gecko-dev/gfx/2d/Swizzle.cpp
Andrew Osmond 4693985d7a Bug 1551088 - Part 3. Add SSSE3 and AVX2 implementations of unpacking. r=lsalzman
These variants perform significantly faster than the C implementations
according to local testing and that in treeherder. Image decoding is as
much as 40% faster in the most simple cases (solid green PNG image).

Differential Revision: https://phabricator.services.mozilla.com/D46446

--HG--
extra : moz-landing-system : lando
2019-10-02 13:37:25 +00:00

1080 lines
44 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Swizzle.h"
#include "Logging.h"
#include "Tools.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/EndianUtils.h"
#ifdef USE_SSE2
# include "mozilla/SSE.h"
#endif
#ifdef USE_NEON
# include "mozilla/arm.h"
#endif
namespace mozilla {
namespace gfx {
/**
* Convenience macros for dispatching to various format combinations.
*/
// Hash the formats to a relatively dense value to optimize jump table
// generation. The first 6 formats in SurfaceFormat are the 32-bit BGRA variants
// and are the most common formats dispatched here. Room is reserved in the
// lowish bits for up to these 6 destination formats. If a destination format is
// >= 6, the 6th bit is set to avoid collisions.
#define FORMAT_KEY(aSrcFormat, aDstFormat) \
(int(aSrcFormat) * 6 + int(aDstFormat) + (int(int(aDstFormat) >= 6) << 6))
#define FORMAT_CASE_EXPR(aSrcFormat, aDstFormat, ...) \
case FORMAT_KEY(aSrcFormat, aDstFormat): \
__VA_ARGS__; \
return true;
#define FORMAT_CASE(aSrcFormat, aDstFormat, ...) \
FORMAT_CASE_EXPR(aSrcFormat, aDstFormat, FORMAT_CASE_CALL(__VA_ARGS__))
#define FORMAT_CASE_ROW(aSrcFormat, aDstFormat, ...) \
case FORMAT_KEY(aSrcFormat, aDstFormat): \
return &__VA_ARGS__;
/**
* Constexpr functions for analyzing format attributes in templates.
*/
// Whether B comes before R in pixel memory layout.
static constexpr bool IsBGRFormat(SurfaceFormat aFormat) {
return aFormat == SurfaceFormat::B8G8R8A8 ||
#if MOZ_LITTLE_ENDIAN
aFormat == SurfaceFormat::R5G6B5_UINT16 ||
#endif
aFormat == SurfaceFormat::B8G8R8X8 || aFormat == SurfaceFormat::B8G8R8;
}
// Whether the order of B and R need to be swapped to map from src to dst.
static constexpr bool ShouldSwapRB(SurfaceFormat aSrcFormat,
SurfaceFormat aDstFormat) {
return IsBGRFormat(aSrcFormat) != IsBGRFormat(aDstFormat);
}
// The starting byte of the RGB components in pixel memory.
static constexpr uint32_t RGBByteIndex(SurfaceFormat aFormat) {
return aFormat == SurfaceFormat::A8R8G8B8 ||
aFormat == SurfaceFormat::X8R8G8B8
? 1
: 0;
}
// The byte of the alpha component, which just comes after RGB.
static constexpr uint32_t AlphaByteIndex(SurfaceFormat aFormat) {
return (RGBByteIndex(aFormat) + 3) % 4;
}
// The endian-dependent bit shift to access RGB of a UINT32 pixel.
static constexpr uint32_t RGBBitShift(SurfaceFormat aFormat) {
#if MOZ_LITTLE_ENDIAN
return 8 * RGBByteIndex(aFormat);
#else
return 8 - 8 * RGBByteIndex(aFormat);
#endif
}
// The endian-dependent bit shift to access alpha of a UINT32 pixel.
static constexpr uint32_t AlphaBitShift(SurfaceFormat aFormat) {
return (RGBBitShift(aFormat) + 24) % 32;
}
// Whether the pixel format should ignore the value of the alpha channel and
// treat it as opaque.
static constexpr bool IgnoreAlpha(SurfaceFormat aFormat) {
return aFormat == SurfaceFormat::B8G8R8X8 ||
aFormat == SurfaceFormat::R8G8B8X8 ||
aFormat == SurfaceFormat::X8R8G8B8;
}
// Whether to force alpha to opaque to map from src to dst.
static constexpr bool ShouldForceOpaque(SurfaceFormat aSrcFormat,
SurfaceFormat aDstFormat) {
return IgnoreAlpha(aSrcFormat) != IgnoreAlpha(aDstFormat);
}
#ifdef USE_SSE2
/**
* SSE2 optimizations
*/
template <bool aSwapRB, bool aOpaqueAlpha>
void Premultiply_SSE2(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define PREMULTIPLY_SSE2(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Premultiply_SSE2<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
template <bool aSwapRB, bool aOpaqueAlpha>
void PremultiplyRow_SSE2(const uint8_t*, uint8_t*, int32_t);
# define PREMULTIPLY_ROW_SSE2(aSrcFormat, aDstFormat) \
FORMAT_CASE_ROW( \
aSrcFormat, aDstFormat, \
PremultiplyRow_SSE2<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
template <bool aSwapRB>
void Unpremultiply_SSE2(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define UNPREMULTIPLY_SSE2(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Unpremultiply_SSE2<ShouldSwapRB(aSrcFormat, aDstFormat)>)
template <bool aSwapRB, bool aOpaqueAlpha>
void Swizzle_SSE2(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define SWIZZLE_SSE2(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Swizzle_SSE2<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
template <bool aSwapRB, bool aOpaqueAlpha>
void SwizzleRow_SSE2(const uint8_t*, uint8_t*, int32_t);
# define SWIZZLE_ROW_SSE2(aSrcFormat, aDstFormat) \
FORMAT_CASE_ROW( \
aSrcFormat, aDstFormat, \
SwizzleRow_SSE2<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
template <bool aSwapRB>
void UnpackRowRGB24_SSSE3(const uint8_t*, uint8_t*, int32_t);
#define UNPACK_ROW_RGB_SSSE3(aDstFormat) \
FORMAT_CASE_ROW(SurfaceFormat::R8G8B8, aDstFormat, \
UnpackRowRGB24_SSSE3<ShouldSwapRB(SurfaceFormat::R8G8B8, aDstFormat)>)
template <bool aSwapRB>
void UnpackRowRGB24_AVX2(const uint8_t*, uint8_t*, int32_t);
#define UNPACK_ROW_RGB_AVX2(aDstFormat) \
FORMAT_CASE_ROW(SurfaceFormat::R8G8B8, aDstFormat, \
UnpackRowRGB24_AVX2<ShouldSwapRB(SurfaceFormat::R8G8B8, aDstFormat)>)
#endif
#ifdef USE_NEON
/**
* ARM NEON optimizations
*/
template <bool aSwapRB, bool aOpaqueAlpha>
void Premultiply_NEON(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define PREMULTIPLY_NEON(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Premultiply_NEON<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
template <bool aSwapRB, bool aOpaqueAlpha>
void PremultiplyRow_NEON(const uint8_t*, uint8_t*, int32_t);
# define PREMULTIPLY_ROW_NEON(aSrcFormat, aDstFormat) \
FORMAT_CASE_ROW( \
aSrcFormat, aDstFormat, \
PremultiplyRow_NEON<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
template <bool aSwapRB>
void Unpremultiply_NEON(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define UNPREMULTIPLY_NEON(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Unpremultiply_NEON<ShouldSwapRB(aSrcFormat, aDstFormat)>)
template <bool aSwapRB, bool aOpaqueAlpha>
void Swizzle_NEON(const uint8_t*, int32_t, uint8_t*, int32_t, IntSize);
# define SWIZZLE_NEON(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
Swizzle_NEON<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
template <bool aSwapRB, bool aOpaqueAlpha>
void SwizzleRow_NEON(const uint8_t*, uint8_t*, int32_t);
# define SWIZZLE_ROW_NEON(aSrcFormat, aDstFormat) \
FORMAT_CASE_ROW( \
aSrcFormat, aDstFormat, \
SwizzleRow_NEON<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat)>)
#endif
/**
* Premultiplying
*/
// Fallback premultiply implementation that uses splayed pixel math to reduce
// the multiplications used. That is, the R and B components are isolated from
// the G and A components, which then can be multiplied as if they were two
// 2-component vectors. Otherwise, an approximation if divide-by-255 is used
// which is faster than an actual division. These optimizations are also used
// for the SSE2 and NEON implementations.
template <bool aSwapRB, bool aOpaqueAlpha, uint32_t aSrcRGBShift,
uint32_t aSrcAShift, uint32_t aDstRGBShift, uint32_t aDstAShift>
static void PremultiplyChunkFallback(const uint8_t*& aSrc, uint8_t*& aDst,
int32_t aLength) {
const uint8_t* end = aSrc + 4 * aLength;
do {
// Load and process 1 entire pixel at a time.
uint32_t color = *reinterpret_cast<const uint32_t*>(aSrc);
uint32_t a = aSrcAShift ? color >> aSrcAShift : color & 0xFF;
// Isolate the R and B components.
uint32_t rb = (color >> aSrcRGBShift) & 0x00FF00FF;
// Swap the order of R and B if necessary.
if (aSwapRB) {
rb = (rb >> 16) | (rb << 16);
}
// Approximate the multiply by alpha and divide by 255 which is
// essentially:
// c = c*a + 255; c = (c + (c >> 8)) >> 8;
// However, we omit the final >> 8 to fold it with the final shift into
// place depending on desired output format.
rb = rb * a + 0x00FF00FF;
rb = (rb + ((rb >> 8) & 0x00FF00FF)) & 0xFF00FF00;
// Use same approximation as above, but G is shifted 8 bits left.
// Alpha is left out and handled separately.
uint32_t g = color & (0xFF00 << aSrcRGBShift);
g = g * a + (0xFF00 << aSrcRGBShift);
g = (g + (g >> 8)) & (0xFF0000 << aSrcRGBShift);
// The above math leaves RGB shifted left by 8 bits.
// Shift them right if required for the output format.
// then combine them back together to produce output pixel.
// Add the alpha back on if the output format is not opaque.
*reinterpret_cast<uint32_t*>(aDst) =
(rb >> (8 - aDstRGBShift)) | (g >> (8 + aSrcRGBShift - aDstRGBShift)) |
(aOpaqueAlpha ? 0xFF << aDstAShift : a << aDstAShift);
aSrc += 4;
aDst += 4;
} while (aSrc < end);
}
template <bool aSwapRB, bool aOpaqueAlpha, uint32_t aSrcRGBShift,
uint32_t aSrcAShift, uint32_t aDstRGBShift, uint32_t aDstAShift>
static void PremultiplyRowFallback(const uint8_t* aSrc, uint8_t* aDst,
int32_t aLength) {
PremultiplyChunkFallback<aSwapRB, aOpaqueAlpha, aSrcRGBShift, aSrcAShift,
aDstRGBShift, aDstAShift>(aSrc, aDst, aLength);
}
template <bool aSwapRB, bool aOpaqueAlpha, uint32_t aSrcRGBShift,
uint32_t aSrcAShift, uint32_t aDstRGBShift, uint32_t aDstAShift>
static void PremultiplyFallback(const uint8_t* aSrc, int32_t aSrcGap,
uint8_t* aDst, int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
PremultiplyChunkFallback<aSwapRB, aOpaqueAlpha, aSrcRGBShift, aSrcAShift,
aDstRGBShift, aDstAShift>(aSrc, aDst, aSize.width);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define PREMULTIPLY_FALLBACK_CASE(aSrcFormat, aDstFormat) \
FORMAT_CASE( \
aSrcFormat, aDstFormat, \
PremultiplyFallback<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat), \
RGBBitShift(aSrcFormat), AlphaBitShift(aSrcFormat), \
RGBBitShift(aDstFormat), AlphaBitShift(aDstFormat)>)
#define PREMULTIPLY_FALLBACK(aSrcFormat) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::B8G8R8A8) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::B8G8R8X8) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::R8G8B8A8) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::R8G8B8X8) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::A8R8G8B8) \
PREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::X8R8G8B8)
#define PREMULTIPLY_ROW_FALLBACK_CASE(aSrcFormat, aDstFormat) \
FORMAT_CASE_ROW(aSrcFormat, aDstFormat, \
PremultiplyRowFallback< \
ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat), \
RGBBitShift(aSrcFormat), AlphaBitShift(aSrcFormat), \
RGBBitShift(aDstFormat), AlphaBitShift(aDstFormat)>)
#define PREMULTIPLY_ROW_FALLBACK(aSrcFormat) \
PREMULTIPLY_ROW_FALLBACK_CASE(aSrcFormat, SurfaceFormat::B8G8R8A8) \
PREMULTIPLY_ROW_FALLBACK_CASE(aSrcFormat, SurfaceFormat::B8G8R8X8) \
PREMULTIPLY_ROW_FALLBACK_CASE(aSrcFormat, SurfaceFormat::R8G8B8A8) \
PREMULTIPLY_ROW_FALLBACK_CASE(aSrcFormat, SurfaceFormat::R8G8B8X8) \
PREMULTIPLY_ROW_FALLBACK_CASE(aSrcFormat, SurfaceFormat::A8R8G8B8) \
PREMULTIPLY_ROW_FALLBACK_CASE(aSrcFormat, SurfaceFormat::X8R8G8B8)
// If rows are tightly packed, and the size of the total area will fit within
// the precision range of a single row, then process all the data as if it was
// a single row.
static inline IntSize CollapseSize(const IntSize& aSize, int32_t aSrcStride,
int32_t aDstStride) {
if (aSrcStride == aDstStride && (aSrcStride & 3) == 0 &&
aSrcStride / 4 == aSize.width) {
CheckedInt32 area = CheckedInt32(aSize.width) * CheckedInt32(aSize.height);
if (area.isValid()) {
return IntSize(area.value(), 1);
}
}
return aSize;
}
static inline int32_t GetStrideGap(int32_t aWidth, SurfaceFormat aFormat,
int32_t aStride) {
CheckedInt32 used = CheckedInt32(aWidth) * BytesPerPixel(aFormat);
if (!used.isValid() || used.value() < 0) {
return -1;
}
return aStride - used.value();
}
bool PremultiplyData(const uint8_t* aSrc, int32_t aSrcStride,
SurfaceFormat aSrcFormat, uint8_t* aDst,
int32_t aDstStride, SurfaceFormat aDstFormat,
const IntSize& aSize) {
if (aSize.IsEmpty()) {
return true;
}
IntSize size = CollapseSize(aSize, aSrcStride, aDstStride);
// Find gap from end of row to the start of the next row.
int32_t srcGap = GetStrideGap(aSize.width, aSrcFormat, aSrcStride);
int32_t dstGap = GetStrideGap(aSize.width, aDstFormat, aDstStride);
MOZ_ASSERT(srcGap >= 0 && dstGap >= 0);
if (srcGap < 0 || dstGap < 0) {
return false;
}
#define FORMAT_CASE_CALL(...) __VA_ARGS__(aSrc, srcGap, aDst, dstGap, size)
#ifdef USE_SSE2
if (mozilla::supports_sse2()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
PREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8X8)
PREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
default:
break;
}
#endif
#ifdef USE_NEON
if (mozilla::supports_neon()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
PREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8X8)
PREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
default:
break;
}
#endif
switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
PREMULTIPLY_FALLBACK(SurfaceFormat::B8G8R8A8)
PREMULTIPLY_FALLBACK(SurfaceFormat::R8G8B8A8)
PREMULTIPLY_FALLBACK(SurfaceFormat::A8R8G8B8)
default:
break;
}
#undef FORMAT_CASE_CALL
MOZ_ASSERT(false, "Unsupported premultiply formats");
return false;
}
SwizzleRowFn PremultiplyRow(SurfaceFormat aSrcFormat,
SurfaceFormat aDstFormat) {
#ifdef USE_SSE2
if (mozilla::supports_sse2()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
PREMULTIPLY_ROW_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_ROW_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8X8)
PREMULTIPLY_ROW_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_ROW_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_ROW_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_ROW_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_ROW_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_ROW_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
default:
break;
}
#endif
#ifdef USE_NEON
if (mozilla::supports_neon()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
PREMULTIPLY_ROW_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_ROW_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8X8)
PREMULTIPLY_ROW_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_ROW_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_ROW_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8A8)
PREMULTIPLY_ROW_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8X8)
PREMULTIPLY_ROW_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
PREMULTIPLY_ROW_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
default:
break;
}
#endif
switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
PREMULTIPLY_ROW_FALLBACK(SurfaceFormat::B8G8R8A8)
PREMULTIPLY_ROW_FALLBACK(SurfaceFormat::R8G8B8A8)
PREMULTIPLY_ROW_FALLBACK(SurfaceFormat::A8R8G8B8)
default:
break;
}
MOZ_ASSERT_UNREACHABLE("Unsupported premultiply formats");
return nullptr;
}
/**
* Unpremultiplying
*/
// Generate a table of 8.16 fixed-point reciprocals representing 1/alpha.
#define UNPREMULQ(x) (0xFF00FFU / (x))
#define UNPREMULQ_2(x) UNPREMULQ(x), UNPREMULQ((x) + 1)
#define UNPREMULQ_4(x) UNPREMULQ_2(x), UNPREMULQ_2((x) + 2)
#define UNPREMULQ_8(x) UNPREMULQ_4(x), UNPREMULQ_4((x) + 4)
#define UNPREMULQ_16(x) UNPREMULQ_8(x), UNPREMULQ_8((x) + 8)
#define UNPREMULQ_32(x) UNPREMULQ_16(x), UNPREMULQ_16((x) + 16)
static const uint32_t sUnpremultiplyTable[256] = {0,
UNPREMULQ(1),
UNPREMULQ_2(2),
UNPREMULQ_4(4),
UNPREMULQ_8(8),
UNPREMULQ_16(16),
UNPREMULQ_32(32),
UNPREMULQ_32(64),
UNPREMULQ_32(96),
UNPREMULQ_32(128),
UNPREMULQ_32(160),
UNPREMULQ_32(192),
UNPREMULQ_32(224)};
// Fallback unpremultiply implementation that uses 8.16 fixed-point reciprocal
// math to eliminate any division by the alpha component. This optimization is
// used for the SSE2 and NEON implementations, with some adaptations. This
// implementation also accesses color components using individual byte accesses
// as this profiles faster than accessing the pixel as a uint32_t and
// shifting/masking to access components.
template <bool aSwapRB, uint32_t aSrcRGBIndex, uint32_t aSrcAIndex,
uint32_t aDstRGBIndex, uint32_t aDstAIndex>
static void UnpremultiplyFallback(const uint8_t* aSrc, int32_t aSrcGap,
uint8_t* aDst, int32_t aDstGap,
IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
uint8_t r = aSrc[aSrcRGBIndex + (aSwapRB ? 2 : 0)];
uint8_t g = aSrc[aSrcRGBIndex + 1];
uint8_t b = aSrc[aSrcRGBIndex + (aSwapRB ? 0 : 2)];
uint8_t a = aSrc[aSrcAIndex];
// Access the 8.16 reciprocal from the table based on alpha. Multiply by
// the reciprocal and shift off the fraction bits to approximate the
// division by alpha.
uint32_t q = sUnpremultiplyTable[a];
aDst[aDstRGBIndex + 0] = (r * q) >> 16;
aDst[aDstRGBIndex + 1] = (g * q) >> 16;
aDst[aDstRGBIndex + 2] = (b * q) >> 16;
aDst[aDstAIndex] = a;
aSrc += 4;
aDst += 4;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define UNPREMULTIPLY_FALLBACK_CASE(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
UnpremultiplyFallback< \
ShouldSwapRB(aSrcFormat, aDstFormat), \
RGBByteIndex(aSrcFormat), AlphaByteIndex(aSrcFormat), \
RGBByteIndex(aDstFormat), AlphaByteIndex(aDstFormat)>)
#define UNPREMULTIPLY_FALLBACK(aSrcFormat) \
UNPREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::B8G8R8A8) \
UNPREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::R8G8B8A8) \
UNPREMULTIPLY_FALLBACK_CASE(aSrcFormat, SurfaceFormat::A8R8G8B8)
bool UnpremultiplyData(const uint8_t* aSrc, int32_t aSrcStride,
SurfaceFormat aSrcFormat, uint8_t* aDst,
int32_t aDstStride, SurfaceFormat aDstFormat,
const IntSize& aSize) {
if (aSize.IsEmpty()) {
return true;
}
IntSize size = CollapseSize(aSize, aSrcStride, aDstStride);
// Find gap from end of row to the start of the next row.
int32_t srcGap = GetStrideGap(aSize.width, aSrcFormat, aSrcStride);
int32_t dstGap = GetStrideGap(aSize.width, aDstFormat, aDstStride);
MOZ_ASSERT(srcGap >= 0 && dstGap >= 0);
if (srcGap < 0 || dstGap < 0) {
return false;
}
#define FORMAT_CASE_CALL(...) __VA_ARGS__(aSrc, srcGap, aDst, dstGap, size)
#ifdef USE_SSE2
if (mozilla::supports_sse2()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
UNPREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8A8)
UNPREMULTIPLY_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
UNPREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8A8)
UNPREMULTIPLY_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
default:
break;
}
#endif
#ifdef USE_NEON
if (mozilla::supports_neon()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
UNPREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8A8)
UNPREMULTIPLY_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
UNPREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8A8)
UNPREMULTIPLY_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
default:
break;
}
#endif
switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
UNPREMULTIPLY_FALLBACK(SurfaceFormat::B8G8R8A8)
UNPREMULTIPLY_FALLBACK(SurfaceFormat::R8G8B8A8)
UNPREMULTIPLY_FALLBACK(SurfaceFormat::A8R8G8B8)
default:
break;
}
#undef FORMAT_CASE_CALL
MOZ_ASSERT(false, "Unsupported unpremultiply formats");
return false;
}
/**
* Swizzling
*/
// Fallback swizzle implementation that uses shifting and masking to reorder
// pixels.
template <bool aSwapRB, bool aOpaqueAlpha, uint32_t aSrcRGBShift,
uint32_t aSrcAShift, uint32_t aDstRGBShift, uint32_t aDstAShift>
static void SwizzleChunkFallback(const uint8_t*& aSrc, uint8_t*& aDst,
int32_t aLength) {
const uint8_t* end = aSrc + 4 * aLength;
do {
uint32_t rgba = *reinterpret_cast<const uint32_t*>(aSrc);
if (aSwapRB) {
// Handle R and B swaps by exchanging words and masking.
uint32_t rb =
((rgba << 16) | (rgba >> 16)) & (0x00FF00FF << aSrcRGBShift);
uint32_t ga = rgba & ((0xFF << aSrcAShift) | (0xFF00 << aSrcRGBShift));
rgba = rb | ga;
}
// If src and dst shifts differ, rotate left or right to move RGB into
// place, i.e. ARGB -> RGBA or ARGB -> RGBA.
if (aDstRGBShift > aSrcRGBShift) {
rgba = (rgba << 8) | (aOpaqueAlpha ? 0x000000FF : rgba >> 24);
} else if (aSrcRGBShift > aDstRGBShift) {
rgba = (rgba >> 8) | (aOpaqueAlpha ? 0xFF000000 : rgba << 24);
} else if (aOpaqueAlpha) {
rgba |= 0xFF << aDstAShift;
}
*reinterpret_cast<uint32_t*>(aDst) = rgba;
aSrc += 4;
aDst += 4;
} while (aSrc < end);
}
template <bool aSwapRB, bool aOpaqueAlpha, uint32_t aSrcRGBShift,
uint32_t aSrcAShift, uint32_t aDstRGBShift, uint32_t aDstAShift>
static void SwizzleRowFallback(const uint8_t* aSrc, uint8_t* aDst,
int32_t aLength) {
SwizzleChunkFallback<aSwapRB, aOpaqueAlpha, aSrcRGBShift, aSrcAShift,
aDstRGBShift, aDstAShift>(aSrc, aDst, aLength);
}
template <bool aSwapRB, bool aOpaqueAlpha, uint32_t aSrcRGBShift,
uint32_t aSrcAShift, uint32_t aDstRGBShift, uint32_t aDstAShift>
static void SwizzleFallback(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
SwizzleChunkFallback<aSwapRB, aOpaqueAlpha, aSrcRGBShift, aSrcAShift,
aDstRGBShift, aDstAShift>(aSrc, aDst, aSize.width);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define SWIZZLE_FALLBACK(aSrcFormat, aDstFormat) \
FORMAT_CASE( \
aSrcFormat, aDstFormat, \
SwizzleFallback<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat), \
RGBBitShift(aSrcFormat), AlphaBitShift(aSrcFormat), \
RGBBitShift(aDstFormat), AlphaBitShift(aDstFormat)>)
#define SWIZZLE_ROW_FALLBACK(aSrcFormat, aDstFormat) \
FORMAT_CASE_ROW( \
aSrcFormat, aDstFormat, \
SwizzleRowFallback<ShouldSwapRB(aSrcFormat, aDstFormat), \
ShouldForceOpaque(aSrcFormat, aDstFormat), \
RGBBitShift(aSrcFormat), AlphaBitShift(aSrcFormat), \
RGBBitShift(aDstFormat), AlphaBitShift(aDstFormat)>)
// Fast-path for matching formats.
static void SwizzleCopy(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize, int32_t aBPP) {
if (aSrc != aDst) {
int32_t rowLength = aBPP * aSize.width;
for (int32_t height = aSize.height; height > 0; height--) {
memcpy(aDst, aSrc, rowLength);
aSrc += rowLength + aSrcGap;
aDst += rowLength + aDstGap;
}
}
}
// Fast-path for conversions that swap all bytes.
template <bool aOpaqueAlpha, uint32_t aSrcAShift, uint32_t aDstAShift>
static void SwizzleChunkSwap(const uint8_t*& aSrc, uint8_t*& aDst,
int32_t aLength) {
const uint8_t* end = aSrc + 4 * aLength;
do {
// Use an endian swap to move the bytes, i.e. BGRA -> ARGB.
uint32_t rgba = *reinterpret_cast<const uint32_t*>(aSrc);
#if MOZ_LITTLE_ENDIAN
rgba = NativeEndian::swapToBigEndian(rgba);
#else
rgba = NativeEndian::swapToLittleEndian(rgba);
#endif
if (aOpaqueAlpha) {
rgba |= 0xFF << aDstAShift;
}
*reinterpret_cast<uint32_t*>(aDst) = rgba;
aSrc += 4;
aDst += 4;
} while (aSrc < end);
}
template <bool aOpaqueAlpha, uint32_t aSrcAShift, uint32_t aDstAShift>
static void SwizzleRowSwap(const uint8_t* aSrc, uint8_t* aDst,
int32_t aLength) {
SwizzleChunkSwap<aOpaqueAlpha, aSrcAShift, aDstAShift>(aSrc, aDst, aLength);
}
template <bool aOpaqueAlpha, uint32_t aSrcAShift, uint32_t aDstAShift>
static void SwizzleSwap(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
SwizzleChunkSwap<aOpaqueAlpha, aSrcAShift, aDstAShift>(aSrc, aDst,
aSize.width);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define SWIZZLE_SWAP(aSrcFormat, aDstFormat) \
FORMAT_CASE( \
aSrcFormat, aDstFormat, \
SwizzleSwap<ShouldForceOpaque(aSrcFormat, aDstFormat), \
AlphaBitShift(aSrcFormat), AlphaBitShift(aDstFormat)>)
#define SWIZZLE_ROW_SWAP(aSrcFormat, aDstFormat) \
FORMAT_CASE_ROW( \
aSrcFormat, aDstFormat, \
SwizzleRowSwap<ShouldForceOpaque(aSrcFormat, aDstFormat), \
AlphaBitShift(aSrcFormat), AlphaBitShift(aDstFormat)>)
// Fast-path for conversions that force alpha to opaque.
template <uint32_t aDstAShift>
static void SwizzleChunkOpaqueUpdate(uint8_t*& aBuffer, int32_t aLength) {
const uint8_t* end = aBuffer + 4 * aLength;
do {
uint32_t rgba = *reinterpret_cast<const uint32_t*>(aBuffer);
// Just add on the alpha bits to the source.
rgba |= 0xFF << aDstAShift;
*reinterpret_cast<uint32_t*>(aBuffer) = rgba;
aBuffer += 4;
} while (aBuffer < end);
}
template <uint32_t aDstAShift>
static void SwizzleChunkOpaqueCopy(const uint8_t*& aSrc, uint8_t* aDst,
int32_t aLength) {
const uint8_t* end = aSrc + 4 * aLength;
do {
uint32_t rgba = *reinterpret_cast<const uint32_t*>(aSrc);
// Just add on the alpha bits to the source.
rgba |= 0xFF << aDstAShift;
*reinterpret_cast<uint32_t*>(aDst) = rgba;
aSrc += 4;
aDst += 4;
} while (aSrc < end);
}
template <uint32_t aDstAShift>
static void SwizzleRowOpaque(const uint8_t* aSrc, uint8_t* aDst,
int32_t aLength) {
if (aSrc == aDst) {
SwizzleChunkOpaqueUpdate<aDstAShift>(aDst, aLength);
} else {
SwizzleChunkOpaqueCopy<aDstAShift>(aSrc, aDst, aLength);
}
}
template <uint32_t aDstAShift>
static void SwizzleOpaque(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
if (aSrc == aDst) {
// Modifying in-place, so just write out the alpha.
for (int32_t height = aSize.height; height > 0; height--) {
SwizzleChunkOpaqueUpdate<aDstAShift>(aDst, aSize.width);
aDst += aDstGap;
}
} else {
for (int32_t height = aSize.height; height > 0; height--) {
SwizzleChunkOpaqueCopy<aDstAShift>(aSrc, aDst, aSize.width);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
}
#define SWIZZLE_OPAQUE(aSrcFormat, aDstFormat) \
FORMAT_CASE(aSrcFormat, aDstFormat, SwizzleOpaque<AlphaBitShift(aDstFormat)>)
#define SWIZZLE_ROW_OPAQUE(aSrcFormat, aDstFormat) \
FORMAT_CASE_ROW(aSrcFormat, aDstFormat, \
SwizzleRowOpaque<AlphaBitShift(aDstFormat)>)
// Packing of 32-bit formats to RGB565.
template <bool aSwapRB, uint32_t aSrcRGBShift, uint32_t aSrcRGBIndex>
static void PackToRGB565(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
uint32_t rgba = *reinterpret_cast<const uint32_t*>(aSrc);
// Isolate the R, G, and B components and shift to final endian-dependent
// locations.
uint16_t rgb565;
if (aSwapRB) {
rgb565 = ((rgba & (0xF8 << aSrcRGBShift)) << (8 - aSrcRGBShift)) |
((rgba & (0xFC00 << aSrcRGBShift)) >> (5 + aSrcRGBShift)) |
((rgba & (0xF80000 << aSrcRGBShift)) >> (19 + aSrcRGBShift));
} else {
rgb565 = ((rgba & (0xF8 << aSrcRGBShift)) >> (3 + aSrcRGBShift)) |
((rgba & (0xFC00 << aSrcRGBShift)) >> (5 + aSrcRGBShift)) |
((rgba & (0xF80000 << aSrcRGBShift)) >> (8 + aSrcRGBShift));
}
*reinterpret_cast<uint16_t*>(aDst) = rgb565;
aSrc += 4;
aDst += 2;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
// Packing of 32-bit formats to 24-bit formats.
template <bool aSwapRB, uint32_t aSrcRGBShift, uint32_t aSrcRGBIndex>
static void PackToRGB24(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
uint8_t r = aSrc[aSrcRGBIndex + (aSwapRB ? 2 : 0)];
uint8_t g = aSrc[aSrcRGBIndex + 1];
uint8_t b = aSrc[aSrcRGBIndex + (aSwapRB ? 0 : 2)];
aDst[0] = r;
aDst[1] = g;
aDst[2] = b;
aSrc += 4;
aDst += 3;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define PACK_RGB_CASE(aSrcFormat, aDstFormat, aPackFunc) \
FORMAT_CASE(aSrcFormat, aDstFormat, \
aPackFunc<ShouldSwapRB(aSrcFormat, aDstFormat), \
RGBBitShift(aSrcFormat), RGBByteIndex(aSrcFormat)>)
#define PACK_RGB(aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::B8G8R8A8, aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::B8G8R8X8, aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::R8G8B8A8, aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::R8G8B8X8, aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::A8R8G8B8, aDstFormat, aPackFunc) \
PACK_RGB_CASE(SurfaceFormat::X8R8G8B8, aDstFormat, aPackFunc)
// Packing of 32-bit formats to A8.
template <uint32_t aSrcAIndex>
static void PackToA8(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
for (int32_t height = aSize.height; height > 0; height--) {
const uint8_t* end = aSrc + 4 * aSize.width;
do {
*aDst++ = aSrc[aSrcAIndex];
aSrc += 4;
} while (aSrc < end);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
#define PACK_ALPHA_CASE(aSrcFormat, aDstFormat, aPackFunc) \
FORMAT_CASE(aSrcFormat, aDstFormat, aPackFunc<AlphaByteIndex(aSrcFormat)>)
#define PACK_ALPHA(aDstFormat, aPackFunc) \
PACK_ALPHA_CASE(SurfaceFormat::B8G8R8A8, aDstFormat, aPackFunc) \
PACK_ALPHA_CASE(SurfaceFormat::R8G8B8A8, aDstFormat, aPackFunc) \
PACK_ALPHA_CASE(SurfaceFormat::A8R8G8B8, aDstFormat, aPackFunc)
template <bool aSwapRB>
void UnpackRowRGB24(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength) {
// Because we are expanding, we can only process the data back to front in
// case we are performing this in place.
const uint8_t* src = aSrc + 3 * (aLength - 1);
uint32_t* dst = reinterpret_cast<uint32_t*>(aDst + 4 * aLength);
while (src >= aSrc) {
uint8_t r = src[aSwapRB ? 2 : 0];
uint8_t g = src[1];
uint8_t b = src[aSwapRB ? 0 : 2];
*--dst = 0xFF000000 | (b << 16) | (g << 8) | r;
src -= 3;
}
}
// Force instantiation of swizzle variants here.
template void UnpackRowRGB24<false>(const uint8_t*, uint8_t*, int32_t);
template void UnpackRowRGB24<true>(const uint8_t*, uint8_t*, int32_t);
#define UNPACK_ROW_RGB(aDstFormat) \
FORMAT_CASE_ROW(SurfaceFormat::R8G8B8, aDstFormat, \
UnpackRowRGB24<ShouldSwapRB(SurfaceFormat::R8G8B8, aDstFormat)>)
bool SwizzleData(const uint8_t* aSrc, int32_t aSrcStride,
SurfaceFormat aSrcFormat, uint8_t* aDst, int32_t aDstStride,
SurfaceFormat aDstFormat, const IntSize& aSize) {
if (aSize.IsEmpty()) {
return true;
}
IntSize size = CollapseSize(aSize, aSrcStride, aDstStride);
// Find gap from end of row to the start of the next row.
int32_t srcGap = GetStrideGap(aSize.width, aSrcFormat, aSrcStride);
int32_t dstGap = GetStrideGap(aSize.width, aDstFormat, aDstStride);
MOZ_ASSERT(srcGap >= 0 && dstGap >= 0);
if (srcGap < 0 || dstGap < 0) {
return false;
}
#define FORMAT_CASE_CALL(...) __VA_ARGS__(aSrc, srcGap, aDst, dstGap, size)
#ifdef USE_SSE2
if (mozilla::supports_sse2()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
SWIZZLE_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
SWIZZLE_SSE2(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8X8)
SWIZZLE_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_SSE2(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8A8)
SWIZZLE_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
SWIZZLE_SSE2(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8X8)
SWIZZLE_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_SSE2(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8A8)
default:
break;
}
#endif
#ifdef USE_NEON
if (mozilla::supports_neon()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
SWIZZLE_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
SWIZZLE_NEON(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8X8)
SWIZZLE_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_NEON(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8A8)
SWIZZLE_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
SWIZZLE_NEON(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8X8)
SWIZZLE_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_NEON(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8A8)
default:
break;
}
#endif
switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
SWIZZLE_FALLBACK(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
SWIZZLE_FALLBACK(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8X8)
SWIZZLE_FALLBACK(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_FALLBACK(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8A8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8X8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8A8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8A8, SurfaceFormat::A8R8G8B8)
SWIZZLE_FALLBACK(SurfaceFormat::R8G8B8X8, SurfaceFormat::X8R8G8B8)
SWIZZLE_FALLBACK(SurfaceFormat::A8R8G8B8, SurfaceFormat::R8G8B8A8)
SWIZZLE_FALLBACK(SurfaceFormat::X8R8G8B8, SurfaceFormat::R8G8B8X8)
SWIZZLE_FALLBACK(SurfaceFormat::A8R8G8B8, SurfaceFormat::R8G8B8X8)
SWIZZLE_FALLBACK(SurfaceFormat::X8R8G8B8, SurfaceFormat::R8G8B8A8)
SWIZZLE_SWAP(SurfaceFormat::B8G8R8A8, SurfaceFormat::A8R8G8B8)
SWIZZLE_SWAP(SurfaceFormat::B8G8R8A8, SurfaceFormat::X8R8G8B8)
SWIZZLE_SWAP(SurfaceFormat::B8G8R8X8, SurfaceFormat::X8R8G8B8)
SWIZZLE_SWAP(SurfaceFormat::B8G8R8X8, SurfaceFormat::A8R8G8B8)
SWIZZLE_SWAP(SurfaceFormat::A8R8G8B8, SurfaceFormat::B8G8R8A8)
SWIZZLE_SWAP(SurfaceFormat::A8R8G8B8, SurfaceFormat::B8G8R8X8)
SWIZZLE_SWAP(SurfaceFormat::X8R8G8B8, SurfaceFormat::B8G8R8X8)
SWIZZLE_SWAP(SurfaceFormat::X8R8G8B8, SurfaceFormat::B8G8R8A8)
SWIZZLE_OPAQUE(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_OPAQUE(SurfaceFormat::B8G8R8X8, SurfaceFormat::B8G8R8A8)
SWIZZLE_OPAQUE(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_OPAQUE(SurfaceFormat::R8G8B8X8, SurfaceFormat::R8G8B8A8)
SWIZZLE_OPAQUE(SurfaceFormat::A8R8G8B8, SurfaceFormat::X8R8G8B8)
SWIZZLE_OPAQUE(SurfaceFormat::X8R8G8B8, SurfaceFormat::A8R8G8B8)
PACK_RGB(SurfaceFormat::R5G6B5_UINT16, PackToRGB565)
PACK_RGB(SurfaceFormat::B8G8R8, PackToRGB24)
PACK_RGB(SurfaceFormat::R8G8B8, PackToRGB24)
PACK_ALPHA(SurfaceFormat::A8, PackToA8)
default:
break;
}
if (aSrcFormat == aDstFormat) {
// If the formats match, just do a generic copy.
SwizzleCopy(aSrc, srcGap, aDst, dstGap, size, BytesPerPixel(aSrcFormat));
return true;
}
#undef FORMAT_CASE_CALL
MOZ_ASSERT(false, "Unsupported swizzle formats");
return false;
}
SwizzleRowFn SwizzleRow(SurfaceFormat aSrcFormat, SurfaceFormat aDstFormat) {
#ifdef USE_SSE2
if (mozilla::supports_avx2()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
UNPACK_ROW_RGB_AVX2(SurfaceFormat::R8G8B8X8)
UNPACK_ROW_RGB_AVX2(SurfaceFormat::R8G8B8A8)
UNPACK_ROW_RGB_AVX2(SurfaceFormat::B8G8R8X8)
UNPACK_ROW_RGB_AVX2(SurfaceFormat::B8G8R8A8)
default:
break;
}
if (mozilla::supports_ssse3()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
UNPACK_ROW_RGB_SSSE3(SurfaceFormat::R8G8B8X8)
UNPACK_ROW_RGB_SSSE3(SurfaceFormat::R8G8B8A8)
UNPACK_ROW_RGB_SSSE3(SurfaceFormat::B8G8R8X8)
UNPACK_ROW_RGB_SSSE3(SurfaceFormat::B8G8R8A8)
default:
break;
}
if (mozilla::supports_sse2()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
SWIZZLE_ROW_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
SWIZZLE_ROW_SSE2(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8X8)
SWIZZLE_ROW_SSE2(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_ROW_SSE2(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8A8)
SWIZZLE_ROW_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
SWIZZLE_ROW_SSE2(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8X8)
SWIZZLE_ROW_SSE2(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_ROW_SSE2(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8A8)
default:
break;
}
#endif
#ifdef USE_NEON
if (mozilla::supports_neon()) switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
SWIZZLE_ROW_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
SWIZZLE_ROW_NEON(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8X8)
SWIZZLE_ROW_NEON(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_ROW_NEON(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8A8)
SWIZZLE_ROW_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
SWIZZLE_ROW_NEON(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8X8)
SWIZZLE_ROW_NEON(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_ROW_NEON(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8A8)
default:
break;
}
#endif
switch (FORMAT_KEY(aSrcFormat, aDstFormat)) {
SWIZZLE_ROW_FALLBACK(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8A8)
SWIZZLE_ROW_FALLBACK(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8X8)
SWIZZLE_ROW_FALLBACK(SurfaceFormat::B8G8R8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_ROW_FALLBACK(SurfaceFormat::B8G8R8X8, SurfaceFormat::R8G8B8A8)
SWIZZLE_ROW_FALLBACK(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8A8)
SWIZZLE_ROW_FALLBACK(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8X8)
SWIZZLE_ROW_FALLBACK(SurfaceFormat::R8G8B8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_ROW_FALLBACK(SurfaceFormat::R8G8B8X8, SurfaceFormat::B8G8R8A8)
SWIZZLE_ROW_OPAQUE(SurfaceFormat::B8G8R8A8, SurfaceFormat::B8G8R8X8)
SWIZZLE_ROW_OPAQUE(SurfaceFormat::B8G8R8X8, SurfaceFormat::B8G8R8A8)
SWIZZLE_ROW_OPAQUE(SurfaceFormat::R8G8B8A8, SurfaceFormat::R8G8B8X8)
SWIZZLE_ROW_OPAQUE(SurfaceFormat::R8G8B8X8, SurfaceFormat::R8G8B8A8)
UNPACK_ROW_RGB(SurfaceFormat::R8G8B8X8)
UNPACK_ROW_RGB(SurfaceFormat::R8G8B8A8)
UNPACK_ROW_RGB(SurfaceFormat::B8G8R8X8)
UNPACK_ROW_RGB(SurfaceFormat::B8G8R8A8)
default:
break;
}
MOZ_ASSERT_UNREACHABLE("Unsupported swizzle formats");
return nullptr;
}
} // namespace gfx
} // namespace mozilla