU's dyntick-idle handling.
- Updates to remove almost all uses of smp_read_barrier_depends()
and read_barrier_depends().
- Miscellaneous fixes.
- Torture-test updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull block fixes from Jens Axboe:
"It's been a few weeks, so here's a small collection of fixes that
should go into the current series.
This contains:
- NVMe pull request from Christoph, with a few important fixes.
- kyber hang fix from Omar.
- A blk-throttl fix from Shaohua, fixing a case where we double
charge a bio.
- Two call_single_data alignment fixes from me, fixing up some
unfortunate changes that went into 4.14 without being properly
reviewed on the block side (since nobody was CC'ed on the
patch...).
- A bounce buffer fix in two parts, one from me and one from Ming.
- Revert bdi debug error handling patch. It's causing boot issues for
some folks, and a week down the line, we're still no closer to a
fix. Revert this patch for now until it's figured out, then we can
retry for 4.16"
* 'for-linus' of git://git.kernel.dk/linux-block:
Revert "bdi: add error handle for bdi_debug_register"
null_blk: unalign call_single_data
block: unalign call_single_data in struct request
block-throttle: avoid double charge
block: fix blk_rq_append_bio
block: don't let passthrough IO go into .make_request_fn()
nvme: setup streams after initializing namespace head
nvme: check hw sectors before setting chunk sectors
nvme: call blk_integrity_unregister after queue is cleaned up
nvme-fc: remove double put reference if admin connect fails
nvme: set discard_alignment to zero
kyber: fix another domain token wait queue hang
This reverts commit a0747a859e.
It breaks some booting for some users, and more than a week
into this, there's still no good fix. Revert this commit
for now until a solution has been found.
Reported-by: Laura Abbott <labbott@redhat.com>
Reported-by: Bruno Wolff III <bruno@wolff.to>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commits 5c9d2d5c26, c7da82b894, and e7fe7b5cae.
We'll probably need to revisit this, but basically we should not
complicate the get_user_pages_fast() case, and checking the actual page
table protection key bits will require more care anyway, since the
protection keys depend on the exact state of the VM in question.
Particularly when doing a "remote" page lookup (ie in somebody elses VM,
not your own), you need to be much more careful than this was. Dave
Hansen says:
"So, the underlying bug here is that we now a get_user_pages_remote()
and then go ahead and do the p*_access_permitted() checks against the
current PKRU. This was introduced recently with the addition of the
new p??_access_permitted() calls.
We have checks in the VMA path for the "remote" gups and we avoid
consulting PKRU for them. This got missed in the pkeys selftests
because I did a ptrace read, but not a *write*. I also didn't
explicitly test it against something where a COW needed to be done"
It's also not entirely clear that it makes sense to check the protection
key bits at this level at all. But one possible eventual solution is to
make the get_user_pages_fast() case just abort if it sees protection key
bits set, which makes us fall back to the regular get_user_pages() case,
which then has a vma and can do the check there if we want to.
We'll see.
Somewhat related to this all: what we _do_ want to do some day is to
check the PAGE_USER bit - it should obviously always be set for user
pages, but it would be a good check to have back. Because we have no
generic way to test for it, we lost it as part of moving over from the
architecture-specific x86 GUP implementation to the generic one in
commit e585513b76 ("x86/mm/gup: Switch GUP to the generic
get_user_page_fast() implementation").
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull early_ioremap fix from Ingo Molnar:
"A boot hang fix when the EFI earlyprintk driver is enabled"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
mm/early_ioremap: Fix boot hang with earlyprintk=efi,keep
David Rientjes has reported the following memory corruption while the
oom reaper tries to unmap the victims address space
BUG: Bad page map in process oom_reaper pte:6353826300000000 pmd:00000000
addr:00007f50cab1d000 vm_flags:08100073 anon_vma:ffff9eea335603f0 mapping: (null) index:7f50cab1d
file: (null) fault: (null) mmap: (null) readpage: (null)
CPU: 2 PID: 1001 Comm: oom_reaper
Call Trace:
unmap_page_range+0x1068/0x1130
__oom_reap_task_mm+0xd5/0x16b
oom_reaper+0xff/0x14c
kthread+0xc1/0xe0
Tetsuo Handa has noticed that the synchronization inside exit_mmap is
insufficient. We only synchronize with the oom reaper if
tsk_is_oom_victim which is not true if the final __mmput is called from
a different context than the oom victim exit path. This can trivially
happen from context of any task which has grabbed mm reference (e.g. to
read /proc/<pid>/ file which requires mm etc.).
The race would look like this
oom_reaper oom_victim task
mmget_not_zero
do_exit
mmput
__oom_reap_task_mm mmput
__mmput
exit_mmap
remove_vma
unmap_page_range
Fix this issue by providing a new mm_is_oom_victim() helper which
operates on the mm struct rather than a task. Any context which
operates on a remote mm struct should use this helper in place of
tsk_is_oom_victim. The flag is set in mark_oom_victim and never cleared
so it is stable in the exit_mmap path.
Debugged by Tetsuo Handa.
Link: http://lkml.kernel.org/r/20171210095130.17110-1-mhocko@kernel.org
Fixes: 2129258024 ("mm: oom: let oom_reap_task and exit_mmap run concurrently")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: David Rientjes <rientjes@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: <stable@vger.kernel.org> [4.14]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A semaphore is acquired before this check, so we must release it before
leaving.
Link: http://lkml.kernel.org/r/20171211211009.4971-1-christophe.jaillet@wanadoo.fr
Fixes: b7f0554a56 ("mm: fail get_vaddr_frames() for filesystem-dax mappings")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David Sterba <dsterba@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If CONFIG_DEBUG_SLAB/CONFIG_DEBUG_SLAB_LEAK are enabled, the slab code
prints extra debug information when e.g. corruption is detected. This
includes pointers, which are not very useful when hashed.
Fix this by using %px to print unhashed pointers instead where it makes
sense, and by removing the printing of a last user pointer referring to
code.
[geert+renesas@glider.be: v2]
Link: http://lkml.kernel.org/r/1513179267-2509-1-git-send-email-geert+renesas@glider.be
Link: http://lkml.kernel.org/r/1512641861-5113-1-git-send-email-geert+renesas@glider.be
Fixes: ad67b74d24 ("printk: hash addresses printed with %p")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Tobin C . Harding" <me@tobin.cc>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 9cca35d42e ("mm, page_alloc: enable/disable IRQs once
when freeing a list of pages") we see excessive IRQ disabled times of up
to 25ms on an embedded ARM system (tracing overhead included).
This is due to graphics buffers being freed back to the system via
release_pages(). Graphics buffers can be huge, so it's not hard to hit
cases where the list of pages to free has 2048 entries. Disabling IRQs
while freeing all those pages is clearly not a good idea.
Introduce a batch limit, which allows IRQ servicing once every few
pages. The batch count is the same as used in other parts of the MM
subsystem when dealing with IRQ disabled regions.
Link: http://lkml.kernel.org/r/20171207170314.4419-1-l.stach@pengutronix.de
Fixes: 9cca35d42e ("mm, page_alloc: enable/disable IRQs once when freeing a list of pages")
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With gcc 4.1.2:
mm/memory.o: In function `wp_huge_pmd':
memory.c:(.text+0x9b4): undefined reference to `do_huge_pmd_wp_page'
Interestingly, wp_huge_pmd() is emitted in the assembler output, but
never called.
Apparently replacing the call to pmd_write() in __handle_mm_fault() by a
call to the more complex pmd_access_permitted() reduced the ability of
the compiler to remove unused code.
Fix this by marking wp_huge_pmd() inline, like was done in commit
91a90140f9 ("mm/memory.c: mark create_huge_pmd() inline to prevent
build failure") for a similar problem.
[akpm@linux-foundation.org: add comment]
Link: http://lkml.kernel.org/r/1512335500-10889-1-git-send-email-geert@linux-m68k.org
Fixes: c7da82b894 ("mm: replace pmd_write with pmd_access_permitted in fault + gup paths")
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit bde5f6bc68 ("kmemleak: add scheduling point to
kmemleak_scan()") tries to rate-limit the frequency of cond_resched()
calls, but does it in a way which might incur an expensive division
operation in the inner loop. Simplify this.
Fixes: bde5f6bc68 ("kmemleak: add scheduling point to kmemleak_scan()")
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull percpu fix from Tejun Heo:
"Just one patch to work around CRIS boot problem caused by a recent
change which freed a temporary boot data structure. The root cause is
on CRIS side but it doesn't seem trivial to fix. For now, work around
by skipping freeing on CRIS"
* 'for-4.15-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: hack to let the CRIS architecture to boot until they clean up
earlyprintk=efi,keep does not work any more with a warning
in mm/early_ioremap.c: WARN_ON(system_state != SYSTEM_BOOTING):
Boot just hangs because of the earlyprintk within the earlyprintk
implementation code itself.
This is caused by a new introduced middle state in:
69a78ff226 ("init: Introduce SYSTEM_SCHEDULING state")
early_ioremap() is fine in both SYSTEM_BOOTING and SYSTEM_SCHEDULING
states, original condition should be updated accordingly.
Signed-off-by: Dave Young <dyoung@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: bp@suse.de
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20171209041610.GA3249@dhcp-128-65.nay.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 4675ff05de ("kmemcheck: rip it out") has removed the code but
for some reason SPDX header stayed in place. This looks like a rebase
mistake in the mmotm tree or the merge mistake. Let's drop those
leftovers as well.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because READ_ONCE() now implies smp_read_barrier_depends(), the
smp_read_barrier_depends() in get_ksm_page() is now redundant.
This commit removes it and updates the comments.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com>
Cc: <linux-mm@kvack.org>
The only caller that doesn't pass true in it is get_user_pages() and
it passes NULL in locked. The only place where we check it is
if (notify_locked && lock_dropped && *locked)
and lock_dropped can become true only if we have locked != NULL.
In other words, the second part of condition will be false when
called by get_user_pages().
Just get rid of the argument and turn the condition into
if (lock_dropped && *locked)
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Equivalent transformation - the only place in __get_user_pages_locked()
where we look at notify_drop argument is
if (notify_drop && lock_dropped && *locked) {
up_read(&mm->mmap_sem);
*locked = 0;
}
in the very end. Changing notify_drop from false to true won't change
behaviour unless *locked is non-zero. The caller is
ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
&locked, false, gup_flags | FOLL_TOUCH);
if (locked)
up_read(&mm->mmap_sem);
so in that case the original kernel would have done up_read() right after
return from __get_user_pages_locked(), while the modified one would've done
it right before the return.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull block fixes from Jens Axboe:
"A selection of fixes/changes that should make it into this series.
This contains:
- NVMe, two merges, containing:
- pci-e, rdma, and fc fixes
- Device quirks
- Fix for a badblocks leak in null_blk
- bcache fix from Rui Hua for a race condition regression where
-EINTR was returned to upper layers that didn't expect it.
- Regression fix for blktrace for a bug introduced in this series.
- blktrace cleanup for cgroup id.
- bdi registration error handling.
- Small series with cleanups for blk-wbt.
- Various little fixes for typos and the like.
Nothing earth shattering, most important are the NVMe and bcache fixes"
* 'for-linus' of git://git.kernel.dk/linux-block: (34 commits)
nvme-pci: fix NULL pointer dereference in nvme_free_host_mem()
nvme-rdma: fix memory leak during queue allocation
blktrace: fix trace mutex deadlock
nvme-rdma: Use mr pool
nvme-rdma: Check remotely invalidated rkey matches our expected rkey
nvme-rdma: wait for local invalidation before completing a request
nvme-rdma: don't complete requests before a send work request has completed
nvme-rdma: don't suppress send completions
bcache: check return value of register_shrinker
bcache: recover data from backing when data is clean
bcache: Fix building error on MIPS
bcache: add a comment in journal bucket reading
nvme-fc: don't use bit masks for set/test_bit() numbers
blk-wbt: fix comments typo
blk-wbt: move wbt_clear_stat to common place in wbt_done
blk-sysfs: remove NULL pointer checking in queue_wb_lat_store
blk-wbt: remove duplicated setting in wbt_init
nvme-pci: add quirk for delay before CHK RDY for WDC SN200
block: remove useless assignment in bio_split
null_blk: fix dev->badblocks leak
...
Mergr misc fixes from Andrew Morton:
"28 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (28 commits)
fs/hugetlbfs/inode.c: change put_page/unlock_page order in hugetlbfs_fallocate()
mm/hugetlb: fix NULL-pointer dereference on 5-level paging machine
autofs: revert "autofs: fix AT_NO_AUTOMOUNT not being honored"
autofs: revert "autofs: take more care to not update last_used on path walk"
fs/fat/inode.c: fix sb_rdonly() change
mm, memcg: fix mem_cgroup_swapout() for THPs
mm: migrate: fix an incorrect call of prep_transhuge_page()
kmemleak: add scheduling point to kmemleak_scan()
scripts/bloat-o-meter: don't fail with division by 0
fs/mbcache.c: make count_objects() more robust
Revert "mm/page-writeback.c: print a warning if the vm dirtiness settings are illogical"
mm/madvise.c: fix madvise() infinite loop under special circumstances
exec: avoid RLIMIT_STACK races with prlimit()
IB/core: disable memory registration of filesystem-dax vmas
v4l2: disable filesystem-dax mapping support
mm: fail get_vaddr_frames() for filesystem-dax mappings
mm: introduce get_user_pages_longterm
device-dax: implement ->split() to catch invalid munmap attempts
mm, hugetlbfs: introduce ->split() to vm_operations_struct
scripts/faddr2line: extend usage on generic arch
...
I made a mistake during converting hugetlb code to 5-level paging: in
huge_pte_alloc() we have to use p4d_alloc(), not p4d_offset().
Otherwise it leads to crash -- NULL-pointer dereference in pud_alloc()
if p4d table is not yet allocated.
It only can happen in 5-level paging mode. In 4-level paging mode
p4d_offset() always returns pgd, so we are fine.
Link: http://lkml.kernel.org/r/20171122121921.64822-1-kirill.shutemov@linux.intel.com
Fixes: c2febafc67 ("mm: convert generic code to 5-level paging")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org> [4.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit d6810d7300 ("memcg, THP, swap: make mem_cgroup_swapout()
support THP") changed mem_cgroup_swapout() to support transparent huge
page (THP).
However the patch missed one location which should be changed for
correctly handling THPs. The resulting bug will cause the memory
cgroups whose THPs were swapped out to become zombies on deletion.
Link: http://lkml.kernel.org/r/20171128161941.20931-1-shakeelb@google.com
Fixes: d6810d7300 ("memcg, THP, swap: make mem_cgroup_swapout() support THP")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmemleak_scan() will scan struct page for each node and it can be really
large and resulting in a soft lockup. We have seen a soft lockup when
do scan while compile kernel:
watchdog: BUG: soft lockup - CPU#53 stuck for 22s! [bash:10287]
[...]
Call Trace:
kmemleak_scan+0x21a/0x4c0
kmemleak_write+0x312/0x350
full_proxy_write+0x5a/0xa0
__vfs_write+0x33/0x150
vfs_write+0xad/0x1a0
SyS_write+0x52/0xc0
do_syscall_64+0x61/0x1a0
entry_SYSCALL64_slow_path+0x25/0x25
Fix this by adding cond_resched every MAX_SCAN_SIZE.
Link: http://lkml.kernel.org/r/1511439788-20099-1-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 0f6d24f878 ("mm/page-writeback.c: print a warning
if the vm dirtiness settings are illogical") because it causes false
positive warnings during OOM situations as noticed by Tetsuo Handa:
Node 0 active_anon:3525940kB inactive_anon:8372kB active_file:216kB inactive_file:1872kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:2504kB dirty:52kB writeback:0kB shmem:8660kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 636928kB writeback_tmp:0kB unstable:0kB all_unreclaimable? yes
Node 0 DMA free:14848kB min:284kB low:352kB high:420kB active_anon:992kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15988kB managed:15904kB mlocked:0kB kernel_stack:0kB pagetables:24kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 2687 3645 3645
Node 0 DMA32 free:53004kB min:49608kB low:62008kB high:74408kB active_anon:2712648kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:3129216kB managed:2773132kB mlocked:0kB kernel_stack:96kB pagetables:5096kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 0 958 958
Node 0 Normal free:17140kB min:17684kB low:22104kB high:26524kB active_anon:812300kB inactive_anon:8372kB active_file:1228kB inactive_file:1868kB unevictable:0kB writepending:52kB present:1048576kB managed:981224kB mlocked:0kB kernel_stack:3520kB pagetables:8552kB bounce:0kB free_pcp:120kB local_pcp:120kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
[...]
Out of memory: Kill process 8459 (a.out) score 999 or sacrifice child
Killed process 8459 (a.out) total-vm:4180kB, anon-rss:88kB, file-rss:0kB, shmem-rss:0kB
oom_reaper: reaped process 8459 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
vm direct limit must be set greater than background limit.
The problem is that both thresh and bg_thresh will be 0 if
available_memory is less than 4 pages when evaluating
global_dirtyable_memory.
While this might be worked around the whole point of the warning is
dubious at best. We do rely on admins to do sensible things when
changing tunable knobs. Dirty memory writeback knobs are not any
special in that regards so revert the warning rather than adding more
hacks to work this around.
Debugged by Yafang Shao.
Link: http://lkml.kernel.org/r/20171127091939.tahb77nznytcxw55@dhcp22.suse.cz
Fixes: 0f6d24f878 ("mm/page-writeback.c: print a warning if the vm dirtiness settings are illogical")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MADVISE_WILLNEED has always been a noop for DAX (formerly XIP) mappings.
Unfortunately madvise_willneed() doesn't communicate this information
properly to the generic madvise syscall implementation. The calling
convention is quite subtle there. madvise_vma() is supposed to either
return an error or update &prev otherwise the main loop will never
advance to the next vma and it will keep looping for ever without a way
to get out of the kernel.
It seems this has been broken since introduction. Nobody has noticed
because nobody seems to be using MADVISE_WILLNEED on these DAX mappings.
[mhocko@suse.com: rewrite changelog]
Link: http://lkml.kernel.org/r/20171127115318.911-1-guoxuenan@huawei.com
Fixes: fe77ba6f4f ("[PATCH] xip: madvice/fadvice: execute in place")
Signed-off-by: chenjie <chenjie6@huawei.com>
Signed-off-by: guoxuenan <guoxuenan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: zhangyi (F) <yi.zhang@huawei.com>
Cc: Miao Xie <miaoxie@huawei.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Until there is a solution to the dma-to-dax vs truncate problem it is
not safe to allow V4L2, Exynos, and other frame vector users to create
long standing / irrevocable memory registrations against filesytem-dax
vmas.
[dan.j.williams@intel.com: add comment for vma_is_fsdax() check in get_vaddr_frames(), per Jan]
Link: http://lkml.kernel.org/r/151197874035.26211.4061781453123083667.stgit@dwillia2-desk3.amr.corp.intel.com
Link: http://lkml.kernel.org/r/151068939985.7446.15684639617389154187.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: 3565fce3a6 ("mm, x86: get_user_pages() for dax mappings")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Inki Dae <inki.dae@samsung.com>
Cc: Seung-Woo Kim <sw0312.kim@samsung.com>
Cc: Joonyoung Shim <jy0922.shim@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Hal Rosenstock <hal.rosenstock@gmail.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "introduce get_user_pages_longterm()", v2.
Here is a new get_user_pages api for cases where a driver intends to
keep an elevated page count indefinitely. This is distinct from usages
like iov_iter_get_pages where the elevated page counts are transient.
The iov_iter_get_pages cases immediately turn around and submit the
pages to a device driver which will put_page when the i/o operation
completes (under kernel control).
In the longterm case userspace is responsible for dropping the page
reference at some undefined point in the future. This is untenable for
filesystem-dax case where the filesystem is in control of the lifetime
of the block / page and needs reasonable limits on how long it can wait
for pages in a mapping to become idle.
Fixing filesystems to actually wait for dax pages to be idle before
blocks from a truncate/hole-punch operation are repurposed is saved for
a later patch series.
Also, allowing longterm registration of dax mappings is a future patch
series that introduces a "map with lease" semantic where the kernel can
revoke a lease and force userspace to drop its page references.
I have also tagged these for -stable to purposely break cases that might
assume that longterm memory registrations for filesystem-dax mappings
were supported by the kernel. The behavior regression this policy
change implies is one of the reasons we maintain the "dax enabled.
Warning: EXPERIMENTAL, use at your own risk" notification when mounting
a filesystem in dax mode.
It is worth noting the device-dax interface does not suffer the same
constraints since it does not support file space management operations
like hole-punch.
This patch (of 4):
Until there is a solution to the dma-to-dax vs truncate problem it is
not safe to allow long standing memory registrations against
filesytem-dax vmas. Device-dax vmas do not have this problem and are
explicitly allowed.
This is temporary until a "memory registration with layout-lease"
mechanism can be implemented for the affected sub-systems (RDMA and
V4L2).
[akpm@linux-foundation.org: use kcalloc()]
Link: http://lkml.kernel.org/r/151068939435.7446.13560129395419350737.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: 3565fce3a6 ("mm, x86: get_user_pages() for dax mappings")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Hal Rosenstock <hal.rosenstock@gmail.com>
Cc: Inki Dae <inki.dae@samsung.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Joonyoung Shim <jy0922.shim@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Seung-Woo Kim <sw0312.kim@samsung.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "device-dax: fix unaligned munmap handling"
When device-dax is operating in huge-page mode we want it to behave like
hugetlbfs and fail attempts to split vmas into unaligned ranges. It
would be messy to teach the munmap path about device-dax alignment
constraints in the same (hstate) way that hugetlbfs communicates this
constraint. Instead, these patches introduce a new ->split() vm
operation.
This patch (of 2):
The device-dax interface has similar constraints as hugetlbfs in that it
requires the munmap path to unmap in huge page aligned units. Rather
than add more custom vma handling code in __split_vma() introduce a new
vm operation to perform this vma specific check.
Link: http://lkml.kernel.org/r/151130418135.4029.6783191281930729710.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: dee4107924 ("/dev/dax, core: file operations and dax-mmap")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 'access_permitted' helper is used in the gup-fast path and goes
beyond the simple _PAGE_RW check to also:
- validate that the mapping is writable from a protection keys
standpoint
- validate that the pte has _PAGE_USER set since all fault paths where
pte_write is must be referencing user-memory.
Link: http://lkml.kernel.org/r/151043111604.2842.8051684481794973100.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 'access_permitted' helper is used in the gup-fast path and goes
beyond the simple _PAGE_RW check to also:
- validate that the mapping is writable from a protection keys
standpoint
- validate that the pte has _PAGE_USER set since all fault paths where
pmd_write is must be referencing user-memory.
Link: http://lkml.kernel.org/r/151043111049.2842.15241454964150083466.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 'access_permitted' helper is used in the gup-fast path and goes
beyond the simple _PAGE_RW check to also:
- validate that the mapping is writable from a protection keys
standpoint
- validate that the pte has _PAGE_USER set since all fault paths where
pud_write is must be referencing user-memory.
[dan.j.williams@intel.com: fix powerpc compile error]
Link: http://lkml.kernel.org/r/151129127237.37405.16073414520854722485.stgit@dwillia2-desk3.amr.corp.intel.com
Link: http://lkml.kernel.org/r/151043110453.2842.2166049702068628177.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the call __alloc_contig_migrate_range() in alloc_contig_range returns
-EBUSY, processing continues so that test_pages_isolated() is called
where there is a tracepoint to identify the busy pages. However, it is
possible for busy pages to become available between the calls to these
two routines. In this case, the range of pages may be allocated.
Unfortunately, the original return code (ret == -EBUSY) is still set and
returned to the caller. Therefore, the caller believes the pages were
not allocated and they are leaked.
Update the comment to indicate that allocation is still possible even if
__alloc_contig_migrate_range returns -EBUSY. Also, clear return code in
this case so that it is not accidentally used or returned to caller.
Link: http://lkml.kernel.org/r/20171122185214.25285-1-mike.kravetz@oracle.com
Fixes: 8ef5849fa8 ("mm/cma: always check which page caused allocation failure")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tlb_gather_mmu(&tlb, mm, 0, -1) means gathering the whole virtual memory
space. In this case, tlb->fullmm is true. Some archs like arm64
doesn't flush TLB when tlb->fullmm is true:
commit 5a7862e830 ("arm64: tlbflush: avoid flushing when fullmm == 1").
Which causes leaking of tlb entries.
Will clarifies his patch:
"Basically, we tag each address space with an ASID (PCID on x86) which
is resident in the TLB. This means we can elide TLB invalidation when
pulling down a full mm because we won't ever assign that ASID to
another mm without doing TLB invalidation elsewhere (which actually
just nukes the whole TLB).
I think that means that we could potentially not fault on a kernel
uaccess, because we could hit in the TLB"
There could be a window between complete_signal() sending IPI to other
cores and all threads sharing this mm are really kicked off from cores.
In this window, the oom reaper may calls tlb_flush_mmu_tlbonly() to
flush TLB then frees pages. However, due to the above problem, the TLB
entries are not really flushed on arm64. Other threads are possible to
access these pages through TLB entries. Moreover, a copy_to_user() can
also write to these pages without generating page fault, causes
use-after-free bugs.
This patch gathers each vma instead of gathering full vm space. In this
case tlb->fullmm is not true. The behavior of oom reaper become similar
to munmapping before do_exit, which should be safe for all archs.
Link: http://lkml.kernel.org/r/20171107095453.179940-1-wangnan0@huawei.com
Fixes: aac4536355 ("mm, oom: introduce oom reaper")
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Bob Liu <liubo95@huawei.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
drain_all_pages backs off when called from a kworker context since
commit 0ccce3b924 ("mm, page_alloc: drain per-cpu pages from workqueue
context") because the original IPI based pcp draining has been replaced
by a WQ based one and the check wanted to prevent from recursion and
inter workers dependencies. This has made some sense at the time
because the system WQ has been used and one worker holding the lock
could be blocked while waiting for new workers to emerge which can be a
problem under OOM conditions.
Since then commit ce612879dd ("mm: move pcp and lru-pcp draining into
single wq") has moved draining to a dedicated (mm_percpu_wq) WQ with a
rescuer so we shouldn't depend on any other WQ activity to make a
forward progress so calling drain_all_pages from a worker context is
safe as long as this doesn't happen from mm_percpu_wq itself which is
not the case because all workers are required to _not_ depend on any MM
locks.
Why is this a problem in the first place? ACPI driven memory hot-remove
(acpi_device_hotplug) is executed from the worker context. We end up
calling __offline_pages to free all the pages and that requires both
lru_add_drain_all_cpuslocked and drain_all_pages to do their job
otherwise we can have dangling pages on pcp lists and fail the offline
operation (__test_page_isolated_in_pageblock would see a page with 0 ref
count but without PageBuddy set).
Fix the issue by removing the worker check in drain_all_pages.
lru_add_drain_all_cpuslocked doesn't have this restriction so it works
as expected.
Link: http://lkml.kernel.org/r/20170828093341.26341-1-mhocko@kernel.org
Fixes: 0ccce3b924 ("mm, page_alloc: drain per-cpu pages from workqueue context")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org> [4.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here is the patch set that implements hashing of printk specifier
%p. First we have two clean up patches then we do the hashing. Hashing
is done via the SipHash algorithm. The next patch adds printk specifier
%px for printing pointers when we _really_ want to see the address i.e
%px is functionally equivalent to %lx. Final patch in the set fixes
KASAN since we break it by hashing %p.
For the record here is the justification for the series.
Currently there exist approximately 14 000 places in the Kernel where
addresses are being printed using an unadorned %p. This potentially
leaks sensitive information about the Kernel layout in memory. Many of
these calls are stale, instead of fixing every call we hash the address
by default before printing. We then add %px to provide a way to print
the actual address. Although this is achievable using %lx, using %px
will assist us if we ever want to change pointer printing behaviour. %px
is more uniquely grep'able (there are already >50 000 uses of %lx).
The added advantage of hashing %p is that security is now opt-out, if
you _really_ want the address you have to work a little harder and use
%px.
This will of course break some users, forcing code printing needed
addresses to be updated.
Signed-off-by: Tobin C. Harding <me@tobin.cc>
-----BEGIN PGP SIGNATURE-----
iQIcBAABCgAGBQJaHjykAAoJEEC/nkwmnWYHOdwQAIge1ui35J6ecX+SH8yo9yjE
gtvr0vrZxZx/XPuv3uhaQx9mEt93pl+xQEjNY7F4wEjU0nWyAda4FRo9B6dG+Gy0
uPLZHhQv25VVm++Bsa6yv3XTMDT/AgrJjtKdSmYC3WnX7e/okS4VQVuwLnOJjTlL
E9hvmVYvkb4KMvRkxEbu2p2D16ZGhZm7teGpAg0LyW6Di0p5ORbDqs7yIxCXYvcA
BFeP3yrDMFNES2RB30d+VP4pUIa/He2R/wMU59NbTY8WVp7VzrEc5fTY/c13iP0U
6G2UXcXRNdQ7K5ewsuCZd2V5rFhZPfcuAGNF5kaXIb7FN0u++WkQpuqlNWI8gbKw
VFave37AQLmwOfgc3+wrw0zumzB7qaRAVDGORHyIq8SnF8r8Jt2nqYflVXbkuzs6
USjELP/FjIX5KNVEjr9eGtuGfDjUxkgNx/zFKVb9qm9dPGTUEvxn/XKc7ZpewW0f
my8jChVi0l3ci6A8IpCrvEwnn0nqyUsWd2KNsUuUraEFjksOD4EYy9RqEKlnevUq
g7WUIawP4GgvdUtU1S2WnZgWyypTaFBGYnNsS9l6vITJsyIoppV8XshmusyR+lDP
AwBxL3lVSE2Wqda8YE/6Bql40GJg4tIVQ8FwPY5HbtdEJQuSMEba8a3Qmh6EnfZM
G7ugh13UffQQ/pjK3hBG
=y9zQ
-----END PGP SIGNATURE-----
Merge tag 'printk-hash-pointer-4.15-rc2' of git://github.com/tcharding/linux
Pull printk pointer hashing update from Tobin Harding:
"Here is the patch set that implements hashing of printk specifier %p.
First we have two clean up patches then we do the hashing. Hashing is
done via the SipHash algorithm. The next patch adds printk specifier
%px for printing pointers when we _really_ want to see the address i.e
%px is functionally equivalent to %lx. Final patch in the set fixes
KASAN since we break it by hashing %p.
For the record here is the justification for the series:
Currently there exist approximately 14 000 places in the Kernel
where addresses are being printed using an unadorned %p. This
potentially leaks sensitive information about the Kernel layout in
memory. Many of these calls are stale, instead of fixing every call
we hash the address by default before printing. We then add %px to
provide a way to print the actual address. Although this is
achievable using %lx, using %px will assist us if we ever want to
change pointer printing behaviour. %px is more uniquely grep'able
(there are already >50 000 uses of %lx).
The added advantage of hashing %p is that security is now opt-out,
if you _really_ want the address you have to work a little harder
and use %px.
This will of course break some users, forcing code printing needed
addresses to be updated"
[ I do expect this to be an annoyance, and a number of %px users to be
added for debuggability. But nobody is willing to audit existing %p
users for information leaks, and a number of places really only use
the pointer as an object identifier rather than really 'I need the
address'.
IOW - sorry for the inconvenience, but it's the least inconvenient of
the options. - Linus ]
* tag 'printk-hash-pointer-4.15-rc2' of git://github.com/tcharding/linux:
kasan: use %px to print addresses instead of %p
vsprintf: add printk specifier %px
printk: hash addresses printed with %p
vsprintf: refactor %pK code out of pointer()
docs: correct documentation for %pK
This reverts commit 152e93af3c.
It was a nice cleanup in theory, but as Nicolai Stange points out, we do
need to make the page dirty for the copy-on-write case even when we
didn't end up making it writable, since the dirty bit is what we use to
check that we've gone through a COW cycle.
Reported-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pointers printed with %p are now hashed by default. Kasan needs the
actual address. We can use the new printk specifier %px for this
purpose.
Use %px instead of %p to print addresses.
Signed-off-by: Tobin C. Harding <me@tobin.cc>
Now that cond_resched() also provides RCU quiescent states when
needed, it can be used in place of cond_resched_rcu_qs(). This
commit therefore makes this change.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
__poll_t is also used as wait key in some waitqueues.
Verify that wait_..._poll() gets __poll_t as key and
provide a helper for wakeup functions to get back to
that __poll_t value.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This is a pure automated search-and-replace of the internal kernel
superblock flags.
The s_flags are now called SB_*, with the names and the values for the
moment mirroring the MS_* flags that they're equivalent to.
Note how the MS_xyz flags are the ones passed to the mount system call,
while the SB_xyz flags are what we then use in sb->s_flags.
The script to do this was:
# places to look in; re security/*: it generally should *not* be
# touched (that stuff parses mount(2) arguments directly), but
# there are two places where we really deal with superblock flags.
FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
include/linux/fs.h include/uapi/linux/bfs_fs.h \
security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
# the list of MS_... constants
SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
ACTIVE NOUSER"
SED_PROG=
for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done
# we want files that contain at least one of MS_...,
# with fs/namespace.c and fs/pnode.c excluded.
L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')
for f in $L; do sed -i $f $SED_PROG; done
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 438a506180 ("percpu: don't forget to free the temporary struct
pcpu_alloc_info") uncovered a problem on the CRIS architecture where
the bootmem allocator is initialized with virtual addresses. Given it
has:
#define __va(x) ((void *)((unsigned long)(x) | 0x80000000))
then things just work out because the end result is the same whether you
give this a physical or a virtual address.
Untill you call memblock_free_early(__pa(address)) that is, because
values from __pa() don't match with the virtual addresses stuffed in the
bootmem allocator anymore.
Avoid freeing the temporary pcpu_alloc_info memory on that architecture
until they fix things up to let the kernel boot like it did before.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 438a506180 ("percpu: don't forget to free the temporary struct pcpu_alloc_info")
Currently we make page table entries dirty all the time regardless of
access type and don't even consider if the mapping is write-protected.
The reasoning is that we don't really need dirty tracking on THP and
making the entry dirty upfront may save some time on first write to the
page.
Unfortunately, such approach may result in false-positive
can_follow_write_pmd() for huge zero page or read-only shmem file.
Let's only make page dirty only if we about to write to the page anyway
(as we do for small pages).
I've restructured the code to make entry dirty inside
maybe_p[mu]d_mkwrite(). It also takes into account if the vma is
write-protected.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, we unconditionally make page table dirty in touch_pmd().
It may result in false-positive can_follow_write_pmd().
We may avoid the situation, if we would only make the page table entry
dirty if caller asks for write access -- FOLL_WRITE.
The patch also changes touch_pud() in the same way.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly.
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Jeff Layton <jlayton@redhat.com>
Cc: linux-block@vger.kernel.org
Cc: linux-mm@kvack.org
Signed-off-by: Kees Cook <keescook@chromium.org>
In order to make error handle more cleaner we call bdi_debug_register
before set state to WB_registered, that we can avoid call bdi_unregister
in release_bdi().
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: weiping zhang <zhangweiping@didichuxing.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Convert bdi_debug_register to int and then do error handle for it.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: weiping zhang <zhangweiping@didichuxing.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Performance of get_user_pages_fast() is critical for some workloads, but
it's tricky to test it directly.
This patch provides /sys/kernel/debug/gup_benchmark that helps with
testing performance of it.
See tools/testing/selftests/vm/gup_benchmark.c for userspace
counterpart.
Link: http://lkml.kernel.org/r/20170908215603.9189-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f3c931633a59 ("mm, compaction: persistently skip hugetlbfs
pageblocks") has introduced pageblock_skip_persistent() checks into
migration and free scanners, to make sure pageblocks that should be
persistently skipped are marked as such, regardless of the
ignore_skip_hint flag.
Since the previous patch introduced a new no_set_skip_hint flag, the
ignore flag no longer prevents marking pageblocks as skipped. Therefore
we can remove the special cases. The relevant pageblocks will be marked
as skipped by the common logic which marks each pageblock where no page
could be isolated. This makes the code simpler.
Link: http://lkml.kernel.org/r/20171102121706.21504-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pageblock skip hints were added as a heuristic for compaction, which
shares core code with CMA. Since CMA reliability would suffer from the
heuristics, compact_control flag ignore_skip_hint was added for the CMA
use case. Since 6815bf3f23 ("mm/compaction: respect ignore_skip_hint
in update_pageblock_skip") the flag also means that CMA won't *update*
the skip hints in addition to ignoring them.
Today, direct compaction can also ignore the skip hints in the last
resort attempt, but there's no reason not to set them when isolation
fails in such case. Thus, this patch splits off a new no_set_skip_hint
flag to avoid the updating, which only CMA sets. This should improve
the heuristics a bit, and allow us to simplify the persistent skip bit
handling as the next step.
Link: http://lkml.kernel.org/r/20171102121706.21504-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pageblock_skip_persistent() checks for HugeTLB pages of pageblock order.
When clearing pageblock skip bits for compaction, the bits are not
cleared for such pageblocks, because they cannot contain base pages
suitable for migration, nor free pages to use as migration targets.
This optimization can be simply extended to all compound pages of order
equal or larger than pageblock order, because migrating such pages (if
they support it) cannot help sub-pageblock fragmentation. This includes
THP's and also gigantic HugeTLB pages, which the current implementation
doesn't persistently skip due to a strict pageblock_order equality check
and not recognizing tail pages.
While THP pages are generally less "persistent" than HugeTLB, we can
still expect that if a THP exists at the point of
__reset_isolation_suitable(), it will exist also during the subsequent
compaction run. The time difference here could be actually smaller than
between a compaction run that sets a (non-persistent) skip bit on a THP,
and the next compaction run that observes it.
Link: http://lkml.kernel.org/r/20171102121706.21504-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is pointless to migrate hugetlb memory as part of memory compaction
if the hugetlb size is equal to the pageblock order. No defragmentation
is occurring in this condition.
It is also pointless to for the freeing scanner to scan a pageblock
where a hugetlb page is pinned. Unconditionally skip these pageblocks,
and do so peristently so that they are not rescanned until it is
observed that these hugepages are no longer pinned.
It would also be possible to do this by involving the hugetlb subsystem
in marking pageblocks to no longer be skipped when they hugetlb pages
are freed. This is a simple solution that doesn't involve any
additional subsystems in pageblock skip manipulation.
[rientjes@google.com: fix build]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708201734390.117182@chino.kir.corp.google.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708151639130.106658@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Tested-by: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kcompactd is needlessly ignoring pageblock skip information. It is
doing MIGRATE_SYNC_LIGHT compaction, which is no more powerful than
MIGRATE_SYNC compaction.
If compaction recently failed to isolate memory from a set of
pageblocks, there is nothing to indicate that kcompactd will be able to
do so, or that it is beneficial from attempting to isolate memory.
Use the pageblock skip hint to avoid rescanning pageblocks needlessly
until that information is reset.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708151638550.106658@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following warning by removing the unused variable:
mm/shmem.c:3205:27: warning: variable 'info' set but not used [-Wunused-but-set-variable]
Link: http://lkml.kernel.org/r/1510774029-30652-1-git-send-email-clabbe@baylibre.com
Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race in the current z3fold implementation between
do_compact() called in a work queue context and the page release
procedure when page's kref goes to 0.
do_compact() may be waiting for page lock, which is released by
release_z3fold_page_locked right before putting the page onto the
"stale" list, and then the page may be freed as do_compact() modifies
its contents.
The mechanism currently implemented to handle that (checking the
PAGE_STALE flag) is not reliable enough. Instead, we'll use page's kref
counter to guarantee that the page is not released if its compaction is
scheduled. It then becomes compaction function's responsibility to
decrease the counter and quit immediately if the page was actually
freed.
Link: http://lkml.kernel.org/r/20171117092032.00ea56f42affbed19f4fcc6c@gmail.com
Signed-off-by: Vitaly Wool <vitaly.wool@sonymobile.com>
Cc: <Oleksiy.Avramchenko@sony.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may be
required to satisfy a write fault to also be flushed ("on disk") before
the kernel returns to userspace from the fault handler. Effectively
every write-fault that dirties metadata completes an fsync() before
returning from the fault handler. The new MAP_SHARED_VALIDATE mapping
type guarantees that the MAP_SYNC flag is validated as supported by the
filesystem's ->mmap() file operation.
* Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods. This
enables interoperability with environments that only implement the
standardized methods.
* Add support for the ACPI 6.2 NVDIMM media error injection methods.
* Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for latch
last shutdown status, firmware update, SMART error injection, and
SMART alarm threshold control.
* Cleanup physical address information disclosures to be root-only.
* Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
* Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
957ac8c421 dax: fix PMD faults on zero-length files
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
a39e596baa xfs: support for synchronous DAX faults
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
7b565c9f96 xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJaDfvcAAoJEB7SkWpmfYgCk7sP/2qJhBH+VTTdg2osDnhAdAhI
co/AGEmsHFlUCMBb/Ek7UnMAmhBYiJU2q4ywPsNFBpusXpMlqNy5Iwo7k4/wQHE/
SJcIM0g4zg0ViFuUhwV+C2T0R5UzFR8JLd9EYWj/YS6aJpurtotm5l4UStaM0Hzo
AhxSXJLrBDuqCpbOxbctfiGEmdRL7aRfBEAARTNRKBn/iXxJUcYHlp62rtXQS+t4
I6LC/URCWTNTTMGmzW6TRsgSD9WMfd19xKcGzN3qL6ee0KFccxN4ctFqHA/sFGOh
iYLeR0XJUjJxyp+PkWGteXPVZL0Kj3bD/lSTG+Co5bm/ra8a/sh3TSFfgFyoBZD1
EqMN8Ryf80hGp3FabeH2Iw2SviYPZpHSWgjddjxLD0RA6OmpzINc+Wm8eqApjMME
sbZDTOijiab4QMQ0XamF4GuDHyQtawv5Y/w2Ehhl1tmiqW+5tKhsKqxkQt+/V3Yt
RTVSRe2Pkway66b+cD64IdQ6L2tyonPnmi5IzgkKOhlOEGomy+4/U2Jt2bMbhzq6
ymszKmXp2XI8P06wU8sHrIUeXO5I9qoKn/fZA73Eb8aIzgJe3tBE/5+Ab7RG6HB9
1OVfcMWoXU1gNgNktTs63X1Lsg4aW9kt/K4fPHHcqUcaliEJpJTlAbg9GLF2buoW
nQ+0fTRgMRihE3ZA0Fs3
=h2vZ
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm and dax updates from Dan Williams:
"Save for a few late fixes, all of these commits have shipped in -next
releases since before the merge window opened, and 0day has given a
build success notification.
The ext4 touches came from Jan, and the xfs touches have Darrick's
reviewed-by. An xfstest for the MAP_SYNC feature has been through
a few round of reviews and is on track to be merged.
- Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may
be required to satisfy a write fault to also be flushed ("on disk")
before the kernel returns to userspace from the fault handler.
Effectively every write-fault that dirties metadata completes an
fsync() before returning from the fault handler. The new
MAP_SHARED_VALIDATE mapping type guarantees that the MAP_SYNC flag
is validated as supported by the filesystem's ->mmap() file
operation.
- Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods.
This enables interoperability with environments that only implement
the standardized methods.
- Add support for the ACPI 6.2 NVDIMM media error injection methods.
- Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for
latch last shutdown status, firmware update, SMART error injection,
and SMART alarm threshold control.
- Cleanup physical address information disclosures to be root-only.
- Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
- Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
- 957ac8c421 ("dax: fix PMD faults on zero-length files"):
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
- a39e596baa ("xfs: support for synchronous DAX faults") and
7b565c9f96 ("xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()")
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>"
* tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (49 commits)
acpi, nfit: add 'Enable Latch System Shutdown Status' command support
dax: fix general protection fault in dax_alloc_inode
dax: fix PMD faults on zero-length files
dax: stop requiring a live device for dax_flush()
brd: remove dax support
dax: quiet bdev_dax_supported()
fs, dax: unify IOMAP_F_DIRTY read vs write handling policy in the dax core
tools/testing/nvdimm: unit test clear-error commands
acpi, nfit: validate commands against the device type
tools/testing/nvdimm: stricter bounds checking for error injection commands
xfs: support for synchronous DAX faults
xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
ext4: Support for synchronous DAX faults
ext4: Simplify error handling in ext4_dax_huge_fault()
dax: Implement dax_finish_sync_fault()
dax, iomap: Add support for synchronous faults
mm: Define MAP_SYNC and VM_SYNC flags
dax: Allow tuning whether dax_insert_mapping_entry() dirties entry
dax: Allow dax_iomap_fault() to return pfn
dax: Fix comment describing dax_iomap_fault()
...
Fixes in qemu, vhost and virtio.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJaDdyiAAoJECgfDbjSjVRpEekIAMh6WWhjHWSG1PukqSZYiHEN
S1GU+wViGLai9zI54o8/VcRcRMuJMcN/HiYXh/28N3v4MzSxtJy12c/oV13zexAZ
ypALoQM6Fazm1hPdAMujFAQ4rgAgYFZ98822HU3rXwfS+jW1JY/LV0cLoIL9BStQ
aHLr06GGv/Xq3aibECaKvzFcKXi9qCz6Cuw/aKPMmDo89RSvxQyMhneaEW6YyT2L
Srt2lke0W4UbozMAe3UT2SwOMTEpSOnmrTDGqvU4gFtfgAm6Z8HkM1HA/i010Dcc
FsSfa5N9yLD9WodEyKgU0qh3yvhkLwg/Sfiu/KBbbbSSQzjkuqW+XWWJwOAitWA=
=1iSK
-----END PGP SIGNATURE-----
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
Pull virtio updates from Michael Tsirkin:
"Fixes in qemu, vhost and virtio"
* tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost:
fw_cfg: fix the command line module name
vhost/vsock: fix uninitialized vhost_vsock->guest_cid
vhost: fix end of range for access_ok
vhost/scsi: Use safe iteration in vhost_scsi_complete_cmd_work()
virtio_balloon: fix deadlock on OOM
-----BEGIN PGP SIGNATURE-----
iQIVAwUAWgm9V/Sw1s6N8H32AQK5mQ//QGUDZLXsUPCtq0XJq0V+r4MUjNp9tCZR
htiuNrEkHSyPpYgCcQ2Aqdl9kndwVXcE7lWT99mp/a0zwNAsp9GOGVhCXUd5R86G
XlrBuUYVvBJk18tDsUNWdjRQ0gMHgQSlEnEbsaGiU1bVrpXatI9hL8qoeO78Iy7+
eaJUQLCuCVJq7qMQGhC0hg338vmHVeYhnViXIxq+HFjsMmR9IVanuK+sQr6NSJxS
F6RkPxBUPWkRVMHmxTLWj/XSHZwtwu+Mnc/UFYsAPLKEbY0cIohsI8EgfE8U7geU
yRVnu3MIOXUXUrZizj9SwVYWdJfneRlINqMbHIO8QXMKR38tnQ0C2/7bgBsXiNPv
YdiAyeqL4nM+JthV/rgA3hWgupwBlSb4ubclTphDNxMs5MBIUIK3XUt9GOXDDUZz
2FT/FdrphM2UORaI2AEOi4Q0/nHdin+3rld8fjV0Ree/TPNXwcrOmvy8yGnxFCEp
5b7YLwKrffZGnnS965dhZlnFR6hjndmzFgHdyRrJwc80hXi1Q/+W4F19MoYkkoVK
G/gLvD3FbmygmFnjCik9TjUrro6vQxo56H/TuWgHTvYriNGH+D/D7EGUwg4GiXZZ
+7vrNw660uXmZiu9i0YacCRyD8lvm7QpmWLb+uHwzfsBE1+C8UetyQ+egSWVdWJO
KwPspygWXD4=
=3vy0
-----END PGP SIGNATURE-----
Merge tag 'afs-next-20171113' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull AFS updates from David Howells:
"kAFS filesystem driver overhaul.
The major points of the overhaul are:
(1) Preliminary groundwork is laid for supporting network-namespacing
of kAFS. The remainder of the namespacing work requires some way
to pass namespace information to submounts triggered by an
automount. This requires something like the mount overhaul that's
in progress.
(2) sockaddr_rxrpc is used in preference to in_addr for holding
addresses internally and add support for talking to the YFS VL
server. With this, kAFS can do everything over IPv6 as well as
IPv4 if it's talking to servers that support it.
(3) Callback handling is overhauled to be generally passive rather
than active. 'Callbacks' are promises by the server to tell us
about data and metadata changes. Callbacks are now checked when
we next touch an inode rather than actively going and looking for
it where possible.
(4) File access permit caching is overhauled to store the caching
information per-inode rather than per-directory, shared over
subordinate files. Whilst older AFS servers only allow ACLs on
directories (shared to the files in that directory), newer AFS
servers break that restriction.
To improve memory usage and to make it easier to do mass-key
removal, permit combinations are cached and shared.
(5) Cell database management is overhauled to allow lighter locks to
be used and to make cell records autonomous state machines that
look after getting their own DNS records and cleaning themselves
up, in particular preventing races in acquiring and relinquishing
the fscache token for the cell.
(6) Volume caching is overhauled. The afs_vlocation record is got rid
of to simplify things and the superblock is now keyed on the cell
and the numeric volume ID only. The volume record is tied to a
superblock and normal superblock management is used to mediate
the lifetime of the volume fscache token.
(7) File server record caching is overhauled to make server records
independent of cells and volumes. A server can be in multiple
cells (in such a case, the administrator must make sure that the
VL services for all cells correctly reflect the volumes shared
between those cells).
Server records are now indexed using the UUID of the server
rather than the address since a server can have multiple
addresses.
(8) File server rotation is overhauled to handle VMOVED, VBUSY (and
similar), VOFFLINE and VNOVOL indications and to handle rotation
both of servers and addresses of those servers. The rotation will
also wait and retry if the server says it is busy.
(9) Data writeback is overhauled. Each inode no longer stores a list
of modified sections tagged with the key that authorised it in
favour of noting the modified region of a page in page->private
and storing a list of keys that made modifications in the inode.
This simplifies things and allows other keys to be used to
actually write to the server if a key that made a modification
becomes useless.
(10) Writable mmap() is implemented. This allows a kernel to be build
entirely on AFS.
Note that Pre AFS-3.4 servers are no longer supported, though this can
be added back if necessary (AFS-3.4 was released in 1998)"
* tag 'afs-next-20171113' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: (35 commits)
afs: Protect call->state changes against signals
afs: Trace page dirty/clean
afs: Implement shared-writeable mmap
afs: Get rid of the afs_writeback record
afs: Introduce a file-private data record
afs: Use a dynamic port if 7001 is in use
afs: Fix directory read/modify race
afs: Trace the sending of pages
afs: Trace the initiation and completion of client calls
afs: Fix documentation on # vs % prefix in mount source specification
afs: Fix total-length calculation for multiple-page send
afs: Only progress call state at end of Tx phase from rxrpc callback
afs: Make use of the YFS service upgrade to fully support IPv6
afs: Overhaul volume and server record caching and fileserver rotation
afs: Move server rotation code into its own file
afs: Add an address list concept
afs: Overhaul cell database management
afs: Overhaul permit caching
afs: Overhaul the callback handling
afs: Rename struct afs_call server member to cm_server
...
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJaCm8RAAoJEAx081l5xIa+zX0QAJSm31kCG3vdw2CNiRx25L3q
3hcsEOgAjVJ9FQVGKFWjzb8TK35tSqtNx5kWIj0VGaIfBE5Bdg5SLLgKKUYas8rY
4LaphqICq2uxu2BNa2tpiar/sHhAnuozwQ4czpVWXzlaISnb9yYzRl7gMuyUVGkx
+Gih5VUhLmQC0HsRTLJ3vaZQoUsLAl2gAjKcWa1bx57j2S+iKOPfsLaq7VYo+y1I
Njc+iSGqMhJzRLXVkxL2lQKaslp7R38Bbh5K4Kvyjkm4Aq7zErOF6irpOXKMcrGl
mwnr89vf1G9thjikrBaXpKnuvdbWYveoN/ORMlTdCfxkFnChHLnm3bd7NJ49RXDN
Hv/Iq9YYjmZ9GTatxnx7lWtmXnZXC5he1yn1JAuz/yt7/0b/Wx+Mu/wEpBXYNFTd
1AZdD586i+AmPo3yDkqH9nBu8JC0W0AnS9VZma4LVvZOP2UfJmj5Im1CLHItbGDN
FnUCkwyD/lJUUk+WgT+w/GOMJgmFHDiFFl4tFtYVVjrUirpCFVguSKG9xuv6tT8P
8iRsoP7RrcmDN9ojN2SEHwcpsAv3HnKkDv+9+GIbWnrGsSbCPq8Qm+JDSvf4h22I
K5lwNpJrcpSKI+q10L7w2xliTBwb98sJkWGA/rssomrdBOWteGZAyqFRYAVgQ+mJ
x/nJurIqQYh2KQN9+uLG
=xVV2
-----END PGP SIGNATURE-----
Merge tag 'drm-for-v4.15' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie:
"This is the main drm pull request for v4.15.
Core:
- Atomic object lifetime fixes
- Atomic iterator improvements
- Sparse/smatch fixes
- Legacy kms ioctls to be interruptible
- EDID override improvements
- fb/gem helper cleanups
- Simple outreachy patches
- Documentation improvements
- Fix dma-buf rcu races
- DRM mode object leasing for improving VR use cases.
- vgaarb improvements for non-x86 platforms.
New driver:
- tve200: Faraday Technology TVE200 block.
This "TV Encoder" encodes a ITU-T BT.656 stream and can be found in
the StorLink SL3516 (later Cortina Systems CS3516) as well as the
Grain Media GM8180.
New bridges:
- SiI9234 support
New panels:
- S6E63J0X03, OTM8009A, Seiko 43WVF1G, 7" rpi touch panel, Toshiba
LT089AC19000, Innolux AT043TN24
i915:
- Remove Coffeelake from alpha support
- Cannonlake workarounds
- Infoframe refactoring for DisplayPort
- VBT updates
- DisplayPort vswing/emph/buffer translation refactoring
- CCS fixes
- Restore GPU clock boost on missed vblanks
- Scatter list updates for userptr allocations
- Gen9+ transition watermarks
- Display IPC (Isochronous Priority Control)
- Private PAT management
- GVT: improved error handling and pci config sanitizing
- Execlist refactoring
- Transparent Huge Page support
- User defined priorities support
- HuC/GuC firmware refactoring
- DP MST fixes
- eDP power sequencing fixes
- Use RCU instead of stop_machine
- PSR state tracking support
- Eviction fixes
- BDW DP aux channel timeout fixes
- LSPCON fixes
- Cannonlake PLL fixes
amdgpu:
- Per VM BO support
- Powerplay cleanups
- CI powerplay support
- PASID mgr for kfd
- SR-IOV fixes
- initial GPU reset for vega10
- Prime mmap support
- TTM updates
- Clock query interface for Raven
- Fence to handle ioctl
- UVD encode ring support on Polaris
- Transparent huge page DMA support
- Compute LRU pipe tweaks
- BO flag to allow buffers to opt out of implicit sync
- CTX priority setting API
- VRAM lost infrastructure plumbing
qxl:
- fix flicker since atomic rework
amdkfd:
- Further improvements from internal AMD tree
- Usermode events
- Drop radeon support
nouveau:
- Pascal temperature sensor support
- Improved BAR2 handling
- MMU rework to support Pascal MMU
exynos:
- Improved HDMI/mixer support
- HDMI audio interface support
tegra:
- Prep work for tegra186
- Cleanup/fixes
msm:
- Preemption support for a5xx
- Display fixes for 8x96 (snapdragon 820)
- Async cursor plane fixes
- FW loading rework
- GPU debugging improvements
vc4:
- Prep for DSI panels
- fix T-format tiling scanout
- New madvise ioctl
Rockchip:
- LVDS support
omapdrm:
- omap4 HDMI CEC support
etnaviv:
- GPU performance counters groundwork
sun4i:
- refactor driver load + TCON backend
- HDMI improvements
- A31 support
- Misc fixes
udl:
- Probe/EDID read fixes.
tilcdc:
- Misc fixes.
pl111:
- Support more variants
adv7511:
- Improve EDID handling.
- HDMI CEC support
sii8620:
- Add remote control support"
* tag 'drm-for-v4.15' of git://people.freedesktop.org/~airlied/linux: (1480 commits)
drm/rockchip: analogix_dp: Use mutex rather than spinlock
drm/mode_object: fix documentation for object lookups.
drm/i915: Reorder context-close to avoid calling i915_vma_close() under RCU
drm/i915: Move init_clock_gating() back to where it was
drm/i915: Prune the reservation shared fence array
drm/i915: Idle the GPU before shinking everything
drm/i915: Lock llist_del_first() vs llist_del_all()
drm/i915: Calculate ironlake intermediate watermarks correctly, v2.
drm/i915: Disable lazy PPGTT page table optimization for vGPU
drm/i915/execlists: Remove the priority "optimisation"
drm/i915: Filter out spurious execlists context-switch interrupts
drm/amdgpu: use irq-safe lock for kiq->ring_lock
drm/amdgpu: bypass lru touch for KIQ ring submission
drm/amdgpu: Potential uninitialized variable in amdgpu_vm_update_directories()
drm/amdgpu: potential uninitialized variable in amdgpu_vce_ring_parse_cs()
drm/amd/powerplay: initialize a variable before using it
drm/amd/powerplay: suppress KASAN out of bounds warning in vega10_populate_all_memory_levels
drm/amd/amdgpu: fix evicted VRAM bo adjudgement condition
drm/vblank: Tune drm_crtc_accurate_vblank_count() WARN down to a debug
drm/rockchip: add CONFIG_OF dependency for lvds
...
Merge updates from Andrew Morton:
- a few misc bits
- ocfs2 updates
- almost all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (131 commits)
memory hotplug: fix comments when adding section
mm: make alloc_node_mem_map a void call if we don't have CONFIG_FLAT_NODE_MEM_MAP
mm: simplify nodemask printing
mm,oom_reaper: remove pointless kthread_run() error check
mm/page_ext.c: check if page_ext is not prepared
writeback: remove unused function parameter
mm: do not rely on preempt_count in print_vma_addr
mm, sparse: do not swamp log with huge vmemmap allocation failures
mm/hmm: remove redundant variable align_end
mm/list_lru.c: mark expected switch fall-through
mm/shmem.c: mark expected switch fall-through
mm/page_alloc.c: broken deferred calculation
mm: don't warn about allocations which stall for too long
fs: fuse: account fuse_inode slab memory as reclaimable
mm, page_alloc: fix potential false positive in __zone_watermark_ok
mm: mlock: remove lru_add_drain_all()
mm, sysctl: make NUMA stats configurable
shmem: convert shmem_init_inodecache() to void
Unify migrate_pages and move_pages access checks
mm, pagevec: rename pagevec drained field
...
Here, pfn_to_node should be page_to_nid.
Link: http://lkml.kernel.org/r/1510735205-22540-1-git-send-email-fan.du@intel.com
Signed-off-by: Fan Du <fan.du@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_area_init_node() calls alloc_node_mem_map(), but this function does
nothing unless we have CONFIG_FLAT_NODE_MEM_MAP.
As a cleanup, we can move the "#ifdef CONFIG_FLAT_NODE_MEM_MAP" within
alloc_node_mem_map() out of the function, and define a
alloc_node_mem_map() { } when CONFIG_FLAT_NODE_MEM_MAP is not present.
This also moves the printk that lays within the "#ifdef
CONFIG_FLAT_NODE_MEM_MAP" block from free_area_init_node() to
alloc_node_mem_map(), getting rid of the "#ifdef
CONFIG_FLAT_NODE_MEM_MAP" in free_area_init_node().
[akpm@linux-foundation.org: clean up the printk while we're there]
Link: http://lkml.kernel.org/r/20171114111935.GA11758@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_warn() and dump_header() have to explicitly handle NULL nodemask
which forces both paths to use pr_cont. We can do better. printk
already handles NULL pointers properly so all we need is to teach
nodemask_pr_args to handle NULL nodemask carefully. This allows
simplification of both alloc_warn() and dump_header() and gets rid of
pr_cont altogether.
This patch has been motivated by patch from Joe Perches
http://lkml.kernel.org/r/b31236dfe3fc924054fd7842bde678e71d193638.1509991345.git.joe@perches.com
[akpm@linux-foundation.org: fix tile warning, per Arnd]
Link: http://lkml.kernel.org/r/20171109100531.3cn2hcqnuj7mjaju@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joe Perches <joe@perches.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since oom_init() is called before userspace processes start, memory
allocation failure for creating the OOM reaper kernel thread will let
the OOM killer call panic() rather than wake up the OOM reaper.
Link: http://lkml.kernel.org/r/1510137800-4602-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
online_page_ext() and page_ext_init() allocate page_ext for each
section, but they do not allocate if the first PFN is !pfn_present(pfn)
or !pfn_valid(pfn). Then section->page_ext remains as NULL.
lookup_page_ext checks NULL only if CONFIG_DEBUG_VM is enabled. For a
valid PFN, __set_page_owner will try to get page_ext through
lookup_page_ext. Without CONFIG_DEBUG_VM lookup_page_ext will misuse
NULL pointer as value 0. This incurrs invalid address access.
This is the panic example when PFN 0x100000 is not valid but PFN
0x13FC00 is being used for page_ext. section->page_ext is NULL,
get_entry returned invalid page_ext address as 0x1DFA000 for a PFN
0x13FC00.
To avoid this panic, CONFIG_DEBUG_VM should be removed so that page_ext
will be checked at all times.
Unable to handle kernel paging request at virtual address 01dfa014
------------[ cut here ]------------
Kernel BUG at ffffff80082371e0 [verbose debug info unavailable]
Internal error: Oops: 96000045 [#1] PREEMPT SMP
Modules linked in:
PC is at __set_page_owner+0x48/0x78
LR is at __set_page_owner+0x44/0x78
__set_page_owner+0x48/0x78
get_page_from_freelist+0x880/0x8e8
__alloc_pages_nodemask+0x14c/0xc48
__do_page_cache_readahead+0xdc/0x264
filemap_fault+0x2ac/0x550
ext4_filemap_fault+0x3c/0x58
__do_fault+0x80/0x120
handle_mm_fault+0x704/0xbb0
do_page_fault+0x2e8/0x394
do_mem_abort+0x88/0x124
Pre-4.7 kernels also need commit f86e427197 ("mm: check the return
value of lookup_page_ext for all call sites").
Link: http://lkml.kernel.org/r/20171107094131.14621-1-jaewon31.kim@samsung.com
Fixes: eefa864b70 ("mm/page_ext: resurrect struct page extending code for debugging")
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: <stable@vger.kernel.org> [depends on f86e427197, see above]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The parameter `struct bdi_writeback *wb` is not been used in the
function body. Remove it.
Link: http://lkml.kernel.org/r/1509685485-15278-1-git-send-email-wanglong19@meituan.com
Signed-off-by: Wang Long <wanglong19@meituan.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The preempt count check on print_vma_addr has been added by commit
e8bff74afb ("x86: fix "BUG: sleeping function called from invalid
context" in print_vma_addr()") and it relied on the elevated preempt
count from preempt_conditional_sti because preempt_count check doesn't
work on non preemptive kernels by default.
The code has evolved though and commit d99e1bd175 ("x86/entry/traps:
Refactor preemption and interrupt flag handling") has replaced
preempt_conditional_sti by an explicit preempt_disable which is noop on
!PREEMPT so the check in print_vma_addr is broken.
Fix the issue by using trylock on mmap_sem rather than chacking the
preempt count. The allocation we are relying on has to be GFP_NOWAIT as
well. There is a chance that we won't dump the vma state if the lock is
contended or the memory short but this is acceptable outcome and much
less fragile than the not working preemption check or tricks around it.
Link: http://lkml.kernel.org/r/20171106134031.g6dbelg55mrbyc6i@dhcp22.suse.cz
Fixes: d99e1bd175 ("x86/entry/traps: Refactor preemption and interrupt flag handling")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Yang Shi <yang.s@alibaba-inc.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While doing memory hotplug tests under heavy memory pressure we have
noticed too many page allocation failures when allocating vmemmap memmap
backed by huge page
kworker/u3072:1: page allocation failure: order:9, mode:0x24084c0(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO)
[...]
Call Trace:
dump_trace+0x59/0x310
show_stack_log_lvl+0xea/0x170
show_stack+0x21/0x40
dump_stack+0x5c/0x7c
warn_alloc_failed+0xe2/0x150
__alloc_pages_nodemask+0x3ed/0xb20
alloc_pages_current+0x7f/0x100
vmemmap_alloc_block+0x79/0xb6
__vmemmap_alloc_block_buf+0x136/0x145
vmemmap_populate+0xd2/0x2b9
sparse_mem_map_populate+0x23/0x30
sparse_add_one_section+0x68/0x18e
__add_pages+0x10a/0x1d0
arch_add_memory+0x4a/0xc0
add_memory_resource+0x89/0x160
add_memory+0x6d/0xd0
acpi_memory_device_add+0x181/0x251
acpi_bus_attach+0xfd/0x19b
acpi_bus_scan+0x59/0x69
acpi_device_hotplug+0xd2/0x41f
acpi_hotplug_work_fn+0x1a/0x23
process_one_work+0x14e/0x410
worker_thread+0x116/0x490
kthread+0xbd/0xe0
ret_from_fork+0x3f/0x70
and we do see many of those because essentially every allocation fails
for each memory section. This is an excessive way to tell the user that
there is nothing to really worry about because we do have a fallback
mechanism to use base pages. The only downside might be a performance
degradation due to TLB pressure.
This patch changes vmemmap_alloc_block() to use __GFP_NOWARN and warn
explicitly once on the first allocation failure. This will reduce the
noise in the kernel log considerably, while we still have an indication
that a performance might be impacted.
[mhocko@kernel.org: forgot to git add the follow up fix]
Link: http://lkml.kernel.org/r/20171107090635.c27thtse2lchjgvb@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20171106092228.31098-1-mhocko@kernel.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Joe Perches <joe@perches.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Variable align_end is assigned a value but it is never read, so the
variable is redundant and can be removed. Cleans up the clang warning:
Value stored to 'align_end' is never read
Link: http://lkml.kernel.org/r/20171017143837.23207-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.
Link: http://lkml.kernel.org/r/20171020190754.GA24332@embeddedor.com
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.
Link: http://lkml.kernel.org/r/20171020191058.GA24427@embeddedor.com
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In reset_deferred_meminit() we determine number of pages that must not
be deferred. We initialize pages for at least 2G of memory, but also
pages for reserved memory in this node.
The reserved memory is determined in this function:
memblock_reserved_memory_within(), which operates over physical
addresses, and returns size in bytes. However, reset_deferred_meminit()
assumes that that this function operates with pfns, and returns page
count.
The result is that in the best case machine boots slower than expected
due to initializing more pages than needed in single thread, and in the
worst case panics because fewer than needed pages are initialized early.
Link: http://lkml.kernel.org/r/20171021011707.15191-1-pasha.tatashin@oracle.com
Fixes: 864b9a393d ("mm: consider memblock reservations for deferred memory initialization sizing")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 63f53dea0c ("mm: warn about allocations which stall for too
long") was a great step for reducing possibility of silent hang up
problem caused by memory allocation stalls. But this commit reverts it,
for it is possible to trigger OOM lockup and/or soft lockups when many
threads concurrently called warn_alloc() (in order to warn about memory
allocation stalls) due to current implementation of printk(), and it is
difficult to obtain useful information due to limitation of synchronous
warning approach.
Current printk() implementation flushes all pending logs using the
context of a thread which called console_unlock(). printk() should be
able to flush all pending logs eventually unless somebody continues
appending to printk() buffer.
Since warn_alloc() started appending to printk() buffer while waiting
for oom_kill_process() to make forward progress when oom_kill_process()
is processing pending logs, it became possible for warn_alloc() to force
oom_kill_process() loop inside printk(). As a result, warn_alloc()
significantly increased possibility of preventing oom_kill_process()
from making forward progress.
---------- Pseudo code start ----------
Before warn_alloc() was introduced:
retry:
if (mutex_trylock(&oom_lock)) {
while (atomic_read(&printk_pending_logs) > 0) {
atomic_dec(&printk_pending_logs);
print_one_log();
}
// Send SIGKILL here.
mutex_unlock(&oom_lock)
}
goto retry;
After warn_alloc() was introduced:
retry:
if (mutex_trylock(&oom_lock)) {
while (atomic_read(&printk_pending_logs) > 0) {
atomic_dec(&printk_pending_logs);
print_one_log();
}
// Send SIGKILL here.
mutex_unlock(&oom_lock)
} else if (waited_for_10seconds()) {
atomic_inc(&printk_pending_logs);
}
goto retry;
---------- Pseudo code end ----------
Although waited_for_10seconds() becomes true once per 10 seconds,
unbounded number of threads can call waited_for_10seconds() at the same
time. Also, since threads doing waited_for_10seconds() keep doing
almost busy loop, the thread doing print_one_log() can use little CPU
resource. Therefore, this situation can be simplified like
---------- Pseudo code start ----------
retry:
if (mutex_trylock(&oom_lock)) {
while (atomic_read(&printk_pending_logs) > 0) {
atomic_dec(&printk_pending_logs);
print_one_log();
}
// Send SIGKILL here.
mutex_unlock(&oom_lock)
} else {
atomic_inc(&printk_pending_logs);
}
goto retry;
---------- Pseudo code end ----------
when printk() is called faster than print_one_log() can process a log.
One of possible mitigation would be to introduce a new lock in order to
make sure that no other series of printk() (either oom_kill_process() or
warn_alloc()) can append to printk() buffer when one series of printk()
(either oom_kill_process() or warn_alloc()) is already in progress.
Such serialization will also help obtaining kernel messages in readable
form.
---------- Pseudo code start ----------
retry:
if (mutex_trylock(&oom_lock)) {
mutex_lock(&oom_printk_lock);
while (atomic_read(&printk_pending_logs) > 0) {
atomic_dec(&printk_pending_logs);
print_one_log();
}
// Send SIGKILL here.
mutex_unlock(&oom_printk_lock);
mutex_unlock(&oom_lock)
} else {
if (mutex_trylock(&oom_printk_lock)) {
atomic_inc(&printk_pending_logs);
mutex_unlock(&oom_printk_lock);
}
}
goto retry;
---------- Pseudo code end ----------
But this commit does not go that direction, for we don't want to
introduce a new lock dependency, and we unlikely be able to obtain
useful information even if we serialized oom_kill_process() and
warn_alloc().
Synchronous approach is prone to unexpected results (e.g. too late [1],
too frequent [2], overlooked [3]). As far as I know, warn_alloc() never
helped with providing information other than "something is going wrong".
I want to consider asynchronous approach which can obtain information
during stalls with possibly relevant threads (e.g. the owner of
oom_lock and kswapd-like threads) and serve as a trigger for actions
(e.g. turn on/off tracepoints, ask libvirt daemon to take a memory dump
of stalling KVM guest for diagnostic purpose).
This commit temporarily loses ability to report e.g. OOM lockup due to
unable to invoke the OOM killer due to !__GFP_FS allocation request.
But asynchronous approach will be able to detect such situation and emit
warning. Thus, let's remove warn_alloc().
[1] https://bugzilla.kernel.org/show_bug.cgi?id=192981
[2] http://lkml.kernel.org/r/CAM_iQpWuPVGc2ky8M-9yukECtS+zKjiDasNymX7rMcBjBFyM_A@mail.gmail.com
[3] commit db73ee0d46 ("mm, vmscan: do not loop on too_many_isolated for ever"))
Link: http://lkml.kernel.org/r/1509017339-4802-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Cong Wang <xiyou.wangcong@gmail.com>
Reported-by: yuwang.yuwang <yuwang.yuwang@alibaba-inc.com>
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 97a16fc82a ("mm, page_alloc: only enforce watermarks for
order-0 allocations"), __zone_watermark_ok() check for high-order
allocations will shortcut per-migratetype free list checks for
ALLOC_HARDER allocations, and return true as long as there's free page
of any migratetype. The intention is that ALLOC_HARDER can allocate
from MIGRATE_HIGHATOMIC free lists, while normal allocations can't.
However, as a side effect, the watermark check will then also return
true when there are pages only on the MIGRATE_ISOLATE list, or (prior to
CMA conversion to ZONE_MOVABLE) on the MIGRATE_CMA list. Since the
allocation cannot actually obtain isolated pages, and might not be able
to obtain CMA pages, this can result in a false positive.
The condition should be rare and perhaps the outcome is not a fatal one.
Still, it's better if the watermark check is correct. There also
shouldn't be a performance tradeoff here.
Link: http://lkml.kernel.org/r/20171102125001.23708-1-vbabka@suse.cz
Fixes: 97a16fc82a ("mm, page_alloc: only enforce watermarks for order-0 allocations")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lru_add_drain_all() is not required by mlock() and it will drain
everything that has been cached at the time mlock is called. And that
is not really related to the memory which will be faulted in (and
cached) and mlocked by the syscall itself.
If anything lru_add_drain_all() should be called _after_ pages have been
mlocked and faulted in but even that is not strictly needed because
those pages would get to the appropriate LRUs lazily during the reclaim
path. Moreover follow_page_pte (gup) will drain the local pcp LRU
cache.
On larger machines the overhead of lru_add_drain_all() in mlock() can be
significant when mlocking data already in memory. We have observed high
latency in mlock() due to lru_add_drain_all() when the users were
mlocking in memory tmpfs files.
[mhocko@suse.com: changelog fix]
Link: http://lkml.kernel.org/r/20171019222507.2894-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the second step which introduces a tunable interface that allow
numa stats configurable for optimizing zone_statistics(), as suggested
by Dave Hansen and Ying Huang.
=========================================================================
When page allocation performance becomes a bottleneck and you can
tolerate some possible tool breakage and decreased numa counter
precision, you can do:
echo 0 > /proc/sys/vm/numa_stat
In this case, numa counter update is ignored. We can see about
*4.8%*(185->176) drop of cpu cycles per single page allocation and
reclaim on Jesper's page_bench01 (single thread) and *8.1%*(343->315)
drop of cpu cycles per single page allocation and reclaim on Jesper's
page_bench03 (88 threads) running on a 2-Socket Broadwell-based server
(88 threads, 126G memory).
Benchmark link provided by Jesper D Brouer (increase loop times to
10000000):
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench
=========================================================================
When page allocation performance is not a bottleneck and you want all
tooling to work, you can do:
echo 1 > /proc/sys/vm/numa_stat
This is system default setting.
Many thanks to Michal Hocko, Dave Hansen, Ying Huang and Vlastimil Babka
for comments to help improve the original patch.
[keescook@chromium.org: make sure mutex is a global static]
Link: http://lkml.kernel.org/r/20171107213809.GA4314@beast
Link: http://lkml.kernel.org/r/1508290927-8518-1-git-send-email-kemi.wang@intel.com
Signed-off-by: Kemi Wang <kemi.wang@intel.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Jesper Dangaard Brouer <brouer@redhat.com>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Suggested-by: Ying Huang <ying.huang@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Luis R . Rodriguez" <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem_inode_cachep was created with SLAB_PANIC flag and
shmem_init_inodecache() never returns non-zero, so convert this
function to return void.
Link: http://lkml.kernel.org/r/20170909124542.GA35224@bogon.didichuxing.com
Signed-off-by: weiping zhang <zhangweiping@didichuxing.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 197e7e5213 ("Sanitize 'move_pages()' permission checks") fixed
a security issue I reported in the move_pages syscall, and made it so
that you can't act on set-uid processes unless you have the
CAP_SYS_PTRACE capability.
Unify the access check logic of migrate_pages to match the new behavior
of move_pages. We discussed this a bit in the security@ list and
thought it'd be good for consistency even though there's no evident
security impact. The NUMA node access checks are left intact and
require CAP_SYS_NICE as before.
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1710011830320.6333@lakka.kapsi.fi
Signed-off-by: Otto Ebeling <otto.ebeling@iki.fi>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
According to Vlastimil Babka, the drained field in pagevec is
potentially misleading because it might be interpreted as draining this
pagevec instead of the percpu lru pagevecs. Rename the field for
clarity.
Link: http://lkml.kernel.org/r/20171019093346.ylahzdpzmoriyf4v@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
rmqueue_bulk() fills an empty pcplist with pages from the free list. It
tries to preserve increasing order by pfn to the caller, because it
leads to better performance with some I/O controllers, as explained in
commit e084b2d95e ("page-allocator: preserve PFN ordering when
__GFP_COLD is set").
To preserve the order, it's sufficient to add pages to the tail of the
list as they are retrieved. The current code instead adds to the head
of the list, but then updates the list head pointer to the last added
page, in each step. This does result in the same order, but is
needlessly confusing and potentially wasteful, with no apparent benefit.
This patch simplifies the code and adjusts comment accordingly.
Link: http://lkml.kernel.org/r/f6505442-98a9-12e4-b2cd-0fa83874c159@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As the page free path makes no distinction between cache hot and cold
pages, there is no real useful ordering of pages in the free list that
allocation requests can take advantage of. Juding from the users of
__GFP_COLD, it is likely that a number of them are the result of copying
other sites instead of actually measuring the impact. Remove the
__GFP_COLD parameter which simplifies a number of paths in the page
allocator.
This is potentially controversial but bear in mind that the size of the
per-cpu pagelists versus modern cache sizes means that the whole per-cpu
list can often fit in the L3 cache. Hence, there is only a potential
benefit for microbenchmarks that alloc/free pages in a tight loop. It's
even worse when THP is taken into account which has little or no chance
of getting a cache-hot page as the per-cpu list is bypassed and the
zeroing of multiple pages will thrash the cache anyway.
The truncate microbenchmarks are not shown as this patch affects the
allocation path and not the free path. A page fault microbenchmark was
tested but it showed no sigificant difference which is not surprising
given that the __GFP_COLD branches are a miniscule percentage of the
fault path.
Link: http://lkml.kernel.org/r/20171018075952.10627-9-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most callers users of free_hot_cold_page claim the pages being released
are cache hot. The exception is the page reclaim paths where it is
likely that enough pages will be freed in the near future that the
per-cpu lists are going to be recycled and the cache hotness information
is lost. As no one really cares about the hotness of pages being
released to the allocator, just ditch the parameter.
The APIs are renamed to indicate that it's no longer about hot/cold
pages. It should also be less confusing as there are subtle differences
between them. __free_pages drops a reference and frees a page when the
refcount reaches zero. free_hot_cold_page handled pages whose refcount
was already zero which is non-obvious from the name. free_unref_page
should be more obvious.
No performance impact is expected as the overhead is marginal. The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.
[mgorman@techsingularity.net: add pages to head, not tail]
Link: http://lkml.kernel.org/r/20171019154321.qtpzaeftoyyw4iey@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-8-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All callers of release_pages claim the pages being released are cache
hot. As no one cares about the hotness of pages being released to the
allocator, just ditch the parameter.
No performance impact is expected as the overhead is marginal. The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.
Link: http://lkml.kernel.org/r/20171018075952.10627-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every pagevec_init user claims the pages being released are hot even in
cases where it is unlikely the pages are hot. As no one cares about the
hotness of pages being released to the allocator, just ditch the
parameter.
No performance impact is expected as the overhead is marginal. The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.
Link: http://lkml.kernel.org/r/20171018075952.10627-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a pagevec is initialised on the stack, it is generally used
multiple times over a range of pages, looking up entries and then
releasing them. On each pagevec_release, the per-cpu deferred LRU
pagevecs are drained on the grounds the page being released may be on
those queues and the pages may be cache hot. In many cases only the
first drain is necessary as it's unlikely that the range of pages being
walked is racing against LRU addition. Even if there is such a race,
the impact is marginal where as constantly redraining the lru pagevecs
costs.
This patch ensures that pagevec is only drained once in a given
lifecycle without increasing the cache footprint of the pagevec
structure. Only sparsetruncate tiny is shown here as large files have
many exceptional entries and calls pagecache_release less frequently.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
batchshadow-v1r1 onedrain-v1r1
Min Time 141.00 ( 0.00%) 141.00 ( 0.00%)
1st-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%)
2nd-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%)
3rd-qrtle Time 143.00 ( 0.00%) 143.00 ( 0.00%)
Max-90% Time 144.00 ( 0.00%) 144.00 ( 0.00%)
Max-95% Time 146.00 ( 0.00%) 145.00 ( 0.68%)
Max-99% Time 198.00 ( 0.00%) 194.00 ( 2.02%)
Max Time 254.00 ( 0.00%) 208.00 ( 18.11%)
Amean Time 145.12 ( 0.00%) 144.30 ( 0.56%)
Stddev Time 12.74 ( 0.00%) 9.62 ( 24.49%)
Coeff Time 8.78 ( 0.00%) 6.67 ( 24.06%)
Best99%Amean Time 144.29 ( 0.00%) 143.82 ( 0.32%)
Best95%Amean Time 142.68 ( 0.00%) 142.31 ( 0.26%)
Best90%Amean Time 142.52 ( 0.00%) 142.19 ( 0.24%)
Best75%Amean Time 142.26 ( 0.00%) 141.98 ( 0.20%)
Best50%Amean Time 141.90 ( 0.00%) 141.71 ( 0.13%)
Best25%Amean Time 141.80 ( 0.00%) 141.43 ( 0.26%)
The impact on bonnie is marginal and within the noise because a
significant percentage of the file being truncated has been reclaimed
and consists of shadow entries which reduce the hotness of the
pagevec_release path.
Link: http://lkml.kernel.org/r/20171018075952.10627-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>