A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
cstring, converted to NSString, produce the
matching AST for it. This also required some
refactoring of the previous code. // rdar://14106083
llvm-svn: 197605
of objc_bridge_related attribute; eliminate
unnecessary diagnostics which is issued elsewhere,
fixit now produces a valid AST tree per convention.
This results in some simplification in handling of
this attribute as well. // rdar://15499111
llvm-svn: 197436
attribute in sema and issuing a variety of diagnostics lazily
for misuse of this attribute (and what to do) when converting
from CF types to ObjectiveC types (and vice versa).
// rdar://15499111
llvm-svn: 196629
For an init capture, process the initialization expression
right away. For lambda init-captures such as the following:
const int x = 10;
auto L = [i = x+1](int a) {
return [j = x+2,
&k = x](char b) { };
};
keep in mind that each lambda init-capture has to have:
- its initialization expression executed in the context
of the enclosing/parent decl-context.
- but the variable itself has to be 'injected' into the
decl-context of its lambda's call-operator (which has
not yet been created).
Each init-expression is a full-expression that has to get
Sema-analyzed (for capturing etc.) before its lambda's
call-operator's decl-context, scope & scopeinfo are pushed on their
respective stacks. Thus if any variable is odr-used in the init-capture
it will correctly get captured in the enclosing lambda, if one exists.
The init-variables above are created later once the lambdascope and
call-operators decl-context is pushed onto its respective stack.
Since the lambda init-capture's initializer expression occurs in the
context of the enclosing function or lambda, therefore we can not wait
till a lambda scope has been pushed on before deciding whether the
variable needs to be captured. We also need to process all
lvalue-to-rvalue conversions and discarded-value conversions,
so that we can avoid capturing certain constant variables.
For e.g.,
void test() {
const int x = 10;
auto L = [&z = x](char a) { <-- don't capture by the current lambda
return [y = x](int i) { <-- don't capture by enclosing lambda
return y;
}
};
If x was not const, the second use would require 'L' to capture, and
that would be an error.
Make sure TranformLambdaExpr is also aware of this.
Patch approved by Richard (Thanks!!)
http://llvm-reviews.chandlerc.com/D2092
llvm-svn: 196454
substitution failure, allow a flag to be set on the Diagnostic object,
to mark it as 'causes substitution failure'.
Refactor Diagnostic.td and the tablegen to use an enum for SFINAE behavior
rather than a bunch of flags.
llvm-svn: 194444
an additional conversion (other than a qualification conversion) would be
required after the explicit conversion.
Conversely, do allow explicit conversion functions to be used when initializing
a temporary for a reference binding in direct-list-initialization.
llvm-svn: 191150
rather than a post-processing action, so we can support inserting these checks
at stages other than the end of the initialization. No functionality change
intended.
llvm-svn: 191146
AssignConvertType::IncompatibleVectors means the two types are in fact
compatible. :)
No testcase; I don't think the extra init list has any actual visible effect
other than making the resulting AST dump look a bit strange.
llvm-svn: 190845
passing a retainable object arg to a CF audited function
expecting a CF object type. Issue a normal type mismatch
diagnostic. This is wip // rdar://14569171
llvm-svn: 187532
return false;
in a function returning a pointer. 'false' was a null pointer constant in C++98
but is not in C++11. Punch a very small hole in the initialization rules in
C++11 mode to allow this specific case in system headers.
llvm-svn: 184395
the result of a cast-to-reference-type lifetime-extends the object to which the
reference inside the cast binds.
This requires us to look for subobject adjustments on both the inside and the
outside of the MaterializeTemporaryExpr when looking for a temporary to
lifetime-extend (which we also need for core issue 616, and possibly 1213).
llvm-svn: 184024
Introduce CXXStdInitializerListExpr node, representing the implicit
construction of a std::initializer_list<T> object from its underlying array.
The AST representation of such an expression goes from an InitListExpr with a
flag set, to a CXXStdInitializerListExpr containing a MaterializeTemporaryExpr
containing an InitListExpr (possibly wrapped in a CXXBindTemporaryExpr).
This more detailed representation has several advantages, the most important of
which is that the new MaterializeTemporaryExpr allows us to directly model
lifetime extension of the underlying temporary array. Using that, this patch
*drastically* simplifies the IR generation of this construct, provides IR
generation support for nested global initializer_list objects, fixes several
bugs where the destructors for the underlying array would accidentally not get
invoked, and provides constant expression evaluation support for
std::initializer_list objects.
llvm-svn: 183872
CXXCtorInitializers to the point where we perform the questionable lifetime
extension. This exposed a selection of false negatives in the warning.
llvm-svn: 183869
were lacking ExprWithCleanups nodes in some cases where the new approach to
lifetime extension needed them).
Original commit message:
Rework IR emission for lifetime-extended temporaries. Instead of trying to walk
into the expression and dig out a single lifetime-extended entity and manually
pull its cleanup outside the expression, instead keep a list of the cleanups
which we'll need to emit when we get to the end of the full-expression. Also
emit those cleanups early, as EH-only cleanups, to cover the case that the
full-expression does not terminate normally. This allows IR generation to
properly model temporary lifetime when multiple temporaries are extended by the
same declaration.
We have a pre-existing bug where an exception thrown from a temporary's
destructor does not clean up lifetime-extended temporaries created in the same
expression and extended to automatic storage duration; that is not fixed by
this patch.
llvm-svn: 183859
with a string. This case is sort of tricky because we can't modify the
StringLiteral used to represent such initializers.
We are forced to decompose the string into individual characters.
Fixes <rdar://problem/10465114>.
llvm-svn: 183791