gecko-dev/security/nss/lib/freebl/GFp_ecl.h
2004-04-25 15:03:26 +00:00

128 lines
5.2 KiB
C

/*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef __gfp_ecl_h_
#define __gfp_ecl_h_
#ifdef NSS_ENABLE_ECC
#include "secmpi.h"
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
extern mp_err GFp_ec_pt_is_inf_aff(const mp_int *px, const mp_int *py);
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
extern mp_err GFp_ec_pt_set_inf_aff(mp_int *px, mp_int *py);
/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, qy).
* Uses affine coordinates.
*/
extern mp_err GFp_ec_pt_add_aff(const mp_int *p, const mp_int *a,
const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy,
mp_int *rx, mp_int *ry);
/* Computes R = P - Q. Uses affine coordinates. */
extern mp_err GFp_ec_pt_sub_aff(const mp_int *p, const mp_int *a,
const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy,
mp_int *rx, mp_int *ry);
/* Computes R = 2P. Uses affine coordinates. */
extern mp_err GFp_ec_pt_dbl_aff(const mp_int *p, const mp_int *a,
const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry);
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GFp. Uses affine coordinates.
*/
extern mp_err GFp_ec_pt_mul_aff(const mp_int *p, const mp_int *a,
const mp_int *b, const mp_int *px, const mp_int *py, const mp_int *n,
mp_int *rx, mp_int *ry);
/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
* affine coordinates R(rx, ry).
*/
extern mp_err GFp_ec_pt_jac2aff(const mp_int *px, const mp_int *py,
const mp_int *pz, const mp_int *p, mp_int *rx, mp_int *ry);
/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
* coordinates.
*/
extern mp_err GFp_ec_pt_is_inf_jac(const mp_int *px, const mp_int *py,
const mp_int *pz);
/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
* coordinates.
*/
extern mp_err GFp_ec_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and
* Q is (qx, qy, qz). Uses Jacobian coordinates.
*/
extern mp_err GFp_ec_pt_add_jac(const mp_int *p, const mp_int *a,
const mp_int *px, const mp_int *py, const mp_int *pz,
const mp_int *qx, const mp_int *qy, const mp_int *qz,
mp_int *rx, mp_int *ry, mp_int *rz);
/* Computes R = 2P. Uses Jacobian coordinates. */
extern mp_err GFp_ec_pt_dbl_jac(const mp_int *p, const mp_int *a,
const mp_int *px, const mp_int *py, const mp_int *pz,
mp_int *rx, mp_int *ry, mp_int *rz);
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GFp. Uses Jacobian coordinates.
*/
mp_err GFp_ec_pt_mul_jac(const mp_int *p, const mp_int *a, const mp_int *b,
const mp_int *px, const mp_int *py, const mp_int *n,
mp_int *rx, mp_int *ry);
#define GFp_ec_pt_is_inf(px, py) GFp_ec_pt_is_inf_aff((px), (py))
#define GFp_ec_pt_add(p, a, px, py, qx, qy, rx, ry) \
GFp_ec_pt_add_aff((p), (a), (px), (py), (qx), (qy), (rx), (ry))
#define GFp_ECL_JACOBIAN
#ifdef GFp_ECL_AFFINE
#define GFp_ec_pt_mul(p, a, b, px, py, n, rx, ry) \
GFp_ec_pt_mul_aff((p), (a), (b), (px), (py), (n), (rx), (ry))
#elif defined(GFp_ECL_JACOBIAN)
#define GFp_ec_pt_mul(p, a, b, px, py, n, rx, ry) \
GFp_ec_pt_mul_jac((p), (a), (b), (px), (py), (n), (rx), (ry))
#endif /* GFp_ECL_AFFINE or GFp_ECL_JACOBIAN*/
#endif /* NSS_ENABLE_ECC */
#endif /* __gfp_ecl_h_ */