gecko-dev/dom/media/webrtc/MediaEngineRemoteVideoSource.cpp
2019-06-03 10:40:02 +00:00

969 lines
32 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MediaEngineRemoteVideoSource.h"
#include "CamerasChild.h"
#include "MediaManager.h"
#include "MediaTrackConstraints.h"
#include "mozilla/ErrorNames.h"
#include "mozilla/RefPtr.h"
#include "nsIPrefService.h"
#include "Tracing.h"
#include "VideoFrameUtils.h"
#include "VideoUtils.h"
#include "webrtc/common_video/include/video_frame_buffer.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
namespace mozilla {
extern LazyLogModule gMediaManagerLog;
#define LOG(...) MOZ_LOG(gMediaManagerLog, LogLevel::Debug, (__VA_ARGS__))
#define LOG_FRAME(...) \
MOZ_LOG(gMediaManagerLog, LogLevel::Verbose, (__VA_ARGS__))
using dom::ConstrainLongRange;
using dom::MediaSourceEnum;
using dom::MediaTrackConstraints;
using dom::MediaTrackConstraintSet;
using dom::MediaTrackSettings;
using dom::VideoFacingModeEnum;
static Maybe<VideoFacingModeEnum> GetFacingMode(const nsString& aDeviceName) {
// Set facing mode based on device name.
#if defined(ANDROID)
// Names are generated. Example: "Camera 0, Facing back, Orientation 90"
//
// See media/webrtc/trunk/webrtc/modules/video_capture/android/java/src/org/
// webrtc/videoengine/VideoCaptureDeviceInfoAndroid.java
if (aDeviceName.Find(NS_LITERAL_STRING("Facing back")) != kNotFound) {
return Some(VideoFacingModeEnum::Environment);
}
if (aDeviceName.Find(NS_LITERAL_STRING("Facing front")) != kNotFound) {
return Some(VideoFacingModeEnum::User);
}
#endif // ANDROID
#ifdef XP_MACOSX
// Kludge to test user-facing cameras on OSX.
if (aDeviceName.Find(NS_LITERAL_STRING("Face")) != -1) {
return Some(VideoFacingModeEnum::User);
}
#endif
#ifdef XP_WIN
// The cameras' name of Surface book are "Microsoft Camera Front" and
// "Microsoft Camera Rear" respectively.
if (aDeviceName.Find(NS_LITERAL_STRING("Front")) != kNotFound) {
return Some(VideoFacingModeEnum::User);
}
if (aDeviceName.Find(NS_LITERAL_STRING("Rear")) != kNotFound) {
return Some(VideoFacingModeEnum::Environment);
}
#endif // WINDOWS
return Nothing();
}
MediaEngineRemoteVideoSource::MediaEngineRemoteVideoSource(
int aIndex, camera::CaptureEngine aCapEngine, bool aScary)
: mCaptureIndex(aIndex),
mCapEngine(aCapEngine),
mScary(aScary),
mMutex("MediaEngineRemoteVideoSource::mMutex"),
mRescalingBufferPool(/* zero_initialize */ false,
/* max_number_of_buffers */ 1),
mSettingsUpdatedByFrame(MakeAndAddRef<media::Refcountable<AtomicBool>>()),
mSettings(MakeAndAddRef<media::Refcountable<MediaTrackSettings>>()),
mFirstFramePromise(mFirstFramePromiseHolder.Ensure(__func__)) {
mSettings->mWidth.Construct(0);
mSettings->mHeight.Construct(0);
mSettings->mFrameRate.Construct(0);
Init();
}
MediaEngineRemoteVideoSource::~MediaEngineRemoteVideoSource() {
mFirstFramePromiseHolder.RejectIfExists(NS_ERROR_ABORT, __func__);
}
dom::MediaSourceEnum MediaEngineRemoteVideoSource::GetMediaSource() const {
switch (mCapEngine) {
case camera::BrowserEngine:
return MediaSourceEnum::Browser;
case camera::CameraEngine:
return MediaSourceEnum::Camera;
case camera::ScreenEngine:
return MediaSourceEnum::Screen;
case camera::WinEngine:
return MediaSourceEnum::Window;
default:
MOZ_CRASH();
}
}
void MediaEngineRemoteVideoSource::Init() {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
char deviceName[kMaxDeviceNameLength];
char uniqueId[kMaxUniqueIdLength];
if (camera::GetChildAndCall(&camera::CamerasChild::GetCaptureDevice,
mCapEngine, mCaptureIndex, deviceName,
kMaxDeviceNameLength, uniqueId,
kMaxUniqueIdLength, nullptr)) {
LOG("Error initializing RemoteVideoSource (GetCaptureDevice)");
return;
}
SetName(NS_ConvertUTF8toUTF16(deviceName));
SetUUID(uniqueId);
SetGroupId(NS_ConvertUTF8toUTF16(deviceName));
mInitDone = true;
}
void MediaEngineRemoteVideoSource::Shutdown() {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
if (!mInitDone) {
// Already shut down
return;
}
if (mState == kStarted) {
Stop();
}
if (mState == kAllocated || mState == kStopped) {
Deallocate();
}
MOZ_ASSERT(mState == kReleased);
mInitDone = false;
}
void MediaEngineRemoteVideoSource::SetName(nsString aName) {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
mDeviceName = std::move(aName);
Maybe<VideoFacingModeEnum> facingMode;
if (GetMediaSource() == MediaSourceEnum::Camera) {
// Only cameras can have a facing mode.
facingMode = GetFacingMode(mDeviceName);
}
if (facingMode.isSome()) {
mFacingMode.Assign(NS_ConvertUTF8toUTF16(
dom::VideoFacingModeEnumValues::strings[uint32_t(*facingMode)].value));
} else {
mFacingMode.Truncate();
}
NS_DispatchToMainThread(NS_NewRunnableFunction(
"MediaEngineRemoteVideoSource::SetName (facingMode updater)",
[settings = mSettings, hasFacingMode = facingMode.isSome(),
mode = mFacingMode]() {
if (!hasFacingMode) {
settings->mFacingMode.Reset();
return;
}
settings->mFacingMode.Construct(mode);
}));
}
nsString MediaEngineRemoteVideoSource::GetName() const {
AssertIsOnOwningThread();
return mDeviceName;
}
void MediaEngineRemoteVideoSource::SetUUID(const char* aUUID) {
AssertIsOnOwningThread();
mUniqueId.Assign(aUUID);
}
nsCString MediaEngineRemoteVideoSource::GetUUID() const {
AssertIsOnOwningThread();
return mUniqueId;
}
void MediaEngineRemoteVideoSource::SetGroupId(nsString aGroupId) {
AssertIsOnOwningThread();
mGroupId = std::move(aGroupId);
}
nsString MediaEngineRemoteVideoSource::GetGroupId() const {
AssertIsOnOwningThread();
return mGroupId;
}
nsresult MediaEngineRemoteVideoSource::Allocate(
const MediaTrackConstraints& aConstraints, const MediaEnginePrefs& aPrefs,
const nsString& aDeviceId,
const mozilla::ipc::PrincipalInfo& aPrincipalInfo,
const char** aOutBadConstraint) {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
MOZ_ASSERT(mState == kReleased);
if (!mInitDone) {
LOG("Init not done");
return NS_ERROR_FAILURE;
}
NormalizedConstraints constraints(aConstraints);
webrtc::CaptureCapability newCapability;
LOG("ChooseCapability(kFitness) for mCapability (Allocate) ++");
if (!ChooseCapability(constraints, aPrefs, aDeviceId, newCapability,
kFitness)) {
*aOutBadConstraint =
MediaConstraintsHelper::FindBadConstraint(constraints, this, aDeviceId);
return NS_ERROR_FAILURE;
}
LOG("ChooseCapability(kFitness) for mCapability (Allocate) --");
if (camera::GetChildAndCall(&camera::CamerasChild::AllocateCaptureDevice,
mCapEngine, mUniqueId.get(), kMaxUniqueIdLength,
mCaptureIndex, aPrincipalInfo)) {
return NS_ERROR_FAILURE;
}
{
MutexAutoLock lock(mMutex);
mState = kAllocated;
mCapability = newCapability;
}
LOG("Video device %d allocated", mCaptureIndex);
return NS_OK;
}
nsresult MediaEngineRemoteVideoSource::Deallocate() {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
MOZ_ASSERT(mState == kStopped || mState == kAllocated);
if (mStream && IsTrackIDExplicit(mTrackID)) {
mStream->EndTrack(mTrackID);
}
{
MutexAutoLock lock(mMutex);
mStream = nullptr;
mTrackID = TRACK_NONE;
mPrincipal = PRINCIPAL_HANDLE_NONE;
mState = kReleased;
}
// Stop() has stopped capture synchronously on the media thread before we get
// here, so there are no longer any callbacks on an IPC thread accessing
// mImageContainer or mRescalingBufferPool.
mImageContainer = nullptr;
mRescalingBufferPool.Release();
LOG("Video device %d deallocated", mCaptureIndex);
if (camera::GetChildAndCall(&camera::CamerasChild::ReleaseCaptureDevice,
mCapEngine, mCaptureIndex)) {
MOZ_ASSERT_UNREACHABLE("Couldn't release allocated device");
}
return NS_OK;
}
void MediaEngineRemoteVideoSource::SetTrack(
const RefPtr<SourceMediaStream>& aStream, TrackID aTrackID,
const PrincipalHandle& aPrincipal) {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
MOZ_ASSERT(mState == kAllocated);
MOZ_ASSERT(!mStream);
MOZ_ASSERT(mTrackID == TRACK_NONE);
MOZ_ASSERT(aStream);
MOZ_ASSERT(IsTrackIDExplicit(aTrackID));
if (!mImageContainer) {
mImageContainer = layers::LayerManager::CreateImageContainer(
layers::ImageContainer::ASYNCHRONOUS);
}
{
MutexAutoLock lock(mMutex);
mStream = aStream;
mTrackID = aTrackID;
mPrincipal = aPrincipal;
}
aStream->AddTrack(aTrackID, new VideoSegment(),
SourceMediaStream::ADDTRACK_QUEUED);
}
nsresult MediaEngineRemoteVideoSource::Start() {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
MOZ_ASSERT(mState == kAllocated || mState == kStopped);
MOZ_ASSERT(mInitDone);
MOZ_ASSERT(mStream);
MOZ_ASSERT(IsTrackIDExplicit(mTrackID));
{
MutexAutoLock lock(mMutex);
mState = kStarted;
}
mSettingsUpdatedByFrame->mValue = false;
if (camera::GetChildAndCall(&camera::CamerasChild::StartCapture, mCapEngine,
mCaptureIndex, mCapability, this)) {
LOG("StartCapture failed");
MutexAutoLock lock(mMutex);
mState = kStopped;
return NS_ERROR_FAILURE;
}
NS_DispatchToMainThread(NS_NewRunnableFunction(
"MediaEngineRemoteVideoSource::SetLastCapability",
[settings = mSettings, updated = mSettingsUpdatedByFrame,
capEngine = mCapEngine, cap = mCapability]() mutable {
switch (capEngine) {
case camera::ScreenEngine:
case camera::WinEngine:
// Undo the hack where ideal and max constraints are crammed
// together in mCapability for consumption by low-level code. We
// don't actually know the real resolution yet, so report min(ideal,
// max) for now.
// TODO: This can be removed in bug 1453269.
cap.width = std::min(cap.width >> 16, cap.width & 0xffff);
cap.height = std::min(cap.height >> 16, cap.height & 0xffff);
break;
default:
break;
}
if (!updated->mValue) {
settings->mWidth.Value() = cap.width;
settings->mHeight.Value() = cap.height;
}
settings->mFrameRate.Value() = cap.maxFPS;
}));
return NS_OK;
}
nsresult MediaEngineRemoteVideoSource::FocusOnSelectedSource() {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
int result;
result = camera::GetChildAndCall(&camera::CamerasChild::FocusOnSelectedSource,
mCapEngine, mCaptureIndex);
return result == 0 ? NS_OK : NS_ERROR_FAILURE;
}
nsresult MediaEngineRemoteVideoSource::Stop() {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
if (mState == kStopped || mState == kAllocated) {
return NS_OK;
}
MOZ_ASSERT(mState == kStarted);
if (camera::GetChildAndCall(&camera::CamerasChild::StopCapture, mCapEngine,
mCaptureIndex)) {
MOZ_DIAGNOSTIC_ASSERT(false, "Stopping a started capture failed");
return NS_ERROR_FAILURE;
}
{
MutexAutoLock lock(mMutex);
mState = kStopped;
}
return NS_OK;
}
nsresult MediaEngineRemoteVideoSource::Reconfigure(
const MediaTrackConstraints& aConstraints, const MediaEnginePrefs& aPrefs,
const nsString& aDeviceId, const char** aOutBadConstraint) {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
MOZ_ASSERT(mInitDone);
NormalizedConstraints constraints(aConstraints);
webrtc::CaptureCapability newCapability;
LOG("ChooseCapability(kFitness) for mTargetCapability (Reconfigure) ++");
if (!ChooseCapability(constraints, aPrefs, aDeviceId, newCapability,
kFitness)) {
*aOutBadConstraint =
MediaConstraintsHelper::FindBadConstraint(constraints, this, aDeviceId);
return NS_ERROR_INVALID_ARG;
}
LOG("ChooseCapability(kFitness) for mTargetCapability (Reconfigure) --");
if (mCapability == newCapability) {
return NS_OK;
}
bool started = mState == kStarted;
if (started) {
nsresult rv = Stop();
if (NS_WARN_IF(NS_FAILED(rv))) {
nsAutoCString name;
GetErrorName(rv, name);
LOG("Video source %p for video device %d Reconfigure() failed "
"unexpectedly in Stop(). rv=%s",
this, mCaptureIndex, name.Data());
return NS_ERROR_UNEXPECTED;
}
}
{
MutexAutoLock lock(mMutex);
// Start() applies mCapability on the device.
mCapability = newCapability;
}
if (started) {
nsresult rv = Start();
if (NS_WARN_IF(NS_FAILED(rv))) {
nsAutoCString name;
GetErrorName(rv, name);
LOG("Video source %p for video device %d Reconfigure() failed "
"unexpectedly in Start(). rv=%s",
this, mCaptureIndex, name.Data());
return NS_ERROR_UNEXPECTED;
}
}
return NS_OK;
}
size_t MediaEngineRemoteVideoSource::NumCapabilities() const {
AssertIsOnOwningThread();
mHardcodedCapabilities.Clear();
int num = camera::GetChildAndCall(&camera::CamerasChild::NumberOfCapabilities,
mCapEngine, mUniqueId.get());
if (num >= 1) {
return num;
}
// The default for devices that don't return discrete capabilities: treat
// them as supporting all capabilities orthogonally. E.g. screensharing.
// CaptureCapability defaults key values to 0, which means accept any value.
mHardcodedCapabilities.AppendElement(webrtc::CaptureCapability());
return mHardcodedCapabilities.Length(); // 1
}
webrtc::CaptureCapability MediaEngineRemoteVideoSource::GetCapability(
size_t aIndex) const {
AssertIsOnOwningThread();
webrtc::CaptureCapability result;
if (!mHardcodedCapabilities.IsEmpty()) {
MOZ_ASSERT(aIndex < mHardcodedCapabilities.Length());
result = mHardcodedCapabilities.SafeElementAt(aIndex,
webrtc::CaptureCapability());
}
camera::GetChildAndCall(&camera::CamerasChild::GetCaptureCapability,
mCapEngine, mUniqueId.get(), aIndex, result);
return result;
}
int MediaEngineRemoteVideoSource::DeliverFrame(
uint8_t* aBuffer, const camera::VideoFrameProperties& aProps) {
// Cameras IPC thread - take great care with accessing members!
int32_t req_max_width;
int32_t req_max_height;
int32_t req_ideal_width;
int32_t req_ideal_height;
{
MutexAutoLock lock(mMutex);
MOZ_ASSERT(mState == kStarted);
// TODO: These can be removed in bug 1453269.
req_max_width = mCapability.width & 0xffff;
req_max_height = mCapability.height & 0xffff;
req_ideal_width = (mCapability.width >> 16) & 0xffff;
req_ideal_height = (mCapability.height >> 16) & 0xffff;
}
// This is only used in the case of screen sharing, see bug 1453269.
const int32_t target_width = aProps.width();
const int32_t target_height = aProps.height();
if (aProps.rotation() == 90 || aProps.rotation() == 270) {
// This frame is rotated, so what was negotiated as width is now height,
// and vice versa.
std::swap(req_max_width, req_max_height);
std::swap(req_ideal_width, req_ideal_height);
}
int32_t dst_max_width = req_max_width == 0
? aProps.width()
: std::min(req_max_width, aProps.width());
int32_t dst_max_height = req_max_height == 0
? aProps.height()
: std::min(req_max_height, aProps.height());
// This logic works for both camera and screen sharing case.
// for camera case, req_ideal_width and req_ideal_height is 0.
// The following snippet will set dst_width to dst_max_width and dst_height to
// dst_max_height
int32_t dst_width = std::min(
req_ideal_width > 0 ? req_ideal_width : aProps.width(), dst_max_width);
int32_t dst_height =
std::min(req_ideal_height > 0 ? req_ideal_height : aProps.height(),
dst_max_height);
// Apply scaling for screen sharing, see bug 1453269.
switch (mCapEngine) {
case camera::ScreenEngine:
case camera::WinEngine: {
// scale to average of portrait and landscape
float scale_width = (float)dst_width / (float)aProps.width();
float scale_height = (float)dst_height / (float)aProps.height();
float scale = (scale_width + scale_height) / 2;
dst_width = (int)(scale * target_width);
dst_height = (int)(scale * target_height);
// if scaled rectangle exceeds max rectangle, scale to minimum of portrait
// and landscape
if (dst_width > dst_max_width || dst_height > dst_max_height) {
scale_width = (float)dst_max_width / (float)dst_width;
scale_height = (float)dst_max_height / (float)dst_height;
scale = std::min(scale_width, scale_height);
dst_width = (int32_t)(scale * dst_width);
dst_height = (int32_t)(scale * dst_height);
}
break;
}
default: {
break;
}
}
rtc::Callback0<void> callback_unused;
rtc::scoped_refptr<webrtc::I420BufferInterface> buffer =
new rtc::RefCountedObject<webrtc::WrappedI420Buffer>(
aProps.width(), aProps.height(), aBuffer, aProps.yStride(),
aBuffer + aProps.yAllocatedSize(), aProps.uStride(),
aBuffer + aProps.yAllocatedSize() + aProps.uAllocatedSize(),
aProps.vStride(), callback_unused);
if ((dst_width != aProps.width() || dst_height != aProps.height()) &&
dst_width <= aProps.width() && dst_height <= aProps.height()) {
// Destination resolution is smaller than source buffer. We'll rescale.
rtc::scoped_refptr<webrtc::I420Buffer> scaledBuffer =
mRescalingBufferPool.CreateBuffer(dst_width, dst_height);
if (!scaledBuffer) {
MOZ_ASSERT_UNREACHABLE(
"We might fail to allocate a buffer, but with this "
"being a recycling pool that shouldn't happen");
return 0;
}
scaledBuffer->CropAndScaleFrom(*buffer);
buffer = scaledBuffer;
}
layers::PlanarYCbCrData data;
data.mYChannel = const_cast<uint8_t*>(buffer->DataY());
data.mYSize = IntSize(buffer->width(), buffer->height());
data.mYStride = buffer->StrideY();
MOZ_ASSERT(buffer->StrideU() == buffer->StrideV());
data.mCbCrStride = buffer->StrideU();
data.mCbChannel = const_cast<uint8_t*>(buffer->DataU());
data.mCrChannel = const_cast<uint8_t*>(buffer->DataV());
data.mCbCrSize =
IntSize((buffer->width() + 1) / 2, (buffer->height() + 1) / 2);
data.mPicX = 0;
data.mPicY = 0;
data.mPicSize = IntSize(buffer->width(), buffer->height());
RefPtr<layers::PlanarYCbCrImage> image =
mImageContainer->CreatePlanarYCbCrImage();
if (!image->CopyData(data)) {
MOZ_ASSERT_UNREACHABLE(
"We might fail to allocate a buffer, but with this "
"being a recycling container that shouldn't happen");
return 0;
}
#ifdef DEBUG
static uint32_t frame_num = 0;
LOG_FRAME(
"frame %d (%dx%d)->(%dx%d); rotation %d, timeStamp %u, ntpTimeMs %" PRIu64
", renderTimeMs %" PRIu64,
frame_num++, aProps.width(), aProps.height(), dst_width, dst_height,
aProps.rotation(), aProps.timeStamp(), aProps.ntpTimeMs(),
aProps.renderTimeMs());
#endif
if (mImageSize.width != dst_width || mImageSize.height != dst_height) {
NS_DispatchToMainThread(NS_NewRunnableFunction(
"MediaEngineRemoteVideoSource::FrameSizeChange",
[settings = mSettings, updated = mSettingsUpdatedByFrame,
holder = std::move(mFirstFramePromiseHolder), dst_width,
dst_height]() mutable {
settings->mWidth.Value() = dst_width;
settings->mHeight.Value() = dst_height;
updated->mValue = true;
// Since mImageSize was initialized to (0,0), we end up here on the
// arrival of the first frame. We resolve the promise representing
// arrival of first frame, after correct settings values have been
// made available (Resolve() is idempotent if already resolved).
holder.ResolveIfExists(true, __func__);
}));
}
{
MutexAutoLock lock(mMutex);
MOZ_ASSERT(mState == kStarted);
VideoSegment segment;
mImageSize = image->GetSize();
segment.AppendFrame(image.forget(), mImageSize, mPrincipal);
mStream->AppendToTrack(mTrackID, &segment);
}
return 0;
}
uint32_t MediaEngineRemoteVideoSource::GetDistance(
const webrtc::CaptureCapability& aCandidate,
const NormalizedConstraintSet& aConstraints, const nsString& aDeviceId,
const DistanceCalculation aCalculate) const {
if (aCalculate == kFeasibility) {
return GetFeasibilityDistance(aCandidate, aConstraints, aDeviceId);
}
return GetFitnessDistance(aCandidate, aConstraints, aDeviceId);
}
uint32_t MediaEngineRemoteVideoSource::GetFitnessDistance(
const webrtc::CaptureCapability& aCandidate,
const NormalizedConstraintSet& aConstraints,
const nsString& aDeviceId) const {
AssertIsOnOwningThread();
// Treat width|height|frameRate == 0 on capability as "can do any".
// This allows for orthogonal capabilities that are not in discrete steps.
typedef MediaConstraintsHelper H;
uint64_t distance =
uint64_t(H::FitnessDistance(aDeviceId, aConstraints.mDeviceId)) +
uint64_t(H::FitnessDistance(mFacingMode, aConstraints.mFacingMode)) +
uint64_t(aCandidate.width ? H::FitnessDistance(int32_t(aCandidate.width),
aConstraints.mWidth)
: 0) +
uint64_t(aCandidate.height
? H::FitnessDistance(int32_t(aCandidate.height),
aConstraints.mHeight)
: 0) +
uint64_t(aCandidate.maxFPS ? H::FitnessDistance(double(aCandidate.maxFPS),
aConstraints.mFrameRate)
: 0);
return uint32_t(std::min(distance, uint64_t(UINT32_MAX)));
}
uint32_t MediaEngineRemoteVideoSource::GetFeasibilityDistance(
const webrtc::CaptureCapability& aCandidate,
const NormalizedConstraintSet& aConstraints,
const nsString& aDeviceId) const {
AssertIsOnOwningThread();
// Treat width|height|frameRate == 0 on capability as "can do any".
// This allows for orthogonal capabilities that are not in discrete steps.
typedef MediaConstraintsHelper H;
uint64_t distance =
uint64_t(H::FitnessDistance(aDeviceId, aConstraints.mDeviceId)) +
uint64_t(H::FitnessDistance(mFacingMode, aConstraints.mFacingMode)) +
uint64_t(aCandidate.width
? H::FeasibilityDistance(int32_t(aCandidate.width),
aConstraints.mWidth)
: 0) +
uint64_t(aCandidate.height
? H::FeasibilityDistance(int32_t(aCandidate.height),
aConstraints.mHeight)
: 0) +
uint64_t(aCandidate.maxFPS
? H::FeasibilityDistance(double(aCandidate.maxFPS),
aConstraints.mFrameRate)
: 0);
return uint32_t(std::min(distance, uint64_t(UINT32_MAX)));
}
// Find best capability by removing inferiors. May leave >1 of equal distance
/* static */
void MediaEngineRemoteVideoSource::TrimLessFitCandidates(
nsTArray<CapabilityCandidate>& aSet) {
uint32_t best = UINT32_MAX;
for (auto& candidate : aSet) {
if (best > candidate.mDistance) {
best = candidate.mDistance;
}
}
for (size_t i = 0; i < aSet.Length();) {
if (aSet[i].mDistance > best) {
aSet.RemoveElementAt(i);
} else {
++i;
}
}
MOZ_ASSERT(aSet.Length());
}
uint32_t MediaEngineRemoteVideoSource::GetBestFitnessDistance(
const nsTArray<const NormalizedConstraintSet*>& aConstraintSets,
const nsString& aDeviceId) const {
AssertIsOnOwningThread();
size_t num = NumCapabilities();
nsTArray<CapabilityCandidate> candidateSet;
for (size_t i = 0; i < num; i++) {
candidateSet.AppendElement(CapabilityCandidate(GetCapability(i)));
}
bool first = true;
for (const NormalizedConstraintSet* ns : aConstraintSets) {
for (size_t i = 0; i < candidateSet.Length();) {
auto& candidate = candidateSet[i];
uint32_t distance =
GetFitnessDistance(candidate.mCapability, *ns, aDeviceId);
if (distance == UINT32_MAX) {
candidateSet.RemoveElementAt(i);
} else {
++i;
if (first) {
candidate.mDistance = distance;
}
}
}
first = false;
}
if (!candidateSet.Length()) {
return UINT32_MAX;
}
TrimLessFitCandidates(candidateSet);
return candidateSet[0].mDistance;
}
static void LogCapability(const char* aHeader,
const webrtc::CaptureCapability& aCapability,
uint32_t aDistance) {
static const char* const codec[] = {"VP8", "VP9", "H264",
"I420", "RED", "ULPFEC",
"Generic codec", "Unknown codec"};
LOG("%s: %4u x %4u x %2u maxFps, %s. Distance = %" PRIu32, aHeader,
aCapability.width, aCapability.height, aCapability.maxFPS,
codec[std::min(std::max(uint32_t(0), uint32_t(aCapability.videoType)),
uint32_t(sizeof(codec) / sizeof(*codec) - 1))],
aDistance);
}
bool MediaEngineRemoteVideoSource::ChooseCapability(
const NormalizedConstraints& aConstraints, const MediaEnginePrefs& aPrefs,
const nsString& aDeviceId, webrtc::CaptureCapability& aCapability,
const DistanceCalculation aCalculate) {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
if (MOZ_LOG_TEST(gMediaManagerLog, LogLevel::Debug)) {
LOG("ChooseCapability: prefs: %dx%d @%dfps", aPrefs.GetWidth(),
aPrefs.GetHeight(), aPrefs.mFPS);
MediaConstraintsHelper::LogConstraints(aConstraints);
if (!aConstraints.mAdvanced.empty()) {
LOG("Advanced array[%zu]:", aConstraints.mAdvanced.size());
for (auto& advanced : aConstraints.mAdvanced) {
MediaConstraintsHelper::LogConstraints(advanced);
}
}
}
switch (mCapEngine) {
case camera::ScreenEngine:
case camera::WinEngine: {
FlattenedConstraints c(aConstraints);
// The actual resolution to constrain around is not easy to find ahead of
// time (and may in fact change over time), so as a hack, we push ideal
// and max constraints down to desktop_capture_impl.cc and finish the
// algorithm there.
// TODO: This can be removed in bug 1453269.
aCapability.width =
(std::min(0xffff, c.mWidth.mIdeal.valueOr(0)) & 0xffff) << 16 |
(std::min(0xffff, c.mWidth.mMax) & 0xffff);
aCapability.height =
(std::min(0xffff, c.mHeight.mIdeal.valueOr(0)) & 0xffff) << 16 |
(std::min(0xffff, c.mHeight.mMax) & 0xffff);
aCapability.maxFPS =
c.mFrameRate.Clamp(c.mFrameRate.mIdeal.valueOr(aPrefs.mFPS));
return true;
}
default:
break;
}
nsTArray<CapabilityCandidate> candidateSet;
size_t num = NumCapabilities();
for (size_t i = 0; i < num; i++) {
candidateSet.AppendElement(CapabilityCandidate(GetCapability(i)));
}
if (!mHardcodedCapabilities.IsEmpty() && mCapEngine == camera::CameraEngine) {
// We have a hardcoded capability, which means this camera didn't report
// discrete capabilities. It might still allow a ranged capability, so we
// add a couple of default candidates based on prefs and constraints.
// The chosen candidate will be propagated to StartCapture() which will fail
// for an invalid candidate.
MOZ_DIAGNOSTIC_ASSERT(mHardcodedCapabilities.Length() == 1);
MOZ_DIAGNOSTIC_ASSERT(candidateSet.Length() == 1);
candidateSet.Clear();
FlattenedConstraints c(aConstraints);
// Reuse the code across both the low-definition (`false`) pref and
// the high-definition (`true`) pref.
// If there are constraints we try to satisfy them but we default to prefs.
// Note that since constraints are from content and can literally be
// anything we put (rather generous) caps on them.
for (bool isHd : {false, true}) {
webrtc::CaptureCapability cap;
int32_t prefWidth = aPrefs.GetWidth(isHd);
int32_t prefHeight = aPrefs.GetHeight(isHd);
cap.width = c.mWidth.Get(prefWidth);
cap.width = std::max(0, std::min(cap.width, 7680));
cap.height = c.mHeight.Get(prefHeight);
cap.height = std::max(0, std::min(cap.height, 4320));
cap.maxFPS = c.mFrameRate.Get(aPrefs.mFPS);
cap.maxFPS = std::max(0, std::min(cap.maxFPS, 480));
if (cap.width != prefWidth) {
// Width was affected by constraints.
// We'll adjust the height too so the aspect ratio is retained.
cap.height = cap.width * prefHeight / prefWidth;
} else if (cap.height != prefHeight) {
// Height was affected by constraints but not width.
// We'll adjust the width too so the aspect ratio is retained.
cap.width = cap.height * prefWidth / prefHeight;
}
if (candidateSet.Contains(cap, CapabilityComparator())) {
continue;
}
LogCapability("Hardcoded capability", cap, 0);
candidateSet.AppendElement(cap);
}
}
// First, filter capabilities by required constraints (min, max, exact).
for (size_t i = 0; i < candidateSet.Length();) {
auto& candidate = candidateSet[i];
candidate.mDistance =
GetDistance(candidate.mCapability, aConstraints, aDeviceId, aCalculate);
LogCapability("Capability", candidate.mCapability, candidate.mDistance);
if (candidate.mDistance == UINT32_MAX) {
candidateSet.RemoveElementAt(i);
} else {
++i;
}
}
if (candidateSet.IsEmpty()) {
LOG("failed to find capability match from %zu choices",
candidateSet.Length());
return false;
}
// Filter further with all advanced constraints (that don't overconstrain).
for (const auto& cs : aConstraints.mAdvanced) {
nsTArray<CapabilityCandidate> rejects;
for (size_t i = 0; i < candidateSet.Length();) {
if (GetDistance(candidateSet[i].mCapability, cs, aDeviceId, aCalculate) ==
UINT32_MAX) {
rejects.AppendElement(candidateSet[i]);
candidateSet.RemoveElementAt(i);
} else {
++i;
}
}
if (!candidateSet.Length()) {
candidateSet.AppendElements(std::move(rejects));
}
}
MOZ_ASSERT(
candidateSet.Length(),
"advanced constraints filtering step can't reduce candidates to zero");
// Remaining algorithm is up to the UA.
TrimLessFitCandidates(candidateSet);
// Any remaining multiples all have the same distance. A common case of this
// occurs when no ideal is specified. Lean toward defaults.
uint32_t sameDistance = candidateSet[0].mDistance;
{
MediaTrackConstraintSet prefs;
prefs.mWidth.Construct().SetAsLong() = aPrefs.GetWidth();
prefs.mHeight.Construct().SetAsLong() = aPrefs.GetHeight();
prefs.mFrameRate.Construct().SetAsDouble() = aPrefs.mFPS;
NormalizedConstraintSet normPrefs(prefs, false);
for (auto& candidate : candidateSet) {
candidate.mDistance =
GetDistance(candidate.mCapability, normPrefs, aDeviceId, aCalculate);
}
TrimLessFitCandidates(candidateSet);
}
aCapability = candidateSet[0].mCapability;
LogCapability("Chosen capability", aCapability, sameDistance);
return true;
}
void MediaEngineRemoteVideoSource::GetSettings(
MediaTrackSettings& aOutSettings) const {
aOutSettings = *mSettings;
}
void MediaEngineRemoteVideoSource::Refresh(int aIndex) {
LOG(__PRETTY_FUNCTION__);
AssertIsOnOwningThread();
// NOTE: mCaptureIndex might have changed when allocated!
// Use aIndex to update information, but don't change mCaptureIndex!!
// Caller looked up this source by uniqueId, so it shouldn't change
char deviceName[kMaxDeviceNameLength];
char uniqueId[kMaxUniqueIdLength];
if (camera::GetChildAndCall(&camera::CamerasChild::GetCaptureDevice,
mCapEngine, aIndex, deviceName,
sizeof(deviceName), uniqueId, sizeof(uniqueId),
nullptr)) {
return;
}
SetName(NS_ConvertUTF8toUTF16(deviceName));
MOZ_ASSERT(mUniqueId.Equals(uniqueId));
SetGroupId(NS_ConvertUTF8toUTF16(deviceName));
}
} // namespace mozilla