gecko-dev/gfx/gl/GLContext.cpp

2944 lines
102 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include "GLContext.h"
#include "gfxCrashReporterUtils.h"
#include "gfxPlatform.h"
#include "gfxUtils.h"
#include "GLContextProvider.h"
#include "GLTextureImage.h"
#include "nsIMemoryReporter.h"
#include "nsThreadUtils.h"
#include "prenv.h"
#include "prlink.h"
#include "SurfaceStream.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Preferences.h"
using namespace mozilla::gfx;
namespace mozilla {
namespace gl {
#ifdef DEBUG
unsigned GLContext::sCurrentGLContextTLS = -1;
#endif
uint32_t GLContext::sDebugMode = 0;
#define MAX_SYMBOL_LENGTH 128
#define MAX_SYMBOL_NAMES 5
// should match the order of GLExtensions, and be null-terminated.
static const char *sExtensionNames[] = {
"GL_EXT_framebuffer_object",
"GL_ARB_framebuffer_object",
"GL_ARB_texture_rectangle",
"GL_EXT_bgra",
"GL_EXT_texture_format_BGRA8888",
"GL_OES_depth24",
"GL_OES_depth32",
"GL_OES_stencil8",
"GL_OES_texture_npot",
"GL_OES_depth_texture",
"GL_OES_packed_depth_stencil",
"GL_IMG_read_format",
"GL_EXT_read_format_bgra",
"GL_APPLE_client_storage",
"GL_ARB_texture_non_power_of_two",
"GL_ARB_pixel_buffer_object",
"GL_ARB_ES2_compatibility",
"GL_OES_texture_float",
"GL_ARB_texture_float",
"GL_EXT_unpack_subimage",
"GL_OES_standard_derivatives",
"GL_EXT_texture_filter_anisotropic",
"GL_EXT_texture_compression_s3tc",
"GL_EXT_texture_compression_dxt1",
"GL_ANGLE_texture_compression_dxt3",
"GL_ANGLE_texture_compression_dxt5",
"GL_AMD_compressed_ATC_texture",
"GL_IMG_texture_compression_pvrtc",
"GL_EXT_framebuffer_blit",
"GL_ANGLE_framebuffer_blit",
"GL_EXT_framebuffer_multisample",
"GL_ANGLE_framebuffer_multisample",
"GL_OES_rgb8_rgba8",
"GL_ARB_robustness",
"GL_EXT_robustness",
"GL_ARB_sync",
"GL_OES_EGL_image",
"GL_OES_EGL_sync",
"GL_OES_EGL_image_external",
"GL_EXT_packed_depth_stencil",
"GL_OES_element_index_uint",
nullptr
};
static int64_t sTextureMemoryUsage = 0;
static int64_t
GetTextureMemoryUsage()
{
return sTextureMemoryUsage;
}
void
GLContext::UpdateTextureMemoryUsage(MemoryUse action, GLenum format, GLenum type, uint16_t tileSize)
{
uint32_t bytesPerTexel = mozilla::gl::GetBitsPerTexel(format, type) / 8;
int64_t bytes = (int64_t)(tileSize * tileSize * bytesPerTexel);
if (action == MemoryFreed) {
sTextureMemoryUsage -= bytes;
} else {
sTextureMemoryUsage += bytes;
}
}
NS_MEMORY_REPORTER_IMPLEMENT(TextureMemoryUsage,
"gfx-textures",
KIND_OTHER,
UNITS_BYTES,
GetTextureMemoryUsage,
"Memory used for storing GL textures.")
/*
* XXX - we should really know the ARB/EXT variants of these
* instead of only handling the symbol if it's exposed directly.
*/
bool
GLContext::InitWithPrefix(const char *prefix, bool trygl)
{
ScopedGfxFeatureReporter reporter("GL Context");
if (mInitialized) {
reporter.SetSuccessful();
return true;
}
mWorkAroundDriverBugs = gfxPlatform::GetPlatform()->WorkAroundDriverBugs();
SymLoadStruct symbols[] = {
{ (PRFuncPtr*) &mSymbols.fActiveTexture, { "ActiveTexture", "ActiveTextureARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fAttachShader, { "AttachShader", "AttachShaderARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fBindAttribLocation, { "BindAttribLocation", "BindAttribLocationARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fBindBuffer, { "BindBuffer", "BindBufferARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fBindTexture, { "BindTexture", "BindTextureARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fBlendColor, { "BlendColor", NULL } },
{ (PRFuncPtr*) &mSymbols.fBlendEquation, { "BlendEquation", NULL } },
{ (PRFuncPtr*) &mSymbols.fBlendEquationSeparate, { "BlendEquationSeparate", "BlendEquationSeparateEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fBlendFunc, { "BlendFunc", NULL } },
{ (PRFuncPtr*) &mSymbols.fBlendFuncSeparate, { "BlendFuncSeparate", "BlendFuncSeparateEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fBufferData, { "BufferData", NULL } },
{ (PRFuncPtr*) &mSymbols.fBufferSubData, { "BufferSubData", NULL } },
{ (PRFuncPtr*) &mSymbols.fClear, { "Clear", NULL } },
{ (PRFuncPtr*) &mSymbols.fClearColor, { "ClearColor", NULL } },
{ (PRFuncPtr*) &mSymbols.fClearStencil, { "ClearStencil", NULL } },
{ (PRFuncPtr*) &mSymbols.fColorMask, { "ColorMask", NULL } },
{ (PRFuncPtr*) &mSymbols.fCompressedTexImage2D, {"CompressedTexImage2D", NULL} },
{ (PRFuncPtr*) &mSymbols.fCompressedTexSubImage2D, {"CompressedTexSubImage2D", NULL} },
{ (PRFuncPtr*) &mSymbols.fCullFace, { "CullFace", NULL } },
{ (PRFuncPtr*) &mSymbols.fDetachShader, { "DetachShader", "DetachShaderARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDepthFunc, { "DepthFunc", NULL } },
{ (PRFuncPtr*) &mSymbols.fDepthMask, { "DepthMask", NULL } },
{ (PRFuncPtr*) &mSymbols.fDisable, { "Disable", NULL } },
{ (PRFuncPtr*) &mSymbols.fDisableVertexAttribArray, { "DisableVertexAttribArray", "DisableVertexAttribArrayARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDrawArrays, { "DrawArrays", NULL } },
{ (PRFuncPtr*) &mSymbols.fDrawElements, { "DrawElements", NULL } },
{ (PRFuncPtr*) &mSymbols.fEnable, { "Enable", NULL } },
{ (PRFuncPtr*) &mSymbols.fEnableVertexAttribArray, { "EnableVertexAttribArray", "EnableVertexAttribArrayARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fFinish, { "Finish", NULL } },
{ (PRFuncPtr*) &mSymbols.fFlush, { "Flush", NULL } },
{ (PRFuncPtr*) &mSymbols.fFrontFace, { "FrontFace", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetActiveAttrib, { "GetActiveAttrib", "GetActiveAttribARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetActiveUniform, { "GetActiveUniform", "GetActiveUniformARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetAttachedShaders, { "GetAttachedShaders", "GetAttachedShadersARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetAttribLocation, { "GetAttribLocation", "GetAttribLocationARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetIntegerv, { "GetIntegerv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetFloatv, { "GetFloatv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetBooleanv, { "GetBooleanv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetBufferParameteriv, { "GetBufferParameteriv", "GetBufferParameterivARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetError, { "GetError", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetProgramiv, { "GetProgramiv", "GetProgramivARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetProgramInfoLog, { "GetProgramInfoLog", "GetProgramInfoLogARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fTexParameteri, { "TexParameteri", NULL } },
{ (PRFuncPtr*) &mSymbols.fTexParameteriv, { "TexParameteriv", NULL } },
{ (PRFuncPtr*) &mSymbols.fTexParameterf, { "TexParameterf", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetString, { "GetString", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetTexParameterfv, { "GetTexParameterfv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetTexParameteriv, { "GetTexParameteriv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetUniformfv, { "GetUniformfv", "GetUniformfvARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetUniformiv, { "GetUniformiv", "GetUniformivARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetUniformLocation, { "GetUniformLocation", "GetUniformLocationARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetVertexAttribfv, { "GetVertexAttribfv", "GetVertexAttribfvARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetVertexAttribiv, { "GetVertexAttribiv", "GetVertexAttribivARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetVertexAttribPointerv, { "GetVertexAttribPointerv", NULL } },
{ (PRFuncPtr*) &mSymbols.fHint, { "Hint", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsBuffer, { "IsBuffer", "IsBufferARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsEnabled, { "IsEnabled", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsProgram, { "IsProgram", "IsProgramARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsShader, { "IsShader", "IsShaderARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsTexture, { "IsTexture", "IsTextureARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fLineWidth, { "LineWidth", NULL } },
{ (PRFuncPtr*) &mSymbols.fLinkProgram, { "LinkProgram", "LinkProgramARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fPixelStorei, { "PixelStorei", NULL } },
{ (PRFuncPtr*) &mSymbols.fPolygonOffset, { "PolygonOffset", NULL } },
{ (PRFuncPtr*) &mSymbols.fReadPixels, { "ReadPixels", NULL } },
{ (PRFuncPtr*) &mSymbols.fSampleCoverage, { "SampleCoverage", NULL } },
{ (PRFuncPtr*) &mSymbols.fScissor, { "Scissor", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilFunc, { "StencilFunc", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilFuncSeparate, { "StencilFuncSeparate", "StencilFuncSeparateEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilMask, { "StencilMask", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilMaskSeparate, { "StencilMaskSeparate", "StencilMaskSeparateEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilOp, { "StencilOp", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilOpSeparate, { "StencilOpSeparate", "StencilOpSeparateEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fTexImage2D, { "TexImage2D", NULL } },
{ (PRFuncPtr*) &mSymbols.fTexSubImage2D, { "TexSubImage2D", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform1f, { "Uniform1f", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform1fv, { "Uniform1fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform1i, { "Uniform1i", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform1iv, { "Uniform1iv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform2f, { "Uniform2f", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform2fv, { "Uniform2fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform2i, { "Uniform2i", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform2iv, { "Uniform2iv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform3f, { "Uniform3f", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform3fv, { "Uniform3fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform3i, { "Uniform3i", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform3iv, { "Uniform3iv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform4f, { "Uniform4f", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform4fv, { "Uniform4fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform4i, { "Uniform4i", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform4iv, { "Uniform4iv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniformMatrix2fv, { "UniformMatrix2fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniformMatrix3fv, { "UniformMatrix3fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniformMatrix4fv, { "UniformMatrix4fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUseProgram, { "UseProgram", NULL } },
{ (PRFuncPtr*) &mSymbols.fValidateProgram, { "ValidateProgram", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttribPointer, { "VertexAttribPointer", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib1f, { "VertexAttrib1f", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib2f, { "VertexAttrib2f", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib3f, { "VertexAttrib3f", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib4f, { "VertexAttrib4f", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib1fv, { "VertexAttrib1fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib2fv, { "VertexAttrib2fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib3fv, { "VertexAttrib3fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib4fv, { "VertexAttrib4fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fViewport, { "Viewport", NULL } },
{ (PRFuncPtr*) &mSymbols.fCompileShader, { "CompileShader", NULL } },
{ (PRFuncPtr*) &mSymbols.fCopyTexImage2D, { "CopyTexImage2D", NULL } },
{ (PRFuncPtr*) &mSymbols.fCopyTexSubImage2D, { "CopyTexSubImage2D", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetShaderiv, { "GetShaderiv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetShaderInfoLog, { "GetShaderInfoLog", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetShaderSource, { "GetShaderSource", NULL } },
{ (PRFuncPtr*) &mSymbols.fShaderSource, { "ShaderSource", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttribPointer, { "VertexAttribPointer", NULL } },
{ (PRFuncPtr*) &mSymbols.fBindFramebuffer, { "BindFramebuffer", "BindFramebufferEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fBindRenderbuffer, { "BindRenderbuffer", "BindRenderbufferEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fCheckFramebufferStatus, { "CheckFramebufferStatus", "CheckFramebufferStatusEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fFramebufferRenderbuffer, { "FramebufferRenderbuffer", "FramebufferRenderbufferEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fFramebufferTexture2D, { "FramebufferTexture2D", "FramebufferTexture2DEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fGenerateMipmap, { "GenerateMipmap", "GenerateMipmapEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetFramebufferAttachmentParameteriv, { "GetFramebufferAttachmentParameteriv", "GetFramebufferAttachmentParameterivEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetRenderbufferParameteriv, { "GetRenderbufferParameteriv", "GetRenderbufferParameterivEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsFramebuffer, { "IsFramebuffer", "IsFramebufferEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsRenderbuffer, { "IsRenderbuffer", "IsRenderbufferEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fRenderbufferStorage, { "RenderbufferStorage", "RenderbufferStorageEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fGenBuffers, { "GenBuffers", "GenBuffersARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGenTextures, { "GenTextures", NULL } },
{ (PRFuncPtr*) &mSymbols.fCreateProgram, { "CreateProgram", "CreateProgramARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fCreateShader, { "CreateShader", "CreateShaderARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGenFramebuffers, { "GenFramebuffers", "GenFramebuffersEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fGenRenderbuffers, { "GenRenderbuffers", "GenRenderbuffersEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteBuffers, { "DeleteBuffers", "DeleteBuffersARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteTextures, { "DeleteTextures", "DeleteTexturesARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteProgram, { "DeleteProgram", "DeleteProgramARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteShader, { "DeleteShader", "DeleteShaderARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteFramebuffers, { "DeleteFramebuffers", "DeleteFramebuffersEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteRenderbuffers, { "DeleteRenderbuffers", "DeleteRenderbuffersEXT", NULL } },
{ NULL, { NULL } },
};
mInitialized = LoadSymbols(&symbols[0], trygl, prefix);
// Load OpenGL ES 2.0 symbols, or desktop if we aren't using ES 2.
if (mInitialized) {
if (mIsGLES2) {
SymLoadStruct symbols_ES2[] = {
{ (PRFuncPtr*) &mSymbols.fGetShaderPrecisionFormat, { "GetShaderPrecisionFormat", NULL } },
{ (PRFuncPtr*) &mSymbols.fClearDepthf, { "ClearDepthf", NULL } },
{ (PRFuncPtr*) &mSymbols.fDepthRangef, { "DepthRangef", NULL } },
{ NULL, { NULL } },
};
if (!LoadSymbols(&symbols_ES2[0], trygl, prefix)) {
NS_ERROR("OpenGL ES 2.0 supported, but symbols could not be loaded.");
mInitialized = false;
}
} else {
SymLoadStruct symbols_desktop[] = {
{ (PRFuncPtr*) &mSymbols.fClearDepth, { "ClearDepth", NULL } },
{ (PRFuncPtr*) &mSymbols.fDepthRange, { "DepthRange", NULL } },
{ (PRFuncPtr*) &mSymbols.fReadBuffer, { "ReadBuffer", NULL } },
{ (PRFuncPtr*) &mSymbols.fMapBuffer, { "MapBuffer", NULL } },
{ (PRFuncPtr*) &mSymbols.fUnmapBuffer, { "UnmapBuffer", NULL } },
{ (PRFuncPtr*) &mSymbols.fPointParameterf, { "PointParameterf", NULL } },
{ (PRFuncPtr*) &mSymbols.fBeginQuery, { "BeginQuery", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetQueryObjectuiv, { "GetQueryObjectuiv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGenQueries, { "GenQueries", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteQueries, { "DeleteQueries", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetQueryiv, { "GetQueryiv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetQueryObjectiv, { "GetQueryObjectiv", NULL } },
{ (PRFuncPtr*) &mSymbols.fEndQuery, { "EndQuery", NULL } },
{ (PRFuncPtr*) &mSymbols.fDrawBuffer, { "DrawBuffer", NULL } },
{ (PRFuncPtr*) &mSymbols.fDrawBuffers, { "DrawBuffers", NULL } },
{ NULL, { NULL } },
};
if (!LoadSymbols(&symbols_desktop[0], trygl, prefix)) {
NS_ERROR("Desktop symbols failed to load.");
mInitialized = false;
}
}
}
const char *glVendorString = nullptr;
const char *glRendererString = nullptr;
if (mInitialized) {
// The order of these strings must match up with the order of the enum
// defined in GLContext.h for vendor IDs
glVendorString = (const char *)fGetString(LOCAL_GL_VENDOR);
if (!glVendorString)
mInitialized = false;
const char *vendorMatchStrings[VendorOther] = {
"Intel",
"NVIDIA",
"ATI",
"Qualcomm",
"Imagination",
"nouveau"
};
mVendor = VendorOther;
for (int i = 0; i < VendorOther; ++i) {
if (DoesStringMatch(glVendorString, vendorMatchStrings[i])) {
mVendor = i;
break;
}
}
// The order of these strings must match up with the order of the enum
// defined in GLContext.h for renderer IDs
glRendererString = (const char *)fGetString(LOCAL_GL_RENDERER);
if (!glRendererString)
mInitialized = false;
const char *rendererMatchStrings[RendererOther] = {
"Adreno 200",
"Adreno 205",
"Adreno (TM) 205",
"Adreno (TM) 320",
"PowerVR SGX 530",
"PowerVR SGX 540",
"NVIDIA Tegra"
};
mRenderer = RendererOther;
for (int i = 0; i < RendererOther; ++i) {
if (DoesStringMatch(glRendererString, rendererMatchStrings[i])) {
mRenderer = i;
break;
}
}
}
#ifdef DEBUG
if (PR_GetEnv("MOZ_GL_DEBUG"))
sDebugMode |= DebugEnabled;
// enables extra verbose output, informing of the start and finish of every GL call.
// useful e.g. to record information to investigate graphics system crashes/lockups
if (PR_GetEnv("MOZ_GL_DEBUG_VERBOSE"))
sDebugMode |= DebugTrace;
// aborts on GL error. Can be useful to debug quicker code that is known not to generate any GL error in principle.
if (PR_GetEnv("MOZ_GL_DEBUG_ABORT_ON_ERROR"))
sDebugMode |= DebugAbortOnError;
#endif
if (mInitialized) {
#ifdef DEBUG
static bool firstRun = true;
if (firstRun && DebugMode()) {
const char *vendors[VendorOther] = {
"Intel",
"NVIDIA",
"ATI",
"Qualcomm"
};
MOZ_ASSERT(glVendorString);
if (mVendor < VendorOther) {
printf_stderr("OpenGL vendor ('%s') recognized as: %s\n",
glVendorString, vendors[mVendor]);
} else {
printf_stderr("OpenGL vendor ('%s') unrecognized\n", glVendorString);
}
}
firstRun = false;
#endif
InitExtensions();
// Disable extensions with partial or incorrect support.
if (WorkAroundDriverBugs()) {
if (Renderer() == RendererAdrenoTM320) {
MarkExtensionUnsupported(OES_standard_derivatives);
}
}
NS_ASSERTION(!IsExtensionSupported(GLContext::ARB_pixel_buffer_object) ||
(mSymbols.fMapBuffer && mSymbols.fUnmapBuffer),
"ARB_pixel_buffer_object supported without glMapBuffer/UnmapBuffer being available!");
if (SupportsRobustness()) {
if (IsExtensionSupported(ARB_robustness)) {
SymLoadStruct robustnessSymbols[] = {
{ (PRFuncPtr*) &mSymbols.fGetGraphicsResetStatus, { "GetGraphicsResetStatusARB", nullptr } },
{ nullptr, { nullptr } },
};
if (!LoadSymbols(&robustnessSymbols[0], trygl, prefix)) {
NS_ERROR("GL supports ARB_robustness without supplying GetGraphicsResetStatusARB.");
MarkExtensionUnsupported(ARB_robustness);
mSymbols.fGetGraphicsResetStatus = nullptr;
} else {
mHasRobustness = true;
}
}
if (!IsExtensionSupported(ARB_robustness) &&
IsExtensionSupported(EXT_robustness)) {
SymLoadStruct robustnessSymbols[] = {
{ (PRFuncPtr*) &mSymbols.fGetGraphicsResetStatus, { "GetGraphicsResetStatusEXT", nullptr } },
{ nullptr, { nullptr } },
};
if (!LoadSymbols(&robustnessSymbols[0], trygl, prefix)) {
NS_ERROR("GL supports EXT_robustness without supplying GetGraphicsResetStatusEXT.");
MarkExtensionUnsupported(EXT_robustness);
mSymbols.fGetGraphicsResetStatus = nullptr;
} else {
mHasRobustness = true;
}
}
}
// Check for aux symbols based on extensions
if (IsExtensionSupported(GLContext::ANGLE_framebuffer_blit) ||
IsExtensionSupported(GLContext::EXT_framebuffer_blit))
{
SymLoadStruct auxSymbols[] = {
{
(PRFuncPtr*) &mSymbols.fBlitFramebuffer,
{
"BlitFramebuffer",
"BlitFramebufferEXT",
"BlitFramebufferANGLE",
nullptr
}
},
{ nullptr, { nullptr } },
};
if (!LoadSymbols(&auxSymbols[0], trygl, prefix)) {
NS_ERROR("GL supports framebuffer_blit without supplying glBlitFramebuffer");
MarkExtensionUnsupported(ANGLE_framebuffer_blit);
MarkExtensionUnsupported(EXT_framebuffer_blit);
mSymbols.fBlitFramebuffer = nullptr;
}
}
if (SupportsFramebufferMultisample())
{
MOZ_ASSERT(SupportsSplitFramebuffer());
SymLoadStruct auxSymbols[] = {
{
(PRFuncPtr*) &mSymbols.fRenderbufferStorageMultisample,
{
"RenderbufferStorageMultisample",
"RenderbufferStorageMultisampleEXT",
"RenderbufferStorageMultisampleANGLE",
nullptr
}
},
{ nullptr, { nullptr } },
};
if (!LoadSymbols(&auxSymbols[0], trygl, prefix)) {
NS_ERROR("GL supports framebuffer_multisample without supplying glRenderbufferStorageMultisample");
MarkExtensionUnsupported(ANGLE_framebuffer_multisample);
MarkExtensionUnsupported(EXT_framebuffer_multisample);
mSymbols.fRenderbufferStorageMultisample = nullptr;
}
}
if (IsExtensionSupported(ARB_sync)) {
SymLoadStruct syncSymbols[] = {
{ (PRFuncPtr*) &mSymbols.fFenceSync, { "FenceSync", nullptr } },
{ (PRFuncPtr*) &mSymbols.fIsSync, { "IsSync", nullptr } },
{ (PRFuncPtr*) &mSymbols.fDeleteSync, { "DeleteSync", nullptr } },
{ (PRFuncPtr*) &mSymbols.fClientWaitSync, { "ClientWaitSync", nullptr } },
{ (PRFuncPtr*) &mSymbols.fWaitSync, { "WaitSync", nullptr } },
{ (PRFuncPtr*) &mSymbols.fGetInteger64v, { "GetInteger64v", nullptr } },
{ (PRFuncPtr*) &mSymbols.fGetSynciv, { "GetSynciv", nullptr } },
{ nullptr, { nullptr } },
};
if (!LoadSymbols(&syncSymbols[0], trygl, prefix)) {
NS_ERROR("GL supports ARB_sync without supplying its functions.");
MarkExtensionUnsupported(ARB_sync);
mSymbols.fFenceSync = nullptr;
mSymbols.fIsSync = nullptr;
mSymbols.fDeleteSync = nullptr;
mSymbols.fClientWaitSync = nullptr;
mSymbols.fWaitSync = nullptr;
mSymbols.fGetInteger64v = nullptr;
mSymbols.fGetSynciv = nullptr;
}
}
if (IsExtensionSupported(OES_EGL_image)) {
SymLoadStruct imageSymbols[] = {
{ (PRFuncPtr*) &mSymbols.fEGLImageTargetTexture2D, { "EGLImageTargetTexture2DOES", nullptr } },
{ (PRFuncPtr*) &mSymbols.fEGLImageTargetRenderbufferStorage, { "EGLImageTargetRenderbufferStorageOES", nullptr } },
{ nullptr, { nullptr } },
};
if (!LoadSymbols(&imageSymbols[0], trygl, prefix)) {
NS_ERROR("GL supports OES_EGL_image without supplying its functions.");
MarkExtensionUnsupported(OES_EGL_image);
mSymbols.fEGLImageTargetTexture2D = nullptr;
mSymbols.fEGLImageTargetRenderbufferStorage = nullptr;
}
}
// Load developer symbols, don't fail if we can't find them.
SymLoadStruct auxSymbols[] = {
{ (PRFuncPtr*) &mSymbols.fGetTexImage, { "GetTexImage", nullptr } },
{ (PRFuncPtr*) &mSymbols.fGetTexLevelParameteriv, { "GetTexLevelParameteriv", nullptr } },
{ nullptr, { nullptr } },
};
bool warnOnFailures = DebugMode();
LoadSymbols(&auxSymbols[0], trygl, prefix, warnOnFailures);
}
if (mInitialized) {
GLint v[4];
fGetIntegerv(LOCAL_GL_SCISSOR_BOX, v);
mScissorStack.AppendElement(nsIntRect(v[0], v[1], v[2], v[3]));
fGetIntegerv(LOCAL_GL_VIEWPORT, v);
mViewportStack.AppendElement(nsIntRect(v[0], v[1], v[2], v[3]));
raw_fGetIntegerv(LOCAL_GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
raw_fGetIntegerv(LOCAL_GL_MAX_CUBE_MAP_TEXTURE_SIZE, &mMaxCubeMapTextureSize);
raw_fGetIntegerv(LOCAL_GL_MAX_RENDERBUFFER_SIZE, &mMaxRenderbufferSize);
#ifdef XP_MACOSX
if (mWorkAroundDriverBugs &&
mVendor == VendorIntel) {
// see bug 737182 for 2D textures, bug 684882 for cube map textures.
mMaxTextureSize = std::min(mMaxTextureSize, 4096);
mMaxCubeMapTextureSize = std::min(mMaxCubeMapTextureSize, 512);
// for good measure, we align renderbuffers on what we do for 2D textures
mMaxRenderbufferSize = std::min(mMaxRenderbufferSize, 4096);
mNeedsTextureSizeChecks = true;
}
#endif
#ifdef MOZ_X11
if (mWorkAroundDriverBugs &&
mVendor == VendorNouveau) {
// see bug 814716. Clamp MaxCubeMapTextureSize at 2K for Nouveau.
mMaxCubeMapTextureSize = std::min(mMaxCubeMapTextureSize, 2048);
mNeedsTextureSizeChecks = true;
}
#endif
mMaxTextureImageSize = mMaxTextureSize;
mMaxSamples = 0;
if (SupportsFramebufferMultisample()) {
fGetIntegerv(LOCAL_GL_MAX_SAMPLES, (GLint*)&mMaxSamples);
}
// We're ready for final setup.
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, 0);
if (mCaps.any)
DetermineCaps();
UpdatePixelFormat();
UpdateGLFormats(mCaps);
mTexGarbageBin = new TextureGarbageBin(this);
MOZ_ASSERT(IsCurrent());
}
if (mInitialized)
reporter.SetSuccessful();
else {
// if initialization fails, ensure all symbols are zero, to avoid hard-to-understand bugs
mSymbols.Zero();
NS_WARNING("InitWithPrefix failed!");
}
return mInitialized;
}
void
GLContext::InitExtensions()
{
MakeCurrent();
const char* extensions = (const char*)fGetString(LOCAL_GL_EXTENSIONS);
if (!extensions)
return;
#ifdef DEBUG
static bool firstRun = true;
#else
// Non-DEBUG, so never spew.
const bool firstRun = false;
#endif
mAvailableExtensions.Load(extensions, sExtensionNames, firstRun && DebugMode());
if (WorkAroundDriverBugs() &&
Vendor() == VendorQualcomm) {
// Some Adreno drivers do not report GL_OES_EGL_sync, but they really do support it.
MarkExtensionSupported(OES_EGL_sync);
}
#ifdef XP_MACOSX
// The Mac Nvidia driver, for versions up to and including 10.8, don't seem
// to properly support this. See 814839
if (WorkAroundDriverBugs() &&
Vendor() == gl::GLContext::VendorNVIDIA)
{
MarkExtensionUnsupported(gl::GLContext::EXT_packed_depth_stencil);
}
#endif
#ifdef DEBUG
firstRun = false;
#endif
}
// Take texture data in a given buffer and copy it into a larger buffer,
// padding out the edge pixels for filtering if necessary
static void
CopyAndPadTextureData(const GLvoid* srcBuffer,
GLvoid* dstBuffer,
GLsizei srcWidth, GLsizei srcHeight,
GLsizei dstWidth, GLsizei dstHeight,
GLsizei stride, GLint pixelsize)
{
unsigned char *rowDest = static_cast<unsigned char*>(dstBuffer);
const unsigned char *source = static_cast<const unsigned char*>(srcBuffer);
for (GLsizei h = 0; h < srcHeight; ++h) {
memcpy(rowDest, source, srcWidth * pixelsize);
rowDest += dstWidth * pixelsize;
source += stride;
}
GLsizei padHeight = srcHeight;
// Pad out an extra row of pixels so that edge filtering doesn't use garbage data
if (dstHeight > srcHeight) {
memcpy(rowDest, source - stride, srcWidth * pixelsize);
padHeight++;
}
// Pad out an extra column of pixels
if (dstWidth > srcWidth) {
rowDest = static_cast<unsigned char*>(dstBuffer) + srcWidth * pixelsize;
for (GLsizei h = 0; h < padHeight; ++h) {
memcpy(rowDest, rowDest - pixelsize, pixelsize);
rowDest += dstWidth * pixelsize;
}
}
}
// In both of these cases (for the Adreno at least) it is impossible
// to determine good or bad driver versions for POT texture uploads,
// so blacklist them all. Newer drivers use a different rendering
// string in the form "Adreno (TM) 200" and the drivers we've seen so
// far work fine with NPOT textures, so don't blacklist those until we
// have evidence of any problems with them.
bool
GLContext::CanUploadSubTextures()
{
if (!mWorkAroundDriverBugs)
return true;
// There are certain GPUs that we don't want to use glTexSubImage2D on
// because that function can be very slow and/or buggy
if (Renderer() == RendererAdreno200 || Renderer() == RendererAdreno205)
return false;
// On PowerVR glTexSubImage does a readback, so it will be slower
// than just doing a glTexImage2D() directly. i.e. 26ms vs 10ms
if (Renderer() == RendererSGX540 || Renderer() == RendererSGX530)
return false;
return true;
}
bool GLContext::sPowerOfTwoForced = false;
bool GLContext::sPowerOfTwoPrefCached = false;
void
GLContext::PlatformStartup()
{
CacheCanUploadNPOT();
NS_RegisterMemoryReporter(new NS_MEMORY_REPORTER_NAME(TextureMemoryUsage));
}
void
GLContext::CacheCanUploadNPOT()
{
MOZ_ASSERT(NS_IsMainThread(), "Can't cache prefs off the main thread.");
MOZ_ASSERT(!sPowerOfTwoPrefCached, "Must only call this function once!");
sPowerOfTwoPrefCached = true;
mozilla::Preferences::AddBoolVarCache(&sPowerOfTwoForced,
"gfx.textures.poweroftwo.force-enabled");
}
bool
GLContext::CanUploadNonPowerOfTwo()
{
MOZ_ASSERT(sPowerOfTwoPrefCached);
if (!mWorkAroundDriverBugs)
return true;
// Some GPUs driver crash when uploading non power of two 565 textures.
return sPowerOfTwoForced ? false : (Renderer() != RendererAdreno200 &&
Renderer() != RendererAdreno205);
}
bool
GLContext::WantsSmallTiles()
{
// We must use small tiles for good performance if we can't use
// glTexSubImage2D() for some reason.
if (!CanUploadSubTextures())
return true;
// We can't use small tiles on the SGX 540, because of races in texture upload.
if (mWorkAroundDriverBugs &&
Renderer() == RendererSGX540)
return false;
// Don't use small tiles otherwise. (If we implement incremental texture upload,
// then we will want to revisit this.)
return false;
}
// Common code for checking for both GL extensions and GLX extensions.
bool
GLContext::ListHasExtension(const GLubyte *extensions, const char *extension)
{
// fix bug 612572 - we were crashing as we were calling this function with extensions==null
if (extensions == nullptr || extension == nullptr)
return false;
const GLubyte *start;
GLubyte *where, *terminator;
/* Extension names should not have spaces. */
where = (GLubyte *) strchr(extension, ' ');
if (where || *extension == '\0')
return false;
/*
* It takes a bit of care to be fool-proof about parsing the
* OpenGL extensions string. Don't be fooled by sub-strings,
* etc.
*/
start = extensions;
for (;;) {
where = (GLubyte *) strstr((const char *) start, extension);
if (!where) {
break;
}
terminator = where + strlen(extension);
if (where == start || *(where - 1) == ' ') {
if (*terminator == ' ' || *terminator == '\0') {
return true;
}
}
start = terminator;
}
return false;
}
already_AddRefed<TextureImage>
GLContext::CreateTextureImage(const nsIntSize& aSize,
TextureImage::ContentType aContentType,
GLenum aWrapMode,
TextureImage::Flags aFlags)
{
return CreateBasicTextureImage(this, aSize, aContentType, aWrapMode, aFlags);
}
void GLContext::ApplyFilterToBoundTexture(gfxPattern::GraphicsFilter aFilter)
{
ApplyFilterToBoundTexture(LOCAL_GL_TEXTURE_2D, aFilter);
}
void GLContext::ApplyFilterToBoundTexture(GLuint aTarget,
gfxPattern::GraphicsFilter aFilter)
{
if (aFilter == gfxPattern::FILTER_NEAREST) {
fTexParameteri(aTarget, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_NEAREST);
fTexParameteri(aTarget, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_NEAREST);
} else {
fTexParameteri(aTarget, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_LINEAR);
fTexParameteri(aTarget, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_LINEAR);
}
}
void
GLContext::DetermineCaps()
{
PixelBufferFormat format = QueryPixelFormat();
SurfaceCaps caps;
caps.color = !!format.red && !!format.green && !!format.blue;
caps.bpp16 = caps.color && format.ColorBits() == 16;
caps.alpha = !!format.alpha;
caps.depth = !!format.depth;
caps.stencil = !!format.stencil;
caps.antialias = format.samples > 1;
caps.preserve = true;
mCaps = caps;
}
PixelBufferFormat
GLContext::QueryPixelFormat()
{
PixelBufferFormat format;
ScopedBindFramebuffer autoFB(this, 0);
fGetIntegerv(LOCAL_GL_RED_BITS , &format.red );
fGetIntegerv(LOCAL_GL_GREEN_BITS, &format.green);
fGetIntegerv(LOCAL_GL_BLUE_BITS , &format.blue );
fGetIntegerv(LOCAL_GL_ALPHA_BITS, &format.alpha);
fGetIntegerv(LOCAL_GL_DEPTH_BITS, &format.depth);
fGetIntegerv(LOCAL_GL_STENCIL_BITS, &format.stencil);
fGetIntegerv(LOCAL_GL_SAMPLES, &format.samples);
return format;
}
void
GLContext::UpdatePixelFormat()
{
PixelBufferFormat format = QueryPixelFormat();
#ifdef DEBUG
const SurfaceCaps& caps = Caps();
MOZ_ASSERT(!caps.any, "Did you forget to DetermineCaps()?");
MOZ_ASSERT(caps.color == !!format.red);
MOZ_ASSERT(caps.color == !!format.green);
MOZ_ASSERT(caps.color == !!format.blue);
MOZ_ASSERT(caps.alpha == !!format.alpha);
MOZ_ASSERT(caps.depth == !!format.depth);
MOZ_ASSERT(caps.stencil == !!format.stencil);
MOZ_ASSERT(caps.antialias == (format.samples > 1));
#endif
mPixelFormat = new PixelBufferFormat(format);
}
GLFormats
GLContext::ChooseGLFormats(const SurfaceCaps& caps) const
{
GLFormats formats;
// If we're on ES2 hardware and we have an explicit request for 16 bits of color or less
// OR we don't support full 8-bit color, return a 4444 or 565 format.
bool bpp16 = caps.bpp16;
if (mIsGLES2) {
if (!IsExtensionSupported(OES_rgb8_rgba8))
bpp16 = true;
} else {
// RGB565 is uncommon on desktop, requiring ARB_ES2_compatibility.
// Since it's also vanishingly useless there, let's not support it.
bpp16 = false;
}
if (bpp16) {
MOZ_ASSERT(mIsGLES2);
if (caps.alpha) {
formats.color_texInternalFormat = LOCAL_GL_RGBA;
formats.color_texFormat = LOCAL_GL_RGBA;
formats.color_texType = LOCAL_GL_UNSIGNED_SHORT_4_4_4_4;
formats.color_rbFormat = LOCAL_GL_RGBA4;
} else {
formats.color_texInternalFormat = LOCAL_GL_RGB;
formats.color_texFormat = LOCAL_GL_RGB;
formats.color_texType = LOCAL_GL_UNSIGNED_SHORT_5_6_5;
formats.color_rbFormat = LOCAL_GL_RGB565;
}
} else {
formats.color_texType = LOCAL_GL_UNSIGNED_BYTE;
if (caps.alpha) {
formats.color_texInternalFormat = mIsGLES2 ? LOCAL_GL_RGBA : LOCAL_GL_RGBA8;
formats.color_texFormat = LOCAL_GL_RGBA;
formats.color_rbFormat = LOCAL_GL_RGBA8;
} else {
formats.color_texInternalFormat = mIsGLES2 ? LOCAL_GL_RGB : LOCAL_GL_RGB8;
formats.color_texFormat = LOCAL_GL_RGB;
formats.color_rbFormat = LOCAL_GL_RGB8;
}
}
uint32_t msaaLevel = Preferences::GetUint("gl.msaa-level", 2);
GLsizei samples = msaaLevel * msaaLevel;
samples = std::min(samples, mMaxSamples);
// Bug 778765.
if (WorkAroundDriverBugs() && samples == 1) {
samples = 0;
}
formats.samples = samples;
// Be clear that these are 0 if unavailable.
formats.depthStencil = 0;
if (!mIsGLES2 || IsExtensionSupported(OES_packed_depth_stencil)) {
formats.depthStencil = LOCAL_GL_DEPTH24_STENCIL8;
}
formats.depth = 0;
if (mIsGLES2) {
if (IsExtensionSupported(OES_depth24)) {
formats.depth = LOCAL_GL_DEPTH_COMPONENT24;
} else {
formats.depth = LOCAL_GL_DEPTH_COMPONENT16;
}
} else {
formats.depth = LOCAL_GL_DEPTH_COMPONENT24;
}
formats.stencil = LOCAL_GL_STENCIL_INDEX8;
return formats;
}
GLuint
GLContext::CreateTextureForOffscreen(const GLFormats& formats, const gfxIntSize& size)
{
MOZ_ASSERT(formats.color_texInternalFormat);
MOZ_ASSERT(formats.color_texFormat);
MOZ_ASSERT(formats.color_texType);
return CreateTexture(formats.color_texInternalFormat,
formats.color_texFormat,
formats.color_texType,
size);
}
GLuint
GLContext::CreateTexture(GLenum internalFormat, GLenum format, GLenum type, const gfxIntSize& size)
{
GLuint tex = 0;
fGenTextures(1, &tex);
ScopedBindTexture autoTex(this, tex);
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_LINEAR);
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_LINEAR);
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_S, LOCAL_GL_CLAMP_TO_EDGE);
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_T, LOCAL_GL_CLAMP_TO_EDGE);
fTexImage2D(LOCAL_GL_TEXTURE_2D,
0,
internalFormat,
size.width, size.height,
0,
format,
type,
nullptr);
return tex;
}
static inline void
RenderbufferStorageBySamples(GLContext* gl, GLsizei samples, GLenum internalFormat, const gfxIntSize& size)
{
if (samples) {
gl->fRenderbufferStorageMultisample(LOCAL_GL_RENDERBUFFER,
samples,
internalFormat,
size.width, size.height);
} else {
gl->fRenderbufferStorage(LOCAL_GL_RENDERBUFFER,
internalFormat,
size.width, size.height);
}
}
GLuint
GLContext::CreateRenderbuffer(GLenum format, GLsizei samples, const gfxIntSize& size)
{
GLuint rb = 0;
fGenRenderbuffers(1, &rb);
ScopedBindRenderbuffer autoRB(this, rb);
RenderbufferStorageBySamples(this, samples, format, size);
return rb;
}
void
GLContext::CreateRenderbuffersForOffscreen(const GLFormats& formats, const gfxIntSize& size,
bool multisample,
GLuint* colorMSRB, GLuint* depthRB, GLuint* stencilRB)
{
GLsizei samples = multisample ? formats.samples : 0;
if (colorMSRB) {
MOZ_ASSERT(formats.samples > 0);
MOZ_ASSERT(formats.color_rbFormat);
*colorMSRB = CreateRenderbuffer(formats.color_rbFormat, samples, size);
}
if (depthRB &&
stencilRB &&
formats.depthStencil)
{
*depthRB = CreateRenderbuffer(formats.depthStencil, samples, size);
*stencilRB = *depthRB;
} else {
if (depthRB) {
MOZ_ASSERT(formats.depth);
*depthRB = CreateRenderbuffer(formats.depth, samples, size);
}
if (stencilRB) {
MOZ_ASSERT(formats.stencil);
*stencilRB = CreateRenderbuffer(formats.stencil, samples, size);
}
}
}
bool
GLContext::IsFramebufferComplete(GLuint fb, GLenum* pStatus)
{
MOZ_ASSERT(fb);
ScopedBindFramebuffer autoFB(this, fb);
MOZ_ASSERT(fIsFramebuffer(fb));
GLenum status = fCheckFramebufferStatus(LOCAL_GL_FRAMEBUFFER);
if (pStatus)
*pStatus = status;
return status == LOCAL_GL_FRAMEBUFFER_COMPLETE;
}
void
GLContext::AttachBuffersToFB(GLuint colorTex, GLuint colorRB,
GLuint depthRB, GLuint stencilRB,
GLuint fb)
{
MOZ_ASSERT(fb);
MOZ_ASSERT( !(colorTex && colorRB) );
ScopedBindFramebuffer autoFB(this, fb);
MOZ_ASSERT(fIsFramebuffer(fb)); // It only counts after being bound.
if (colorTex) {
MOZ_ASSERT(fIsTexture(colorTex));
fFramebufferTexture2D(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D,
colorTex,
0);
} else if (colorRB) {
MOZ_ASSERT(fIsRenderbuffer(colorRB));
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_RENDERBUFFER,
colorRB);
}
if (depthRB) {
MOZ_ASSERT(fIsRenderbuffer(depthRB));
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_DEPTH_ATTACHMENT,
LOCAL_GL_RENDERBUFFER,
depthRB);
}
if (stencilRB) {
MOZ_ASSERT(fIsRenderbuffer(stencilRB));
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_STENCIL_ATTACHMENT,
LOCAL_GL_RENDERBUFFER,
stencilRB);
}
}
bool
GLContext::AssembleOffscreenFBs(const GLuint colorMSRB,
const GLuint depthRB,
const GLuint stencilRB,
const GLuint texture,
GLuint* drawFB_out,
GLuint* readFB_out)
{
if (!colorMSRB && !texture) {
MOZ_ASSERT(!depthRB && !stencilRB);
if (drawFB_out)
*drawFB_out = 0;
if (readFB_out)
*readFB_out = 0;
return true;
}
ScopedBindFramebuffer autoFB(this);
GLuint drawFB = 0;
GLuint readFB = 0;
if (texture) {
readFB = 0;
fGenFramebuffers(1, &readFB);
BindFB(readFB);
fFramebufferTexture2D(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D,
texture,
0);
}
if (colorMSRB) {
drawFB = 0;
fGenFramebuffers(1, &drawFB);
BindFB(drawFB);
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_RENDERBUFFER,
colorMSRB);
} else {
drawFB = readFB;
}
MOZ_ASSERT(GetFB() == drawFB);
if (depthRB) {
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_DEPTH_ATTACHMENT,
LOCAL_GL_RENDERBUFFER,
depthRB);
}
if (stencilRB) {
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_STENCIL_ATTACHMENT,
LOCAL_GL_RENDERBUFFER,
stencilRB);
}
// We should be all resized. Check for framebuffer completeness.
GLenum status;
bool isComplete = true;
if (!IsFramebufferComplete(drawFB, &status)) {
NS_WARNING("DrawFBO: Incomplete");
#ifdef DEBUG
if (DebugMode()) {
printf_stderr("Framebuffer status: %X\n", status);
}
#endif
isComplete = false;
}
if (!IsFramebufferComplete(readFB, &status)) {
NS_WARNING("ReadFBO: Incomplete");
#ifdef DEBUG
if (DebugMode()) {
printf_stderr("Framebuffer status: %X\n", status);
}
#endif
isComplete = false;
}
if (drawFB_out) {
*drawFB_out = drawFB;
} else if (drawFB) {
NS_RUNTIMEABORT("drawFB created when not requested!");
}
if (readFB_out) {
*readFB_out = readFB;
} else if (readFB) {
NS_RUNTIMEABORT("readFB created when not requested!");
}
return isComplete;
}
bool
GLContext::PublishFrame()
{
MOZ_ASSERT(mScreen);
if (!mScreen->PublishFrame(OffscreenSize()))
return false;
return true;
}
SharedSurface*
GLContext::RequestFrame()
{
MOZ_ASSERT(mScreen);
return mScreen->Stream()->SwapConsumer();
}
void
GLContext::ClearSafely()
{
// bug 659349 --- we must be very careful here: clearing a GL framebuffer is nontrivial, relies on a lot of state,
// and in the case of the backbuffer of a WebGL context, state is exposed to scripts.
//
// The code here is taken from WebGLContext::ForceClearFramebufferWithDefaultValues, but I didn't find a good way of
// sharing code with it. WebGL's code is somewhat performance-critical as it is typically called on every frame, so
// WebGL keeps track of GL state to avoid having to query it everytime, and also tries to only do work for actually
// present buffers (e.g. stencil buffer). Doing that here seems like premature optimization,
// as ClearSafely() is called only when e.g. a canvas is resized, not on every animation frame.
realGLboolean scissorTestEnabled;
realGLboolean ditherEnabled;
realGLboolean colorWriteMask[4];
realGLboolean depthWriteMask;
GLint stencilWriteMaskFront, stencilWriteMaskBack;
GLfloat colorClearValue[4];
GLfloat depthClearValue;
GLint stencilClearValue;
// save current GL state
fGetBooleanv(LOCAL_GL_SCISSOR_TEST, &scissorTestEnabled);
fGetBooleanv(LOCAL_GL_DITHER, &ditherEnabled);
fGetBooleanv(LOCAL_GL_COLOR_WRITEMASK, colorWriteMask);
fGetBooleanv(LOCAL_GL_DEPTH_WRITEMASK, &depthWriteMask);
fGetIntegerv(LOCAL_GL_STENCIL_WRITEMASK, &stencilWriteMaskFront);
fGetIntegerv(LOCAL_GL_STENCIL_BACK_WRITEMASK, &stencilWriteMaskBack);
fGetFloatv(LOCAL_GL_COLOR_CLEAR_VALUE, colorClearValue);
fGetFloatv(LOCAL_GL_DEPTH_CLEAR_VALUE, &depthClearValue);
fGetIntegerv(LOCAL_GL_STENCIL_CLEAR_VALUE, &stencilClearValue);
// prepare GL state for clearing
fDisable(LOCAL_GL_SCISSOR_TEST);
fDisable(LOCAL_GL_DITHER);
PushViewportRect(nsIntRect(0, 0, OffscreenSize().width, OffscreenSize().height));
fColorMask(1, 1, 1, 1);
fClearColor(0.f, 0.f, 0.f, 0.f);
fDepthMask(1);
fClearDepth(1.0f);
fStencilMask(0xffffffff);
fClearStencil(0);
// do clear
fClear(LOCAL_GL_COLOR_BUFFER_BIT |
LOCAL_GL_DEPTH_BUFFER_BIT |
LOCAL_GL_STENCIL_BUFFER_BIT);
// restore GL state after clearing
fColorMask(colorWriteMask[0],
colorWriteMask[1],
colorWriteMask[2],
colorWriteMask[3]);
fClearColor(colorClearValue[0],
colorClearValue[1],
colorClearValue[2],
colorClearValue[3]);
fDepthMask(depthWriteMask);
fClearDepth(depthClearValue);
fStencilMaskSeparate(LOCAL_GL_FRONT, stencilWriteMaskFront);
fStencilMaskSeparate(LOCAL_GL_BACK, stencilWriteMaskBack);
fClearStencil(stencilClearValue);
PopViewportRect();
if (ditherEnabled)
fEnable(LOCAL_GL_DITHER);
else
fDisable(LOCAL_GL_DITHER);
if (scissorTestEnabled)
fEnable(LOCAL_GL_SCISSOR_TEST);
else
fDisable(LOCAL_GL_SCISSOR_TEST);
}
void
GLContext::MarkDestroyed()
{
if (IsDestroyed())
return;
if (MakeCurrent()) {
DestroyScreenBuffer();
// This is for Blit{Tex,FB}To{TexFB}.
DeleteTexBlitProgram();
// Likely used by OGL Layers.
fDeleteProgram(mBlitProgram);
mBlitProgram = 0;
fDeleteFramebuffers(1, &mBlitFramebuffer);
mBlitFramebuffer = 0;
mTexGarbageBin->GLContextTeardown();
} else {
NS_WARNING("MakeCurrent() failed during MarkDestroyed! Skipping GL object teardown.");
}
mSymbols.Zero();
}
static void SwapRAndBComponents(gfxImageSurface* surf)
{
for (int j = 0; j < surf->Height(); ++j) {
uint32_t* row = (uint32_t*)(surf->Data() + surf->Stride() * j);
for (int i = 0; i < surf->Width(); ++i) {
*row = (*row & 0xff00ff00) | ((*row & 0xff) << 16) | ((*row & 0xff0000) >> 16);
row++;
}
}
}
static already_AddRefed<gfxImageSurface> YInvertImageSurface(gfxImageSurface* aSurf)
{
gfxIntSize size = aSurf->GetSize();
nsRefPtr<gfxImageSurface> temp = new gfxImageSurface(size, aSurf->Format());
nsRefPtr<gfxContext> ctx = new gfxContext(temp);
ctx->SetOperator(gfxContext::OPERATOR_SOURCE);
ctx->Scale(1.0, -1.0);
ctx->Translate(-gfxPoint(0.0, size.height));
ctx->SetSource(aSurf);
ctx->Paint();
return temp.forget();
}
already_AddRefed<gfxImageSurface>
GLContext::GetTexImage(GLuint aTexture, bool aYInvert, ShaderProgramType aShader)
{
MakeCurrent();
GuaranteeResolve();
fActiveTexture(LOCAL_GL_TEXTURE0);
fBindTexture(LOCAL_GL_TEXTURE_2D, aTexture);
gfxIntSize size;
fGetTexLevelParameteriv(LOCAL_GL_TEXTURE_2D, 0, LOCAL_GL_TEXTURE_WIDTH, &size.width);
fGetTexLevelParameteriv(LOCAL_GL_TEXTURE_2D, 0, LOCAL_GL_TEXTURE_HEIGHT, &size.height);
nsRefPtr<gfxImageSurface> surf = new gfxImageSurface(size, gfxASurface::ImageFormatARGB32);
if (!surf || surf->CairoStatus()) {
return nullptr;
}
uint32_t currentPackAlignment = 0;
fGetIntegerv(LOCAL_GL_PACK_ALIGNMENT, (GLint*)&currentPackAlignment);
if (currentPackAlignment != 4) {
fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, 4);
}
fGetTexImage(LOCAL_GL_TEXTURE_2D, 0, LOCAL_GL_RGBA, LOCAL_GL_UNSIGNED_BYTE, surf->Data());
if (currentPackAlignment != 4) {
fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, currentPackAlignment);
}
if (aShader == RGBALayerProgramType || aShader == RGBXLayerProgramType) {
SwapRAndBComponents(surf);
}
if (aYInvert) {
surf = YInvertImageSurface(surf);
}
return surf.forget();
}
already_AddRefed<gfxImageSurface>
GLContext::ReadTextureImage(GLuint aTexture,
const gfxIntSize& aSize,
GLenum aTextureFormat,
bool aYInvert)
{
MakeCurrent();
nsRefPtr<gfxImageSurface> isurf;
GLint oldrb, oldfb, oldprog, oldPackAlignment;
GLint success;
GLuint rb = 0, fb = 0;
GLuint vs = 0, fs = 0, prog = 0;
const char *vShader =
"attribute vec4 aVertex;\n"
"attribute vec2 aTexCoord;\n"
"varying vec2 vTexCoord;\n"
"void main() { gl_Position = aVertex; vTexCoord = aTexCoord; }";
const char *fShader =
"#ifdef GL_ES\n"
"precision mediump float;\n"
"#endif\n"
"varying vec2 vTexCoord;\n"
"uniform sampler2D uTexture;\n"
"void main() { gl_FragColor = texture2D(uTexture, vTexCoord); }";
float verts[4*4] = {
-1.0f, -1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f,
-1.0f, 1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f
};
float texcoords[2*4] = {
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f
};
fGetIntegerv(LOCAL_GL_RENDERBUFFER_BINDING, &oldrb);
fGetIntegerv(LOCAL_GL_FRAMEBUFFER_BINDING, &oldfb);
fGetIntegerv(LOCAL_GL_CURRENT_PROGRAM, &oldprog);
fGetIntegerv(LOCAL_GL_PACK_ALIGNMENT, &oldPackAlignment);
PushViewportRect(nsIntRect(0, 0, aSize.width, aSize.height));
fGenRenderbuffers(1, &rb);
fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, rb);
fRenderbufferStorage(LOCAL_GL_RENDERBUFFER, LOCAL_GL_RGBA,
aSize.width, aSize.height);
fGenFramebuffers(1, &fb);
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, fb);
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_RENDERBUFFER, rb);
if (fCheckFramebufferStatus(LOCAL_GL_FRAMEBUFFER) !=
LOCAL_GL_FRAMEBUFFER_COMPLETE)
{
goto cleanup;
}
vs = fCreateShader(LOCAL_GL_VERTEX_SHADER);
fs = fCreateShader(LOCAL_GL_FRAGMENT_SHADER);
fShaderSource(vs, 1, (const GLchar**) &vShader, NULL);
fShaderSource(fs, 1, (const GLchar**) &fShader, NULL);
fCompileShader(vs);
fCompileShader(fs);
prog = fCreateProgram();
fAttachShader(prog, vs);
fAttachShader(prog, fs);
fBindAttribLocation(prog, 0, "aVertex");
fBindAttribLocation(prog, 1, "aTexCoord");
fLinkProgram(prog);
fGetProgramiv(prog, LOCAL_GL_LINK_STATUS, &success);
if (!success) {
goto cleanup;
}
fUseProgram(prog);
fEnableVertexAttribArray(0);
fEnableVertexAttribArray(1);
fVertexAttribPointer(0, 4, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, verts);
fVertexAttribPointer(1, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, texcoords);
fActiveTexture(LOCAL_GL_TEXTURE0);
fBindTexture(LOCAL_GL_TEXTURE_2D, aTexture);
fUniform1i(fGetUniformLocation(prog, "uTexture"), 0);
fDrawArrays(LOCAL_GL_TRIANGLE_STRIP, 0, 4);
fDisableVertexAttribArray(1);
fDisableVertexAttribArray(0);
isurf = new gfxImageSurface(aSize, gfxASurface::ImageFormatARGB32);
if (!isurf || isurf->CairoStatus()) {
isurf = nullptr;
goto cleanup;
}
if (oldPackAlignment != 4)
fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, 4);
fReadPixels(0, 0, aSize.width, aSize.height,
LOCAL_GL_RGBA, LOCAL_GL_UNSIGNED_BYTE,
isurf->Data());
SwapRAndBComponents(isurf);
if (oldPackAlignment != 4)
fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, oldPackAlignment);
if (aYInvert) {
isurf = YInvertImageSurface(isurf);
}
cleanup:
// note that deleting 0 has no effect in any of these calls
fDeleteRenderbuffers(1, &rb);
fDeleteFramebuffers(1, &fb);
fDeleteShader(vs);
fDeleteShader(fs);
fDeleteProgram(prog);
fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, oldrb);
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, oldfb);
fUseProgram(oldprog);
PopViewportRect();
return isurf.forget();
}
static bool
GetActualReadFormats(GLContext* gl, GLenum destFormat, GLenum destType,
GLenum& readFormat, GLenum& readType)
{
if (destFormat == LOCAL_GL_RGBA &&
destType == LOCAL_GL_UNSIGNED_BYTE)
{
readFormat = destFormat;
readType = destType;
return true;
}
bool fallback = true;
if (gl->IsGLES2()) {
GLenum auxFormat = 0;
GLenum auxType = 0;
gl->fGetIntegerv(LOCAL_GL_IMPLEMENTATION_COLOR_READ_FORMAT, (GLint*)&auxFormat);
gl->fGetIntegerv(LOCAL_GL_IMPLEMENTATION_COLOR_READ_TYPE, (GLint*)&auxType);
if (destFormat == auxFormat &&
destType == auxType)
{
fallback = false;
}
} else {
switch (destFormat) {
case LOCAL_GL_RGB: {
if (destType == LOCAL_GL_UNSIGNED_SHORT_5_6_5_REV)
fallback = false;
break;
}
case LOCAL_GL_BGRA: {
if (destType == LOCAL_GL_UNSIGNED_INT_8_8_8_8_REV)
fallback = false;
break;
}
}
}
if (fallback) {
readFormat = LOCAL_GL_RGBA;
readType = LOCAL_GL_UNSIGNED_BYTE;
return false;
} else {
readFormat = destFormat;
readType = destType;
return true;
}
}
void
GLContext::ReadScreenIntoImageSurface(gfxImageSurface* dest)
{
ScopedBindFramebuffer autoFB(this, 0);
ReadPixelsIntoImageSurface(dest);
}
void
GLContext::ReadPixelsIntoImageSurface(gfxImageSurface* dest)
{
MakeCurrent();
MOZ_ASSERT(dest->GetSize() != gfxIntSize(0, 0));
/* ImageFormatARGB32:
* RGBA+UByte: be[RGBA], le[ABGR]
* RGBA+UInt: le[RGBA]
* BGRA+UInt: le[BGRA]
* BGRA+UIntRev: le[ARGB]
*
* ImageFormatRGB16_565:
* RGB+UShort: le[rrrrrggg,gggbbbbb]
*/
bool hasAlpha = dest->Format() == gfxASurface::ImageFormatARGB32;
int destPixelSize;
GLenum destFormat;
GLenum destType;
switch (dest->Format()) {
case gfxASurface::ImageFormatRGB24: // XRGB
case gfxASurface::ImageFormatARGB32:
destPixelSize = 4;
// Needs host (little) endian ARGB.
destFormat = LOCAL_GL_BGRA;
destType = LOCAL_GL_UNSIGNED_INT_8_8_8_8_REV;
break;
case gfxASurface::ImageFormatRGB16_565:
destPixelSize = 2;
destFormat = LOCAL_GL_RGB;
destType = LOCAL_GL_UNSIGNED_SHORT_5_6_5_REV;
break;
default:
MOZ_NOT_REACHED("Bad format.");
return;
}
MOZ_ASSERT(dest->Stride() == dest->Width() * destPixelSize);
GLenum readFormat = destFormat;
GLenum readType = destType;
bool needsTempSurf = !GetActualReadFormats(this,
destFormat, destType,
readFormat, readType);
nsAutoPtr<gfxImageSurface> tempSurf;
gfxImageSurface* readSurf = nullptr;
int readPixelSize = 0;
if (needsTempSurf) {
if (DebugMode()) {
NS_WARNING("Needing intermediary surface for ReadPixels. This will be slow!");
}
gfxASurface::gfxImageFormat readFormatGFX;
switch (readFormat) {
case LOCAL_GL_RGBA:
case LOCAL_GL_BGRA: {
readFormatGFX = hasAlpha ? gfxASurface::ImageFormatARGB32
: gfxASurface::ImageFormatRGB24;
break;
}
case LOCAL_GL_RGB: {
MOZ_ASSERT(readPixelSize == 2);
MOZ_ASSERT(readType == LOCAL_GL_UNSIGNED_SHORT_5_6_5_REV);
readFormatGFX = gfxASurface::ImageFormatRGB16_565;
break;
}
default: {
MOZ_NOT_REACHED("Bad read format.");
return;
}
}
switch (readType) {
case LOCAL_GL_UNSIGNED_BYTE: {
MOZ_ASSERT(readFormat == LOCAL_GL_RGBA);
readPixelSize = 4;
break;
}
case LOCAL_GL_UNSIGNED_INT_8_8_8_8_REV: {
MOZ_ASSERT(readFormat == LOCAL_GL_BGRA);
readPixelSize = 4;
break;
}
case LOCAL_GL_UNSIGNED_SHORT_5_6_5_REV: {
MOZ_ASSERT(readFormat == LOCAL_GL_RGB);
readPixelSize = 2;
break;
}
default: {
MOZ_NOT_REACHED("Bad read type.");
return;
}
}
tempSurf = new gfxImageSurface(dest->GetSize(), readFormatGFX, false);
readSurf = tempSurf;
} else {
readPixelSize = destPixelSize;
readSurf = dest;
}
MOZ_ASSERT(readPixelSize);
GLint currentPackAlignment = 0;
fGetIntegerv(LOCAL_GL_PACK_ALIGNMENT, &currentPackAlignment);
if (currentPackAlignment != readPixelSize)
fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, readPixelSize);
GLsizei width = dest->Width();
GLsizei height = dest->Height();
readSurf->Flush();
fReadPixels(0, 0,
width, height,
readFormat, readType,
readSurf->Data());
readSurf->MarkDirty();
if (currentPackAlignment != readPixelSize)
fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, currentPackAlignment);
if (readSurf != dest) {
MOZ_ASSERT(readFormat == LOCAL_GL_RGBA);
MOZ_ASSERT(readType == LOCAL_GL_UNSIGNED_BYTE);
// So we just copied in RGBA in big endian, or le: 0xAABBGGRR.
// We want 0xAARRGGBB, so swap R and B:
dest->Flush();
SwapRAndBComponents(readSurf);
dest->MarkDirty();
gfxContext ctx(dest);
ctx.SetOperator(gfxContext::OPERATOR_SOURCE);
ctx.SetSource(readSurf);
ctx.Paint();
}
// Check if GL is giving back 1.0 alpha for
// RGBA reads to RGBA images from no-alpha buffers.
#ifdef XP_MACOSX
if (WorkAroundDriverBugs() &&
mVendor == VendorNVIDIA &&
dest->Format() == gfxASurface::ImageFormatARGB32 &&
width && height)
{
GLint alphaBits = 0;
fGetIntegerv(LOCAL_GL_ALPHA_BITS, &alphaBits);
if (!alphaBits) {
const uint32_t alphaMask = gfxPackedPixelNoPreMultiply(0xff,0,0,0);
dest->Flush();
uint32_t* itr = (uint32_t*)dest->Data();
uint32_t testPixel = *itr;
if ((testPixel & alphaMask) != alphaMask) {
// We need to set the alpha channel to 1.0 manually.
uint32_t* itrEnd = itr + width*height; // Stride is guaranteed to be width*4.
for (; itr != itrEnd; itr++) {
*itr |= alphaMask;
}
}
dest->MarkDirty();
}
}
#endif
}
void
GLContext::BlitTextureImage(TextureImage *aSrc, const nsIntRect& aSrcRect,
TextureImage *aDst, const nsIntRect& aDstRect)
{
NS_ASSERTION(!aSrc->InUpdate(), "Source texture is in update!");
NS_ASSERTION(!aDst->InUpdate(), "Destination texture is in update!");
if (aSrcRect.IsEmpty() || aDstRect.IsEmpty())
return;
int savedFb = 0;
fGetIntegerv(LOCAL_GL_FRAMEBUFFER_BINDING, &savedFb);
fDisable(LOCAL_GL_SCISSOR_TEST);
fDisable(LOCAL_GL_BLEND);
// 2.0 means scale up by two
float blitScaleX = float(aDstRect.width) / float(aSrcRect.width);
float blitScaleY = float(aDstRect.height) / float(aSrcRect.height);
// We start iterating over all destination tiles
aDst->BeginTileIteration();
do {
// calculate portion of the tile that is going to be painted to
nsIntRect dstSubRect;
nsIntRect dstTextureRect = aDst->GetTileRect();
dstSubRect.IntersectRect(aDstRect, dstTextureRect);
// this tile is not part of the destination rectangle aDstRect
if (dstSubRect.IsEmpty())
continue;
// (*) transform the rect of this tile into the rectangle defined by aSrcRect...
nsIntRect dstInSrcRect(dstSubRect);
dstInSrcRect.MoveBy(-aDstRect.TopLeft());
// ...which might be of different size, hence scale accordingly
dstInSrcRect.ScaleRoundOut(1.0f / blitScaleX, 1.0f / blitScaleY);
dstInSrcRect.MoveBy(aSrcRect.TopLeft());
SetBlitFramebufferForDestTexture(aDst->GetTextureID());
UseBlitProgram();
aSrc->BeginTileIteration();
// now iterate over all tiles in the source Image...
do {
// calculate portion of the source tile that is in the source rect
nsIntRect srcSubRect;
nsIntRect srcTextureRect = aSrc->GetTileRect();
srcSubRect.IntersectRect(aSrcRect, srcTextureRect);
// this tile is not part of the source rect
if (srcSubRect.IsEmpty()) {
continue;
}
// calculate intersection of source rect with destination rect
srcSubRect.IntersectRect(srcSubRect, dstInSrcRect);
// this tile does not overlap the current destination tile
if (srcSubRect.IsEmpty()) {
continue;
}
// We now have the intersection of
// the current source tile
// and the desired source rectangle
// and the destination tile
// and the desired destination rectange
// in destination space.
// We need to transform this back into destination space, inverting the transform from (*)
nsIntRect srcSubInDstRect(srcSubRect);
srcSubInDstRect.MoveBy(-aSrcRect.TopLeft());
srcSubInDstRect.ScaleRoundOut(blitScaleX, blitScaleY);
srcSubInDstRect.MoveBy(aDstRect.TopLeft());
// we transform these rectangles to be relative to the current src and dst tiles, respectively
nsIntSize srcSize = srcTextureRect.Size();
nsIntSize dstSize = dstTextureRect.Size();
srcSubRect.MoveBy(-srcTextureRect.x, -srcTextureRect.y);
srcSubInDstRect.MoveBy(-dstTextureRect.x, -dstTextureRect.y);
float dx0 = 2.0f * float(srcSubInDstRect.x) / float(dstSize.width) - 1.0f;
float dy0 = 2.0f * float(srcSubInDstRect.y) / float(dstSize.height) - 1.0f;
float dx1 = 2.0f * float(srcSubInDstRect.x + srcSubInDstRect.width) / float(dstSize.width) - 1.0f;
float dy1 = 2.0f * float(srcSubInDstRect.y + srcSubInDstRect.height) / float(dstSize.height) - 1.0f;
PushViewportRect(nsIntRect(0, 0, dstSize.width, dstSize.height));
RectTriangles rects;
nsIntSize realTexSize = srcSize;
if (!CanUploadNonPowerOfTwo()) {
realTexSize = nsIntSize(NextPowerOfTwo(srcSize.width),
NextPowerOfTwo(srcSize.height));
}
if (aSrc->GetWrapMode() == LOCAL_GL_REPEAT) {
rects.addRect(/* dest rectangle */
dx0, dy0, dx1, dy1,
/* tex coords */
srcSubRect.x / float(realTexSize.width),
srcSubRect.y / float(realTexSize.height),
srcSubRect.XMost() / float(realTexSize.width),
srcSubRect.YMost() / float(realTexSize.height));
} else {
DecomposeIntoNoRepeatTriangles(srcSubRect, realTexSize, rects);
// now put the coords into the d[xy]0 .. d[xy]1 coordinate space
// from the 0..1 that it comes out of decompose
RectTriangles::vert_coord* v = (RectTriangles::vert_coord*)rects.vertexPointer();
for (unsigned int i = 0; i < rects.elements(); ++i) {
v[i].x = (v[i].x * (dx1 - dx0)) + dx0;
v[i].y = (v[i].y * (dy1 - dy0)) + dy0;
}
}
TextureImage::ScopedBindTexture texBind(aSrc, LOCAL_GL_TEXTURE0);
fBindBuffer(LOCAL_GL_ARRAY_BUFFER, 0);
fVertexAttribPointer(0, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, rects.vertexPointer());
fVertexAttribPointer(1, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, rects.texCoordPointer());
fEnableVertexAttribArray(0);
fEnableVertexAttribArray(1);
fDrawArrays(LOCAL_GL_TRIANGLES, 0, rects.elements());
fDisableVertexAttribArray(0);
fDisableVertexAttribArray(1);
PopViewportRect();
} while (aSrc->NextTile());
} while (aDst->NextTile());
fVertexAttribPointer(0, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, NULL);
fVertexAttribPointer(1, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, NULL);
// unbind the previous texture from the framebuffer
SetBlitFramebufferForDestTexture(0);
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, savedFb);
fEnable(LOCAL_GL_SCISSOR_TEST);
fEnable(LOCAL_GL_BLEND);
}
static unsigned int
DataOffset(gfxImageSurface *aSurf, const nsIntPoint &aPoint)
{
unsigned int data = aPoint.y * aSurf->Stride();
data += aPoint.x * gfxASurface::BytePerPixelFromFormat(aSurf->Format());
return data;
}
ShaderProgramType
GLContext::UploadSurfaceToTexture(gfxASurface *aSurface,
const nsIntRegion& aDstRegion,
GLuint& aTexture,
bool aOverwrite,
const nsIntPoint& aSrcPoint,
bool aPixelBuffer,
GLenum aTextureUnit)
{
bool textureInited = aOverwrite ? false : true;
MakeCurrent();
fActiveTexture(aTextureUnit);
if (!aTexture) {
fGenTextures(1, &aTexture);
fBindTexture(LOCAL_GL_TEXTURE_2D, aTexture);
fTexParameteri(LOCAL_GL_TEXTURE_2D,
LOCAL_GL_TEXTURE_MIN_FILTER,
LOCAL_GL_LINEAR);
fTexParameteri(LOCAL_GL_TEXTURE_2D,
LOCAL_GL_TEXTURE_MAG_FILTER,
LOCAL_GL_LINEAR);
fTexParameteri(LOCAL_GL_TEXTURE_2D,
LOCAL_GL_TEXTURE_WRAP_S,
LOCAL_GL_CLAMP_TO_EDGE);
fTexParameteri(LOCAL_GL_TEXTURE_2D,
LOCAL_GL_TEXTURE_WRAP_T,
LOCAL_GL_CLAMP_TO_EDGE);
textureInited = false;
} else {
fBindTexture(LOCAL_GL_TEXTURE_2D, aTexture);
}
nsIntRegion paintRegion;
if (!textureInited) {
paintRegion = nsIntRegion(aDstRegion.GetBounds());
} else {
paintRegion = aDstRegion;
}
nsRefPtr<gfxImageSurface> imageSurface = aSurface->GetAsImageSurface();
unsigned char* data = NULL;
if (!imageSurface ||
(imageSurface->Format() != gfxASurface::ImageFormatARGB32 &&
imageSurface->Format() != gfxASurface::ImageFormatRGB24 &&
imageSurface->Format() != gfxASurface::ImageFormatRGB16_565 &&
imageSurface->Format() != gfxASurface::ImageFormatA8)) {
// We can't get suitable pixel data for the surface, make a copy
nsIntRect bounds = aDstRegion.GetBounds();
imageSurface =
new gfxImageSurface(gfxIntSize(bounds.width, bounds.height),
gfxASurface::ImageFormatARGB32);
nsRefPtr<gfxContext> context = new gfxContext(imageSurface);
context->Translate(-gfxPoint(aSrcPoint.x, aSrcPoint.y));
context->SetSource(aSurface);
context->Paint();
data = imageSurface->Data();
NS_ASSERTION(!aPixelBuffer,
"Must be using an image compatible surface with pixel buffers!");
} else {
// If a pixel buffer is bound the data pointer parameter is relative
// to the start of the data block.
if (!aPixelBuffer) {
data = imageSurface->Data();
}
data += DataOffset(imageSurface, aSrcPoint);
}
MOZ_ASSERT(imageSurface);
imageSurface->Flush();
GLenum format;
GLenum type;
int32_t pixelSize = gfxASurface::BytePerPixelFromFormat(imageSurface->Format());
ShaderProgramType shader;
switch (imageSurface->Format()) {
case gfxASurface::ImageFormatARGB32:
format = LOCAL_GL_RGBA;
type = LOCAL_GL_UNSIGNED_BYTE;
shader = BGRALayerProgramType;
break;
case gfxASurface::ImageFormatRGB24:
// Treat RGB24 surfaces as RGBA32 except for the shader
// program used.
format = LOCAL_GL_RGBA;
type = LOCAL_GL_UNSIGNED_BYTE;
shader = BGRXLayerProgramType;
break;
case gfxASurface::ImageFormatRGB16_565:
format = LOCAL_GL_RGB;
type = LOCAL_GL_UNSIGNED_SHORT_5_6_5;
shader = RGBALayerProgramType;
break;
case gfxASurface::ImageFormatA8:
format = LOCAL_GL_LUMINANCE;
type = LOCAL_GL_UNSIGNED_BYTE;
// We don't have a specific luminance shader
shader = ShaderProgramType(0);
break;
default:
NS_ASSERTION(false, "Unhandled image surface format!");
format = 0;
type = 0;
shader = ShaderProgramType(0);
}
int32_t stride = imageSurface->Stride();
nsIntRegionRectIterator iter(paintRegion);
const nsIntRect *iterRect;
// Top left point of the region's bounding rectangle.
nsIntPoint topLeft = paintRegion.GetBounds().TopLeft();
while ((iterRect = iter.Next())) {
// The inital data pointer is at the top left point of the region's
// bounding rectangle. We need to find the offset of this rect
// within the region and adjust the data pointer accordingly.
unsigned char *rectData =
data + DataOffset(imageSurface, iterRect->TopLeft() - topLeft);
NS_ASSERTION(textureInited || (iterRect->x == 0 && iterRect->y == 0),
"Must be uploading to the origin when we don't have an existing texture");
if (textureInited && CanUploadSubTextures()) {
TexSubImage2D(LOCAL_GL_TEXTURE_2D,
0,
iterRect->x,
iterRect->y,
iterRect->width,
iterRect->height,
stride,
pixelSize,
format,
type,
rectData);
} else {
TexImage2D(LOCAL_GL_TEXTURE_2D,
0,
format,
iterRect->width,
iterRect->height,
stride,
pixelSize,
0,
format,
type,
rectData);
}
}
return shader;
}
static GLint GetAddressAlignment(ptrdiff_t aAddress)
{
if (!(aAddress & 0x7)) {
return 8;
} else if (!(aAddress & 0x3)) {
return 4;
} else if (!(aAddress & 0x1)) {
return 2;
} else {
return 1;
}
}
void
GLContext::TexImage2D(GLenum target, GLint level, GLint internalformat,
GLsizei width, GLsizei height, GLsizei stride,
GLint pixelsize, GLint border, GLenum format,
GLenum type, const GLvoid *pixels)
{
if (mIsGLES2) {
NS_ASSERTION(format == (GLenum)internalformat,
"format and internalformat not the same for glTexImage2D on GLES2");
if (!CanUploadNonPowerOfTwo()
&& (stride != width * pixelsize
|| !IsPowerOfTwo(width)
|| !IsPowerOfTwo(height))) {
// Pad out texture width and height to the next power of two
// as we don't support/want non power of two texture uploads
GLsizei paddedWidth = NextPowerOfTwo(width);
GLsizei paddedHeight = NextPowerOfTwo(height);
GLvoid* paddedPixels = new unsigned char[paddedWidth * paddedHeight * pixelsize];
// Pad out texture data to be in a POT sized buffer for uploading to
// a POT sized texture
CopyAndPadTextureData(pixels, paddedPixels, width, height,
paddedWidth, paddedHeight, stride, pixelsize);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
std::min(GetAddressAlignment((ptrdiff_t)paddedPixels),
GetAddressAlignment((ptrdiff_t)paddedWidth * pixelsize)));
fTexImage2D(target,
border,
internalformat,
paddedWidth,
paddedHeight,
border,
format,
type,
paddedPixels);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
delete[] static_cast<unsigned char*>(paddedPixels);
return;
}
if (stride == width * pixelsize) {
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
std::min(GetAddressAlignment((ptrdiff_t)pixels),
GetAddressAlignment((ptrdiff_t)stride)));
fTexImage2D(target,
border,
internalformat,
width,
height,
border,
format,
type,
pixels);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
} else {
// Use GLES-specific workarounds for GL_UNPACK_ROW_LENGTH; these are
// implemented in TexSubImage2D.
fTexImage2D(target,
border,
internalformat,
width,
height,
border,
format,
type,
NULL);
TexSubImage2D(target,
level,
0,
0,
width,
height,
stride,
pixelsize,
format,
type,
pixels);
}
} else {
// desktop GL (non-ES) path
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
std::min(GetAddressAlignment((ptrdiff_t)pixels),
GetAddressAlignment((ptrdiff_t)stride)));
int rowLength = stride/pixelsize;
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, rowLength);
fTexImage2D(target,
level,
internalformat,
width,
height,
border,
format,
type,
pixels);
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, 0);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
}
}
void
GLContext::TexSubImage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height, GLsizei stride,
GLint pixelsize, GLenum format,
GLenum type, const GLvoid* pixels)
{
if (mIsGLES2) {
if (stride == width * pixelsize) {
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
std::min(GetAddressAlignment((ptrdiff_t)pixels),
GetAddressAlignment((ptrdiff_t)stride)));
fTexSubImage2D(target,
level,
xoffset,
yoffset,
width,
height,
format,
type,
pixels);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
} else if (IsExtensionSupported(EXT_unpack_subimage)) {
TexSubImage2DWithUnpackSubimageGLES(target, level, xoffset, yoffset,
width, height, stride,
pixelsize, format, type, pixels);
} else {
TexSubImage2DWithoutUnpackSubimage(target, level, xoffset, yoffset,
width, height, stride,
pixelsize, format, type, pixels);
}
} else {
// desktop GL (non-ES) path
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
std::min(GetAddressAlignment((ptrdiff_t)pixels),
GetAddressAlignment((ptrdiff_t)stride)));
int rowLength = stride/pixelsize;
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, rowLength);
fTexSubImage2D(target,
level,
xoffset,
yoffset,
width,
height,
format,
type,
pixels);
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, 0);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
}
}
void
GLContext::TexSubImage2DWithUnpackSubimageGLES(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLsizei stride, GLint pixelsize,
GLenum format, GLenum type,
const GLvoid* pixels)
{
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
std::min(GetAddressAlignment((ptrdiff_t)pixels),
GetAddressAlignment((ptrdiff_t)stride)));
// When using GL_UNPACK_ROW_LENGTH, we need to work around a Tegra
// driver crash where the driver apparently tries to read
// (stride - width * pixelsize) bytes past the end of the last input
// row. We only upload the first height-1 rows using GL_UNPACK_ROW_LENGTH,
// and then we upload the final row separately. See bug 697990.
int rowLength = stride/pixelsize;
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, rowLength);
fTexSubImage2D(target,
level,
xoffset,
yoffset,
width,
height-1,
format,
type,
pixels);
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, 0);
fTexSubImage2D(target,
level,
xoffset,
yoffset+height-1,
width,
1,
format,
type,
(const unsigned char *)pixels+(height-1)*stride);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
}
void
GLContext::TexSubImage2DWithoutUnpackSubimage(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLsizei stride, GLint pixelsize,
GLenum format, GLenum type,
const GLvoid* pixels)
{
// Not using the whole row of texture data and GL_UNPACK_ROW_LENGTH
// isn't supported. We make a copy of the texture data we're using,
// such that we're using the whole row of data in the copy. This turns
// out to be more efficient than uploading row-by-row; see bug 698197.
unsigned char *newPixels = new unsigned char[width*height*pixelsize];
unsigned char *rowDest = newPixels;
const unsigned char *rowSource = (const unsigned char *)pixels;
for (int h = 0; h < height; h++) {
memcpy(rowDest, rowSource, width*pixelsize);
rowDest += width*pixelsize;
rowSource += stride;
}
stride = width*pixelsize;
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
std::min(GetAddressAlignment((ptrdiff_t)newPixels),
GetAddressAlignment((ptrdiff_t)stride)));
fTexSubImage2D(target,
level,
xoffset,
yoffset,
width,
height,
format,
type,
newPixels);
delete [] newPixels;
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
}
void
GLContext::RectTriangles::addRect(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
GLfloat tx0, GLfloat ty0, GLfloat tx1, GLfloat ty1,
bool flip_y /* = false */)
{
vert_coord v;
v.x = x0; v.y = y0;
vertexCoords.AppendElement(v);
v.x = x1; v.y = y0;
vertexCoords.AppendElement(v);
v.x = x0; v.y = y1;
vertexCoords.AppendElement(v);
v.x = x0; v.y = y1;
vertexCoords.AppendElement(v);
v.x = x1; v.y = y0;
vertexCoords.AppendElement(v);
v.x = x1; v.y = y1;
vertexCoords.AppendElement(v);
if (flip_y) {
tex_coord t;
t.u = tx0; t.v = ty1;
texCoords.AppendElement(t);
t.u = tx1; t.v = ty1;
texCoords.AppendElement(t);
t.u = tx0; t.v = ty0;
texCoords.AppendElement(t);
t.u = tx0; t.v = ty0;
texCoords.AppendElement(t);
t.u = tx1; t.v = ty1;
texCoords.AppendElement(t);
t.u = tx1; t.v = ty0;
texCoords.AppendElement(t);
} else {
tex_coord t;
t.u = tx0; t.v = ty0;
texCoords.AppendElement(t);
t.u = tx1; t.v = ty0;
texCoords.AppendElement(t);
t.u = tx0; t.v = ty1;
texCoords.AppendElement(t);
t.u = tx0; t.v = ty1;
texCoords.AppendElement(t);
t.u = tx1; t.v = ty0;
texCoords.AppendElement(t);
t.u = tx1; t.v = ty1;
texCoords.AppendElement(t);
}
}
static GLfloat
WrapTexCoord(GLfloat v)
{
// fmodf gives negative results for negative numbers;
// that is, fmodf(0.75, 1.0) == 0.75, but
// fmodf(-0.75, 1.0) == -0.75. For the negative case,
// the result we need is 0.25, so we add 1.0f.
if (v < 0.0f) {
return 1.0f + fmodf(v, 1.0f);
}
return fmodf(v, 1.0f);
}
void
GLContext::DecomposeIntoNoRepeatTriangles(const nsIntRect& aTexCoordRect,
const nsIntSize& aTexSize,
RectTriangles& aRects,
bool aFlipY /* = false */)
{
// normalize this
nsIntRect tcr(aTexCoordRect);
while (tcr.x >= aTexSize.width)
tcr.x -= aTexSize.width;
while (tcr.y >= aTexSize.height)
tcr.y -= aTexSize.height;
// Compute top left and bottom right tex coordinates
GLfloat tl[2] =
{ GLfloat(tcr.x) / GLfloat(aTexSize.width),
GLfloat(tcr.y) / GLfloat(aTexSize.height) };
GLfloat br[2] =
{ GLfloat(tcr.XMost()) / GLfloat(aTexSize.width),
GLfloat(tcr.YMost()) / GLfloat(aTexSize.height) };
// then check if we wrap in either the x or y axis; if we do,
// then also use fmod to figure out the "true" non-wrapping
// texture coordinates.
bool xwrap = false, ywrap = false;
if (tcr.x < 0 || tcr.x > aTexSize.width ||
tcr.XMost() < 0 || tcr.XMost() > aTexSize.width)
{
xwrap = true;
tl[0] = WrapTexCoord(tl[0]);
br[0] = WrapTexCoord(br[0]);
}
if (tcr.y < 0 || tcr.y > aTexSize.height ||
tcr.YMost() < 0 || tcr.YMost() > aTexSize.height)
{
ywrap = true;
tl[1] = WrapTexCoord(tl[1]);
br[1] = WrapTexCoord(br[1]);
}
NS_ASSERTION(tl[0] >= 0.0f && tl[0] <= 1.0f &&
tl[1] >= 0.0f && tl[1] <= 1.0f &&
br[0] >= 0.0f && br[0] <= 1.0f &&
br[1] >= 0.0f && br[1] <= 1.0f,
"Somehow generated invalid texture coordinates");
// If xwrap is false, the texture will be sampled from tl[0]
// .. br[0]. If xwrap is true, then it will be split into tl[0]
// .. 1.0, and 0.0 .. br[0]. Same for the Y axis. The
// destination rectangle is also split appropriately, according
// to the calculated xmid/ymid values.
// There isn't a 1:1 mapping between tex coords and destination coords;
// when computing midpoints, we have to take that into account. We
// need to map the texture coords, which are (in the wrap case):
// |tl->1| and |0->br| to the |0->1| range of the vertex coords. So
// we have the length (1-tl)+(br) that needs to map into 0->1.
// These are only valid if there is wrap involved, they won't be used
// otherwise.
GLfloat xlen = (1.0f - tl[0]) + br[0];
GLfloat ylen = (1.0f - tl[1]) + br[1];
NS_ASSERTION(!xwrap || xlen > 0.0f, "xlen isn't > 0, what's going on?");
NS_ASSERTION(!ywrap || ylen > 0.0f, "ylen isn't > 0, what's going on?");
NS_ASSERTION(aTexCoordRect.width <= aTexSize.width &&
aTexCoordRect.height <= aTexSize.height, "tex coord rect would cause tiling!");
if (!xwrap && !ywrap) {
aRects.addRect(0.0f, 0.0f,
1.0f, 1.0f,
tl[0], tl[1],
br[0], br[1],
aFlipY);
} else if (!xwrap && ywrap) {
GLfloat ymid = (1.0f - tl[1]) / ylen;
aRects.addRect(0.0f, 0.0f,
1.0f, ymid,
tl[0], tl[1],
br[0], 1.0f,
aFlipY);
aRects.addRect(0.0f, ymid,
1.0f, 1.0f,
tl[0], 0.0f,
br[0], br[1],
aFlipY);
} else if (xwrap && !ywrap) {
GLfloat xmid = (1.0f - tl[0]) / xlen;
aRects.addRect(0.0f, 0.0f,
xmid, 1.0f,
tl[0], tl[1],
1.0f, br[1],
aFlipY);
aRects.addRect(xmid, 0.0f,
1.0f, 1.0f,
0.0f, tl[1],
br[0], br[1],
aFlipY);
} else {
GLfloat xmid = (1.0f - tl[0]) / xlen;
GLfloat ymid = (1.0f - tl[1]) / ylen;
aRects.addRect(0.0f, 0.0f,
xmid, ymid,
tl[0], tl[1],
1.0f, 1.0f,
aFlipY);
aRects.addRect(xmid, 0.0f,
1.0f, ymid,
0.0f, tl[1],
br[0], 1.0f,
aFlipY);
aRects.addRect(0.0f, ymid,
xmid, 1.0f,
tl[0], 0.0f,
1.0f, br[1],
aFlipY);
aRects.addRect(xmid, ymid,
1.0f, 1.0f,
0.0f, 0.0f,
br[0], br[1],
aFlipY);
}
}
void
GLContext::UseBlitProgram()
{
if (mBlitProgram) {
fUseProgram(mBlitProgram);
return;
}
mBlitProgram = fCreateProgram();
GLuint shaders[2];
shaders[0] = fCreateShader(LOCAL_GL_VERTEX_SHADER);
shaders[1] = fCreateShader(LOCAL_GL_FRAGMENT_SHADER);
const char *blitVSSrc =
"attribute vec2 aVertex;"
"attribute vec2 aTexCoord;"
"varying vec2 vTexCoord;"
"void main() {"
" vTexCoord = aTexCoord;"
" gl_Position = vec4(aVertex, 0.0, 1.0);"
"}";
const char *blitFSSrc = "#ifdef GL_ES\nprecision mediump float;\n#endif\n"
"uniform sampler2D uSrcTexture;"
"varying vec2 vTexCoord;"
"void main() {"
" gl_FragColor = texture2D(uSrcTexture, vTexCoord);"
"}";
fShaderSource(shaders[0], 1, (const GLchar**) &blitVSSrc, NULL);
fShaderSource(shaders[1], 1, (const GLchar**) &blitFSSrc, NULL);
for (int i = 0; i < 2; ++i) {
GLint success, len = 0;
fCompileShader(shaders[i]);
fGetShaderiv(shaders[i], LOCAL_GL_COMPILE_STATUS, &success);
NS_ASSERTION(success, "Shader compilation failed!");
if (!success) {
nsAutoCString log;
fGetShaderiv(shaders[i], LOCAL_GL_INFO_LOG_LENGTH, (GLint*) &len);
log.SetCapacity(len);
fGetShaderInfoLog(shaders[i], len, (GLint*) &len, (char*) log.BeginWriting());
log.SetLength(len);
printf_stderr("Shader %d compilation failed:\n%s\n", log.get());
return;
}
fAttachShader(mBlitProgram, shaders[i]);
fDeleteShader(shaders[i]);
}
fBindAttribLocation(mBlitProgram, 0, "aVertex");
fBindAttribLocation(mBlitProgram, 1, "aTexCoord");
fLinkProgram(mBlitProgram);
GLint success, len = 0;
fGetProgramiv(mBlitProgram, LOCAL_GL_LINK_STATUS, &success);
NS_ASSERTION(success, "Shader linking failed!");
if (!success) {
nsAutoCString log;
fGetProgramiv(mBlitProgram, LOCAL_GL_INFO_LOG_LENGTH, (GLint*) &len);
log.SetCapacity(len);
fGetProgramInfoLog(mBlitProgram, len, (GLint*) &len, (char*) log.BeginWriting());
log.SetLength(len);
printf_stderr("Program linking failed:\n%s\n", log.get());
return;
}
fUseProgram(mBlitProgram);
fUniform1i(fGetUniformLocation(mBlitProgram, "uSrcTexture"), 0);
}
void
GLContext::SetBlitFramebufferForDestTexture(GLuint aTexture)
{
if (!mBlitFramebuffer) {
fGenFramebuffers(1, &mBlitFramebuffer);
}
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, mBlitFramebuffer);
fFramebufferTexture2D(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D,
aTexture,
0);
GLenum result = fCheckFramebufferStatus(LOCAL_GL_FRAMEBUFFER);
if (aTexture && (result != LOCAL_GL_FRAMEBUFFER_COMPLETE)) {
nsAutoCString msg;
msg.Append("Framebuffer not complete -- error 0x");
msg.AppendInt(result, 16);
// Note: if you are hitting this, it is likely that
// your texture is not texture complete -- that is, you
// allocated a texture name, but didn't actually define its
// size via a call to TexImage2D.
NS_RUNTIMEABORT(msg.get());
}
}
#ifdef DEBUG
void
GLContext::CreatedProgram(GLContext *aOrigin, GLuint aName)
{
mTrackedPrograms.AppendElement(NamedResource(aOrigin, aName));
}
void
GLContext::CreatedShader(GLContext *aOrigin, GLuint aName)
{
mTrackedShaders.AppendElement(NamedResource(aOrigin, aName));
}
void
GLContext::CreatedBuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
for (GLsizei i = 0; i < aCount; ++i) {
mTrackedBuffers.AppendElement(NamedResource(aOrigin, aNames[i]));
}
}
void
GLContext::CreatedQueries(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
for (GLsizei i = 0; i < aCount; ++i) {
mTrackedQueries.AppendElement(NamedResource(aOrigin, aNames[i]));
}
}
void
GLContext::CreatedTextures(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
for (GLsizei i = 0; i < aCount; ++i) {
mTrackedTextures.AppendElement(NamedResource(aOrigin, aNames[i]));
}
}
void
GLContext::CreatedFramebuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
for (GLsizei i = 0; i < aCount; ++i) {
mTrackedFramebuffers.AppendElement(NamedResource(aOrigin, aNames[i]));
}
}
void
GLContext::CreatedRenderbuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
for (GLsizei i = 0; i < aCount; ++i) {
mTrackedRenderbuffers.AppendElement(NamedResource(aOrigin, aNames[i]));
}
}
static void
RemoveNamesFromArray(GLContext *aOrigin, GLsizei aCount, GLuint *aNames, nsTArray<GLContext::NamedResource>& aArray)
{
for (GLsizei j = 0; j < aCount; ++j) {
GLuint name = aNames[j];
// name 0 can be ignored
if (name == 0)
continue;
for (uint32_t i = 0; i < aArray.Length(); ++i) {
if (aArray[i].name == name) {
aArray.RemoveElementAt(i);
break;
}
}
}
}
void
GLContext::DeletedProgram(GLContext *aOrigin, GLuint aName)
{
RemoveNamesFromArray(aOrigin, 1, &aName, mTrackedPrograms);
}
void
GLContext::DeletedShader(GLContext *aOrigin, GLuint aName)
{
RemoveNamesFromArray(aOrigin, 1, &aName, mTrackedShaders);
}
void
GLContext::DeletedBuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedBuffers);
}
void
GLContext::DeletedQueries(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedQueries);
}
void
GLContext::DeletedTextures(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedTextures);
}
void
GLContext::DeletedFramebuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedFramebuffers);
}
void
GLContext::DeletedRenderbuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedRenderbuffers);
}
static void
MarkContextDestroyedInArray(GLContext *aContext, nsTArray<GLContext::NamedResource>& aArray)
{
for (uint32_t i = 0; i < aArray.Length(); ++i) {
if (aArray[i].origin == aContext)
aArray[i].originDeleted = true;
}
}
void
GLContext::SharedContextDestroyed(GLContext *aChild)
{
MarkContextDestroyedInArray(aChild, mTrackedPrograms);
MarkContextDestroyedInArray(aChild, mTrackedShaders);
MarkContextDestroyedInArray(aChild, mTrackedTextures);
MarkContextDestroyedInArray(aChild, mTrackedFramebuffers);
MarkContextDestroyedInArray(aChild, mTrackedRenderbuffers);
MarkContextDestroyedInArray(aChild, mTrackedBuffers);
MarkContextDestroyedInArray(aChild, mTrackedQueries);
}
static void
ReportArrayContents(const char *title, const nsTArray<GLContext::NamedResource>& aArray)
{
if (aArray.Length() == 0)
return;
printf_stderr("%s:\n", title);
nsTArray<GLContext::NamedResource> copy(aArray);
copy.Sort();
GLContext *lastContext = NULL;
for (uint32_t i = 0; i < copy.Length(); ++i) {
if (lastContext != copy[i].origin) {
if (lastContext)
printf_stderr("\n");
printf_stderr(" [%p - %s] ", copy[i].origin, copy[i].originDeleted ? "deleted" : "live");
lastContext = copy[i].origin;
}
printf_stderr("%d ", copy[i].name);
}
printf_stderr("\n");
}
void
GLContext::ReportOutstandingNames()
{
if (!DebugMode())
return;
printf_stderr("== GLContext %p Outstanding ==\n", this);
ReportArrayContents("Outstanding Textures", mTrackedTextures);
ReportArrayContents("Outstanding Buffers", mTrackedBuffers);
ReportArrayContents("Outstanding Queries", mTrackedQueries);
ReportArrayContents("Outstanding Programs", mTrackedPrograms);
ReportArrayContents("Outstanding Shaders", mTrackedShaders);
ReportArrayContents("Outstanding Framebuffers", mTrackedFramebuffers);
ReportArrayContents("Outstanding Renderbuffers", mTrackedRenderbuffers);
}
#endif /* DEBUG */
void
GLContext::GuaranteeResolve()
{
if (mScreen) {
mScreen->AssureBlitted();
}
fFinish();
}
const gfxIntSize&
GLContext::OffscreenSize() const
{
MOZ_ASSERT(IsOffscreen());
return mScreen->Size();
}
bool
GLContext::CreateScreenBufferImpl(const gfxIntSize& size, const SurfaceCaps& caps)
{
GLScreenBuffer* newScreen = GLScreenBuffer::Create(this, size, caps);
if (!newScreen)
return false;
if (!newScreen->Resize(size)) {
delete newScreen;
return false;
}
DestroyScreenBuffer();
// This will rebind to 0 (Screen) if needed when
// it falls out of scope.
ScopedBindFramebuffer autoFB(this);
mScreen = newScreen;
return true;
}
bool
GLContext::ResizeScreenBuffer(const gfxIntSize& size)
{
if (!IsOffscreenSizeAllowed(size))
return false;
return mScreen->Resize(size);
}
void
GLContext::DestroyScreenBuffer()
{
delete mScreen;
mScreen = nullptr;
}
void
GLContext::ForceDirtyScreen()
{
ScopedBindFramebuffer autoFB(0);
BeforeGLDrawCall();
// no-op; just pretend we did something
AfterGLDrawCall();
}
void
GLContext::CleanDirtyScreen()
{
ScopedBindFramebuffer autoFB(0);
BeforeGLReadCall();
// no-op; we just want to make sure the Read FBO is updated if it needs to be
AfterGLReadCall();
}
void
GLContext::EmptyTexGarbageBin()
{
TexGarbageBin()->EmptyGarbage();
}
void
TextureGarbageBin::GLContextTeardown()
{
EmptyGarbage();
MutexAutoLock lock(mMutex);
mGL = nullptr;
}
void
TextureGarbageBin::Trash(GLuint tex)
{
MutexAutoLock lock(mMutex);
if (!mGL)
return;
mGarbageTextures.push(tex);
}
void
TextureGarbageBin::EmptyGarbage()
{
MutexAutoLock lock(mMutex);
if (!mGL)
return;
while (!mGarbageTextures.empty()) {
GLuint tex = mGarbageTextures.top();
mGarbageTextures.pop();
mGL->fDeleteTextures(1, &tex);
}
}
} /* namespace gl */
} /* namespace mozilla */