gecko-dev/gfx/2d/PathHelpers.h
Wes Kocher 2c1bb01c13 Backed out 3 changesets (bug 923512) for mochitest-2 bustage on a CLOSED TREE
Backed out changeset f8720d81b74f (bug 923512)
Backed out changeset f431232084b7 (bug 923512)
Backed out changeset dff51863663c (bug 923512)
2014-08-06 16:36:35 -07:00

189 lines
7.2 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_PATHHELPERS_H_
#define MOZILLA_GFX_PATHHELPERS_H_
#include "2D.h"
#include "mozilla/Constants.h"
namespace mozilla {
namespace gfx {
template <typename T>
void ArcToBezier(T* aSink, const Point &aOrigin, const Size &aRadius,
float aStartAngle, float aEndAngle, bool aAntiClockwise)
{
Point startPoint(aOrigin.x + cos(aStartAngle) * aRadius.width,
aOrigin.y + sin(aStartAngle) * aRadius.height);
aSink->LineTo(startPoint);
// Clockwise we always sweep from the smaller to the larger angle, ccw
// it's vice versa.
if (!aAntiClockwise && (aEndAngle < aStartAngle)) {
Float correction = Float(ceil((aStartAngle - aEndAngle) / (2.0f * M_PI)));
aEndAngle += float(correction * 2.0f * M_PI);
} else if (aAntiClockwise && (aStartAngle < aEndAngle)) {
Float correction = (Float)ceil((aEndAngle - aStartAngle) / (2.0f * M_PI));
aStartAngle += float(correction * 2.0f * M_PI);
}
// Sweeping more than 2 * pi is a full circle.
if (!aAntiClockwise && (aEndAngle - aStartAngle > 2 * M_PI)) {
aEndAngle = float(aStartAngle + 2.0f * M_PI);
} else if (aAntiClockwise && (aStartAngle - aEndAngle > 2.0f * M_PI)) {
aEndAngle = float(aStartAngle - 2.0f * M_PI);
}
// Calculate the total arc we're going to sweep.
Float arcSweepLeft = fabs(aEndAngle - aStartAngle);
Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f;
Float currentStartAngle = aStartAngle;
while (arcSweepLeft > 0) {
// We guarantee here the current point is the start point of the next
// curve segment.
Float currentEndAngle;
if (arcSweepLeft > M_PI / 2.0f) {
currentEndAngle = Float(currentStartAngle + M_PI / 2.0f * sweepDirection);
} else {
currentEndAngle = currentStartAngle + arcSweepLeft * sweepDirection;
}
Point currentStartPoint(aOrigin.x + cos(currentStartAngle) * aRadius.width,
aOrigin.y + sin(currentStartAngle) * aRadius.height);
Point currentEndPoint(aOrigin.x + cos(currentEndAngle) * aRadius.width,
aOrigin.y + sin(currentEndAngle) * aRadius.height);
// Calculate kappa constant for partial curve. The sign of angle in the
// tangent will actually ensure this is negative for a counter clockwise
// sweep, so changing signs later isn't needed.
Float kappaFactor = (4.0f / 3.0f) * tan((currentEndAngle - currentStartAngle) / 4.0f);
Float kappaX = kappaFactor * aRadius.width;
Float kappaY = kappaFactor * aRadius.height;
Point tangentStart(-sin(currentStartAngle), cos(currentStartAngle));
Point cp1 = currentStartPoint;
cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY);
Point revTangentEnd(sin(currentEndAngle), -cos(currentEndAngle));
Point cp2 = currentEndPoint;
cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY);
aSink->BezierTo(cp1, cp2, currentEndPoint);
arcSweepLeft -= Float(M_PI / 2.0f);
currentStartAngle = currentEndAngle;
}
}
/* This is basically the ArcToBezier with the parameters for drawing a circle
* inlined which vastly simplifies it and avoids a bunch of transcedental function
* calls which should make it faster. */
template <typename T>
void EllipseToBezier(T* aSink, const Point &aOrigin, const Size &aRadius)
{
Point startPoint(aOrigin.x + aRadius.width,
aOrigin.y);
aSink->LineTo(startPoint);
// Calculate kappa constant for partial curve. The sign of angle in the
// tangent will actually ensure this is negative for a counter clockwise
// sweep, so changing signs later isn't needed.
Float kappaFactor = (4.0f / 3.0f) * tan((M_PI/2.0f) / 4.0f);
Float kappaX = kappaFactor * aRadius.width;
Float kappaY = kappaFactor * aRadius.height;
Float cosStartAngle = 1;
Float sinStartAngle = 0;
for (int i = 0; i < 4; i++) {
// We guarantee here the current point is the start point of the next
// curve segment.
Point currentStartPoint(aOrigin.x + cosStartAngle * aRadius.width,
aOrigin.y + sinStartAngle * aRadius.height);
Point currentEndPoint(aOrigin.x + -sinStartAngle * aRadius.width,
aOrigin.y + cosStartAngle * aRadius.height);
Point tangentStart(-sinStartAngle, cosStartAngle);
Point cp1 = currentStartPoint;
cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY);
Point revTangentEnd(cosStartAngle, sinStartAngle);
Point cp2 = currentEndPoint;
cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY);
aSink->BezierTo(cp1, cp2, currentEndPoint);
// cos(x+pi/2) == -sin(x)
// sin(x+pi/2) == cos(x)
Float tmp = cosStartAngle;
cosStartAngle = -sinStartAngle;
sinStartAngle = tmp;
}
}
/**
* Appends a path represending a rounded rectangle to the path being built by
* aPathBuilder.
*
* aRect The rectangle to append.
* aCornerRadii Contains the radii of the top-left, top-right, bottom-right
* and bottom-left corners, in that order.
* aDrawClockwise If set to true, the path will start at the left of the top
* left edge and draw clockwise. If set to false the path will
* start at the right of the top left edge and draw counter-
* clockwise.
*/
GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder,
const Rect& aRect,
const Size(& aCornerRadii)[4],
bool aDrawClockwise = true);
/**
* Appends a path represending an ellipse to the path being built by
* aPathBuilder.
*
* The ellipse extends aDimensions.width / 2.0 in the horizontal direction
* from aCenter, and aDimensions.height / 2.0 in the vertical direction.
*/
GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder,
const Point& aCenter,
const Size& aDimensions);
static inline bool
UserToDevicePixelSnapped(Rect& aRect, const Matrix& aTransform)
{
Point p1 = aTransform * aRect.TopLeft();
Point p2 = aTransform * aRect.TopRight();
Point p3 = aTransform * aRect.BottomRight();
// Check that the rectangle is axis-aligned. For an axis-aligned rectangle,
// two opposite corners define the entire rectangle. So check if
// the axis-aligned rectangle with opposite corners p1 and p3
// define an axis-aligned rectangle whose other corners are p2 and p4.
// We actually only need to check one of p2 and p4, since an affine
// transform maps parallelograms to parallelograms.
if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) {
p1.Round();
p3.Round();
aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y)));
aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(),
std::max(p1.y, p3.y) - aRect.Y()));
return true;
}
return false;
}
} // namespace gfx
} // namespace mozilla
#endif /* MOZILLA_GFX_PATHHELPERS_H_ */