linux/arch/sh/kernel/cpu/irq/intc.c
Magnus Damm 51da64264b sh: intc - add single bitmap register support
This patch adds single bitmap register support to intc. The current
code only handles 16 and 32 bit registers where a set bit means
interrupt enabled, but this is easy to extend in the future.

The INTC_IRQ() macro is also added to provide a way to hook in
interrupt controllers for FPGAs in boards or companion chips.

Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2007-09-21 11:57:47 +09:00

457 lines
11 KiB
C

/*
* Shared interrupt handling code for IPR and INTC2 types of IRQs.
*
* Copyright (C) 2007 Magnus Damm
*
* Based on intc2.c and ipr.c
*
* Copyright (C) 1999 Niibe Yutaka & Takeshi Yaegashi
* Copyright (C) 2000 Kazumoto Kojima
* Copyright (C) 2001 David J. Mckay (david.mckay@st.com)
* Copyright (C) 2003 Takashi Kusuda <kusuda-takashi@hitachi-ul.co.jp>
* Copyright (C) 2005, 2006 Paul Mundt
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#define _INTC_MK(fn, idx, bit, value) \
((fn) << 24 | ((value) << 16) | ((idx) << 8) | (bit))
#define _INTC_FN(h) (h >> 24)
#define _INTC_VALUE(h) ((h >> 16) & 0xff)
#define _INTC_IDX(h) ((h >> 8) & 0xff)
#define _INTC_BIT(h) (h & 0xff)
#define _INTC_PTR(desc, member, data) \
(desc->member + _INTC_IDX(data))
static inline struct intc_desc *get_intc_desc(unsigned int irq)
{
struct irq_chip *chip = get_irq_chip(irq);
return (void *)((char *)chip - offsetof(struct intc_desc, chip));
}
static inline unsigned int set_field(unsigned int value,
unsigned int field_value,
unsigned int width,
unsigned int shift)
{
value &= ~(((1 << width) - 1) << shift);
value |= field_value << shift;
return value;
}
static inline unsigned int set_prio_field(struct intc_desc *desc,
unsigned int value,
unsigned int priority,
unsigned int data)
{
unsigned int width = _INTC_PTR(desc, prio_regs, data)->field_width;
return set_field(value, priority, width, _INTC_BIT(data));
}
static void disable_prio_16(struct intc_desc *desc, unsigned int data)
{
unsigned long addr = _INTC_PTR(desc, prio_regs, data)->reg;
ctrl_outw(set_prio_field(desc, ctrl_inw(addr), 0, data), addr);
}
static void enable_prio_16(struct intc_desc *desc, unsigned int data)
{
unsigned long addr = _INTC_PTR(desc, prio_regs, data)->reg;
unsigned int prio = _INTC_VALUE(data);
ctrl_outw(set_prio_field(desc, ctrl_inw(addr), prio, data), addr);
}
static void disable_prio_32(struct intc_desc *desc, unsigned int data)
{
unsigned long addr = _INTC_PTR(desc, prio_regs, data)->reg;
ctrl_outl(set_prio_field(desc, ctrl_inl(addr), 0, data), addr);
}
static void enable_prio_32(struct intc_desc *desc, unsigned int data)
{
unsigned long addr = _INTC_PTR(desc, prio_regs, data)->reg;
unsigned int prio = _INTC_VALUE(data);
ctrl_outl(set_prio_field(desc, ctrl_inl(addr), prio, data), addr);
}
static void write_set_reg_8(struct intc_desc *desc, unsigned int data)
{
ctrl_outb(1 << _INTC_BIT(data),
_INTC_PTR(desc, mask_regs, data)->set_reg);
}
static void write_clr_reg_8(struct intc_desc *desc, unsigned int data)
{
ctrl_outb(1 << _INTC_BIT(data),
_INTC_PTR(desc, mask_regs, data)->clr_reg);
}
static void write_set_reg_32(struct intc_desc *desc, unsigned int data)
{
ctrl_outl(1 << _INTC_BIT(data),
_INTC_PTR(desc, mask_regs, data)->set_reg);
}
static void write_clr_reg_32(struct intc_desc *desc, unsigned int data)
{
ctrl_outl(1 << _INTC_BIT(data),
_INTC_PTR(desc, mask_regs, data)->clr_reg);
}
static void or_set_reg_16(struct intc_desc *desc, unsigned int data)
{
unsigned long addr = _INTC_PTR(desc, mask_regs, data)->set_reg;
ctrl_outw(ctrl_inw(addr) | 1 << _INTC_BIT(data), addr);
}
static void and_set_reg_16(struct intc_desc *desc, unsigned int data)
{
unsigned long addr = _INTC_PTR(desc, mask_regs, data)->set_reg;
ctrl_outw(ctrl_inw(addr) & ~(1 << _INTC_BIT(data)), addr);
}
static void or_set_reg_32(struct intc_desc *desc, unsigned int data)
{
unsigned long addr = _INTC_PTR(desc, mask_regs, data)->set_reg;
ctrl_outl(ctrl_inl(addr) | 1 << _INTC_BIT(data), addr);
}
static void and_set_reg_32(struct intc_desc *desc, unsigned int data)
{
unsigned long addr = _INTC_PTR(desc, mask_regs, data)->set_reg;
ctrl_outl(ctrl_inl(addr) & ~(1 << _INTC_BIT(data)), addr);
}
enum { REG_FN_ERROR=0,
REG_FN_DUAL_8, REG_FN_DUAL_32,
REG_FN_ENA_16, REG_FN_ENA_32,
REG_FN_PRIO_16, REG_FN_PRIO_32 };
static struct {
void (*enable)(struct intc_desc *, unsigned int);
void (*disable)(struct intc_desc *, unsigned int);
} intc_reg_fns[] = {
[REG_FN_DUAL_8] = { write_clr_reg_8, write_set_reg_8 },
[REG_FN_DUAL_32] = { write_clr_reg_32, write_set_reg_32 },
[REG_FN_ENA_16] = { or_set_reg_16, and_set_reg_16 },
[REG_FN_ENA_32] = { or_set_reg_32, and_set_reg_32 },
[REG_FN_PRIO_16] = { enable_prio_16, disable_prio_16 },
[REG_FN_PRIO_32] = { enable_prio_32, disable_prio_32 },
};
static void intc_enable(unsigned int irq)
{
struct intc_desc *desc = get_intc_desc(irq);
unsigned int data = (unsigned int) get_irq_chip_data(irq);
intc_reg_fns[_INTC_FN(data)].enable(desc, data);
}
static void intc_disable(unsigned int irq)
{
struct intc_desc *desc = get_intc_desc(irq);
unsigned int data = (unsigned int) get_irq_chip_data(irq);
intc_reg_fns[_INTC_FN(data)].disable(desc, data);
}
static void set_sense_16(struct intc_desc *desc, unsigned int data)
{
unsigned long addr = _INTC_PTR(desc, sense_regs, data)->reg;
unsigned int width = _INTC_PTR(desc, sense_regs, data)->field_width;
unsigned int bit = _INTC_BIT(data);
unsigned int value = _INTC_VALUE(data);
ctrl_outw(set_field(ctrl_inw(addr), value, width, bit), addr);
}
static void set_sense_32(struct intc_desc *desc, unsigned int data)
{
unsigned long addr = _INTC_PTR(desc, sense_regs, data)->reg;
unsigned int width = _INTC_PTR(desc, sense_regs, data)->field_width;
unsigned int bit = _INTC_BIT(data);
unsigned int value = _INTC_VALUE(data);
ctrl_outl(set_field(ctrl_inl(addr), value, width, bit), addr);
}
#define VALID(x) (x | 0x80)
static unsigned char intc_irq_sense_table[IRQ_TYPE_SENSE_MASK + 1] = {
[IRQ_TYPE_EDGE_FALLING] = VALID(0),
[IRQ_TYPE_EDGE_RISING] = VALID(1),
[IRQ_TYPE_LEVEL_LOW] = VALID(2),
[IRQ_TYPE_LEVEL_HIGH] = VALID(3),
};
static int intc_set_sense(unsigned int irq, unsigned int type)
{
struct intc_desc *desc = get_intc_desc(irq);
unsigned char value = intc_irq_sense_table[type & IRQ_TYPE_SENSE_MASK];
unsigned int i, j, data, bit;
intc_enum enum_id = 0;
for (i = 0; i < desc->nr_vectors; i++) {
struct intc_vect *vect = desc->vectors + i;
if (evt2irq(vect->vect) != irq)
continue;
enum_id = vect->enum_id;
break;
}
if (!enum_id || !value)
return -EINVAL;
value ^= VALID(0);
for (i = 0; i < desc->nr_sense_regs; i++) {
struct intc_sense_reg *sr = desc->sense_regs + i;
for (j = 0; j < ARRAY_SIZE(sr->enum_ids); j++) {
if (sr->enum_ids[j] != enum_id)
continue;
bit = sr->reg_width - ((j + 1) * sr->field_width);
data = _INTC_MK(0, i, bit, value);
switch(sr->reg_width) {
case 16:
set_sense_16(desc, data);
break;
case 32:
set_sense_32(desc, data);
break;
}
return 0;
}
}
return -EINVAL;
}
static unsigned int __init intc_find_dual_handler(unsigned int width)
{
switch (width) {
case 8:
return REG_FN_DUAL_8;
case 32:
return REG_FN_DUAL_32;
}
BUG();
return REG_FN_ERROR;
}
static unsigned int __init intc_find_prio_handler(unsigned int width)
{
switch (width) {
case 16:
return REG_FN_PRIO_16;
case 32:
return REG_FN_PRIO_32;
}
BUG();
return REG_FN_ERROR;
}
static unsigned int __init intc_find_ena_handler(unsigned int width)
{
switch (width) {
case 16:
return REG_FN_ENA_16;
case 32:
return REG_FN_ENA_32;
}
BUG();
return REG_FN_ERROR;
}
static intc_enum __init intc_grp_id(struct intc_desc *desc, intc_enum enum_id)
{
struct intc_group *g = desc->groups;
unsigned int i, j;
for (i = 0; g && enum_id && i < desc->nr_groups; i++) {
g = desc->groups + i;
for (j = 0; g->enum_ids[j]; j++) {
if (g->enum_ids[j] != enum_id)
continue;
return g->enum_id;
}
}
return 0;
}
static unsigned int __init intc_prio_value(struct intc_desc *desc,
intc_enum enum_id, int do_grps)
{
struct intc_prio *p = desc->priorities;
unsigned int i;
for (i = 0; p && enum_id && i < desc->nr_priorities; i++) {
p = desc->priorities + i;
if (p->enum_id != enum_id)
continue;
return p->priority;
}
if (do_grps)
return intc_prio_value(desc, intc_grp_id(desc, enum_id), 0);
/* default to the lowest priority possible if no priority is set
* - this needs to be at least 2 for 5-bit priorities on 7780
*/
return 2;
}
static unsigned int __init intc_mask_data(struct intc_desc *desc,
intc_enum enum_id, int do_grps)
{
struct intc_mask_reg *mr = desc->mask_regs;
unsigned int i, j, fn;
for (i = 0; mr && enum_id && i < desc->nr_mask_regs; i++) {
mr = desc->mask_regs + i;
for (j = 0; j < ARRAY_SIZE(mr->enum_ids); j++) {
if (mr->enum_ids[j] != enum_id)
continue;
switch (mr->clr_reg) {
case 1: /* 1 = enabled interrupt - "enable" register */
fn = intc_find_ena_handler(mr->reg_width);
break;
default:
fn = intc_find_dual_handler(mr->reg_width);
}
if (fn == REG_FN_ERROR)
return 0;
return _INTC_MK(fn, i, (mr->reg_width - 1) - j, 0);
}
}
if (do_grps)
return intc_mask_data(desc, intc_grp_id(desc, enum_id), 0);
return 0;
}
static unsigned int __init intc_prio_data(struct intc_desc *desc,
intc_enum enum_id, int do_grps)
{
struct intc_prio_reg *pr = desc->prio_regs;
unsigned int i, j, fn, bit, prio;
for (i = 0; pr && enum_id && i < desc->nr_prio_regs; i++) {
pr = desc->prio_regs + i;
for (j = 0; j < ARRAY_SIZE(pr->enum_ids); j++) {
if (pr->enum_ids[j] != enum_id)
continue;
fn = intc_find_prio_handler(pr->reg_width);
if (fn == REG_FN_ERROR)
return 0;
prio = intc_prio_value(desc, enum_id, 1);
bit = pr->reg_width - ((j + 1) * pr->field_width);
BUG_ON(bit < 0);
return _INTC_MK(fn, i, bit, prio);
}
}
if (do_grps)
return intc_prio_data(desc, intc_grp_id(desc, enum_id), 0);
return 0;
}
static void __init intc_register_irq(struct intc_desc *desc, intc_enum enum_id,
unsigned int irq)
{
unsigned int data[2], primary;
/* Prefer single interrupt source bitmap over other combinations:
* 1. bitmap, single interrupt source
* 2. priority, single interrupt source
* 3. bitmap, multiple interrupt sources (groups)
* 4. priority, multiple interrupt sources (groups)
*/
data[0] = intc_mask_data(desc, enum_id, 0);
data[1] = intc_prio_data(desc, enum_id, 0);
primary = 0;
if (!data[0] && data[1])
primary = 1;
data[0] = data[0] ? data[0] : intc_mask_data(desc, enum_id, 1);
data[1] = data[1] ? data[1] : intc_prio_data(desc, enum_id, 1);
if (!data[primary])
primary ^= 1;
BUG_ON(!data[primary]); /* must have primary masking method */
disable_irq_nosync(irq);
set_irq_chip_and_handler_name(irq, &desc->chip,
handle_level_irq, "level");
set_irq_chip_data(irq, (void *)data[primary]);
/* enable secondary masking method if present */
if (data[!primary])
intc_reg_fns[_INTC_FN(data[!primary])].enable(desc,
data[!primary]);
/* irq should be disabled by default */
desc->chip.mask(irq);
}
void __init register_intc_controller(struct intc_desc *desc)
{
unsigned int i;
desc->chip.mask = intc_disable;
desc->chip.unmask = intc_enable;
desc->chip.mask_ack = intc_disable;
desc->chip.set_type = intc_set_sense;
for (i = 0; i < desc->nr_vectors; i++) {
struct intc_vect *vect = desc->vectors + i;
intc_register_irq(desc, vect->enum_id, evt2irq(vect->vect));
}
}