Commit r286294 introduced support for inaccessiblememonly and
inaccessiblemem_or_argmemonly attributes to BasicAA, which we need to
support to avoid undefined behavior. This change just refuses all calls
which are annotated with these attributes, which is conservatively correct.
In the future we may consider to model and support such function calls
in Polly.
llvm-svn: 286771
The validity of a branch condition must be verified at the location of the
branch (the branch instruction), not the location of the icmp that is
used in the branch instruction. When verifying at the wrong location, we
may accept an icmp that is defined within a loop which itself dominates, but
does not contain the branch instruction. Such loops cannot be modeled as
we only introduce domain dimensions for surrounding loops. To address this
problem we change the scop detection to evaluate and verify SCEV expressions at
the right location.
This issue has been around since at least r179148 "scop detection: properly
instantiate SCEVs to the place where they are used", where we explicitly
set the scope to the wrong location. Before this commit the scope
was not explicitly set, which probably also resulted in the scope around the
ICmp to be choosen.
This resolves http://llvm.org/PR30989
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286769
Assumptions can either be added for a given basic block, in which case the set
describing the assumptions is expected to match the dimensions of its domain.
In case no basic block is provided a parameter-only set is expected to describe
the assumption.
The piecewise expressions that are generated by the SCEVAffinator sometimes
have a zero-dimensional domain (e.g., [p] -> { [] : p <= -129 or p >= 128 }),
which looks similar to a parameter-only domain, but is still a set domain.
This change adds an assert that checks that we always pass parameter domains to
addAssumptions if BB is empty to make mismatches here fail early.
We also change visitTruncExpr to always convert to parameter sets, if BB is
null. This change resolves http://llvm.org/PR30941
Another alternative to this change would have been to inspect all code to make
sure we directly generate in the SCEV affinator parameter sets in case of empty
domains. However, this would likely complicate the code which combines parameter
and non-parameter domains when constructing a statement domain. We might still
consider doing this at some point, but as this likely requires several non-local
changes this should probably be done as a separate refactoring.
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286444
Providing the context to the ast generator allows for additional simplifcations
and -- more importantly -- allows to generate loops with only partially bounded
domains, assuming the domains are bounded for all parameter configurations
that are valid as defined by the context.
This change fixes the crash reported in http://llvm.org/PR30956
The original reason why we did not include the context when generating an
AST was that CLooG and later isl used to sometimes transfer some of the
constraints that bound the size of parameters from the context into the
generated AST. This resulted in operations with very large constants, which
sometimes introduced problematic integer overflows. The latest versions of
the isl AST generator are careful to not introduce such constants.
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286442
When extracting constant expressions out of SCEVs, new parameters may be
introduced, which have not been registered before. This change scans
SCEV expressions after constant extraction again to make sure newly
introduced parameters are registered.
We may for example extract the constant '8' from the expression '((8 * ((%a *
%b) + %c)) + (-8 * %a))' and obtain the expression '(((-1 + %b) * %a) + %c)'.
The new expression has a new parameter '(-1 + %b) * %a)', which was not
registered before, but must be registered to not crash.
This closes http://llvm.org/PR30953
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286430
In r248701 "Allow switch instructions in SCoPs" support for switch statements
has been introduced, but support for switch statements in loop latches was
incomplete. This change completely disables switch statements in loop latches.
The original commit changed addLoopBoundsToHeaderDomain to support non-branch
terminator instructions, but this change was incorrect: it added a check for
BI != null to the if-branch of a condition, but BI was used in the else branch
es well. As a result, when a non-branch terminator instruction is encounted a
nullptr dereference is triggered. Due to missing test coverage, this bug was
overlooked.
r249273 "[FIX] Approximate non-affine loops correctly" added code to disallow
switch statements for non-affine loops, if they appear in either a loop latch
or a loop exit. We adapt this code to now prohibit switch statements in
loop latches even if the control condition is affine.
We could possibly add support for switch statements in loop latches, but such
support should be evaluated and tested separately.
This fixes llvm.org/PR30952
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286426
Add asserts that verify that the memory accesses of a new copy statement
are defined for all domain instances the copy statement is defined for.
llvm-svn: 286047
This makes polly generate a CFG which is closer to what we want
in LLVM IR, with a loop preheader for the original loop. This is
just a cleanup, but it exposes some fragile assumptions.
I'm not completely happy with the changes related to expandCodeFor;
RTCBB->getTerminator() is basically a random insertion point which
happens to work due to the way we generate runtime checks. I'm not
sure what the right answer looks like, though.
Differential Revision: https://reviews.llvm.org/D26053
llvm-svn: 285864
We don't actually check whether a MemoryAccess is affine in very many
places, but one important one is in checks for aliasing.
Differential Revision: https://reviews.llvm.org/D25706
llvm-svn: 285746
When adding an llvm.memcpy instruction to AliasSetTracker, it uses the raw
source and target pointers which preserve bitcasts.
MemAccInst::getPointerOperand() also returns the raw target pointers, but
Scop::buildAliasGroups() did not for the source pointer. This lead to mismatches
between AliasSetTracker and ScopInfo on which pointer to use.
Fixed by also using raw pointers in Scop::buildAliasGroups().
llvm-svn: 285071
Integer math in LLVM IR is modular. Integer math in isl is
arbitrary-precision. Modeling LLVM IR math correctly in isl requires
either adding assumptions that math doesn't actually overflow, or
explicitly wrapping the math. However, expressions with the "nsw" flag
are special; we can pretend they're arbitrary-precision because it's
undefined behavior if the result wraps. SCEV expressions based on IR
instructions with an nsw flag also carry an nsw flag (roughly; actually,
the real rule is a bit more complicated, but the details don't matter
here).
Before this patch, SCEV flags were also overloaded with an additional
function: the ZExt code was mutating SCEV expressions as a hack to
indicate to checkForWrapping that we don't need to add assumptions to
the operand of a ZExt; it'll add explicit wrapping itself. This kind of
works... the problem is that if anything else ever touches that SCEV
expression, it'll get confused by the incorrect flags.
Instead, with this patch, we make the decision about whether to
explicitly wrap the math a bit earlier, basing the decision purely on
the SCEV expression itself, and not its users.
Differential Revision: https://reviews.llvm.org/D25287
llvm-svn: 284848
Summary: Otherwise the lack of an iteration order results in non-determinism in codegen.
Reviewers: _jdoerfert, zinob, grosser
Tags: #polly
Differential Revision: https://reviews.llvm.org/D25863
llvm-svn: 284845
Apply the __attribute__((unused)) before the function to unambiguously apply to
the function declaration.
Add more casts-to-void to mark return values unused as intended.
Contributed-by: Andy Gibbs <andyg1001@hotmail.co.uk>
llvm-svn: 284718
Summary: Iterating over SeenBlocks which is a SmallPtrSet results in non-determinism in codegen
Reviewers: jdoerfert, zinob, grosser
Tags: #polly
Differential Revision: https://reviews.llvm.org/D25778
llvm-svn: 284622
Under some conditions MK_Value read accessed where converted to MK_ExitPHI read
accessed. This is unexpected because MK_ExitPHI read accesses are implicit after
the scop execution. This behaviour was introduced in r265261, which fixed a
failed assertion/crash in CodeGen.
Instead, we fix this failure in CodeGen itself. createExitPHINodeMerges(),
despite its name, also handles accesses of kind MK_Value, only to skip them
because they access values that are usually not PHI nodes in the SCoP region's
exit block. Except in the situation observed in r265261.
Do not convert value accessed to ExitPHI accesses and do not handle
value accesses like ExitPHI accessed in CodeGen anymore.
llvm-svn: 284023
ISL tries to simplify the polyhedral operations before printing its objects.
This increases the operations counter and therefore can contribute to hitting
the operations limit. Therefore the result could be different when -debug output
is enabled, making debugging harder.
llvm-svn: 283745
IslMaxOperationsGuard defines a scope where ISL may abort operations because if
it takes too many operations. Replace the call to the raw ISL interface by a
use of the guard.
IslMaxOperationsGuard provides a uniform way to define a maximal computation
time for a code region in C++ using RAII.
llvm-svn: 283744
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:
va_start(ValueArgs, Desc);
with Desc being a StringRef.
Differential Revision: https://reviews.llvm.org/D25342
llvm-svn: 283671
Handle MSVC, ISL and PPCG in one place. The only functional change is that
warnings are also disabled for MSVC compiling PPCG (Which currently fails
anyway).
llvm-svn: 283547
Folders in Visual Studio solutions help organize the build artifacts from all
LLVM projects. There is a folder to keep Polly-built files in.
llvm-svn: 283546
Running isl tests is important to gain confidence that the isl build we created
works as expected. Besides the actual isl tests, there are also isl AST
generation tests shipped with isl. This change only adds support for the isl
unit tests. AST generation test support is left for a later commit.
There is a choice to run tests directly through the build system or in the
context of lit. We choose to run tests as part of lit to as this allows us to
easily set environment variables, print output only on error and generally run
the tests directly from the lit command.
Reviewers: brad.king, Meinersbur
Subscribers: modocache, brad.king, pollydev, beanz, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D25155
llvm-svn: 283245
With this option one can disable the heuristic that assumes that statements with
a scalar write access cannot be profitably optimized. Such a statement instances
necessarily have WAW-dependences to itself. With DeLICM scalar accesses can be
changed to array accesses, which can avoid these WAW-dependence.
llvm-svn: 283233
ScopArrayInfo used to determine base pointer origins by looking up whether the
base pointer is a load. The "base pointer" for scalar accesses is the
llvm::Value being accessed. This is only a symbolic base pointer, it
represents the alloca variable (.s2a or .phiops) generated for it at code
generation.
This patch disables determining base pointer origin for scalars.
A test case where this caused a crash will be added in the next commit. In that
test SAI tried to get the origin base pointer that was only declared later,
therefore not existing. This is probably only possible for scalars used in
PHINode incoming blocks.
llvm-svn: 283232
Currently Polly cannot generate code for index expressions if the base pointer
is computed within the scop. The base pointer must be generated as well, but
there is no code that triggers that.
Add an assertion to detect when this would occur and miscompile. The IR verifier
should catch it as well.
llvm-svn: 282893
gcc 5.4 insists on template specialization to be in a namespace polly { ... }
block, instead of being prefixed with 'polly::'. Error message:
root/src/llvm/tools/polly/lib/Support/GICHelper.cpp:203:54: error: specialization of ‘template<class T> void polly::IslPtr<T>::dump() const’ in different namespace [-fpermissive]
template <> void polly::IslPtr<isl_##TYPE>::dump() const { \
^
msvc14 and clang 3.8 did not complain.
llvm-svn: 282874
The dump() methods can be called from a debugger instead of e.g.
isl_*_dump(Var.Obj)
where Var is a variable of type IslPtr/NonowningIslPtr. To ensure that the
existence of the function pointers do not depdend on whether the methods are
used somwhere, they are declared with external linkage.
llvm-svn: 282870
generateScalarLoad() and generateScalarStore() are used for explicit (MK_Array)
memory accesses, therefore the method names were misleading. The names also
were similar to generateScalarLoads() and generateScalarStores() (plural forms)
which indeed handle scalar accesses. Presumbly, they were originally named to
contrast VectorBlockGenerator::generateLoad().
Rename the two methods to generateArrayLoad(),
respectively generateArrayStore().
llvm-svn: 282861
The code generator always adds unconditional LoadInst and StoreInst, hence the
MemoryAccess must be defined over all statement instances.
llvm-svn: 282853
Summary:
Both `canUseISLTripCount()` and `addOverApproximatedRegion()` contained checks
to reject endless loops which are now removed and replaced by a single check
in `isValidLoop()`.
For reporting such loops the `ReportLoopOverlapWithNonAffineSubRegion` is
renamed to `ReportLoopHasNoExit`. The test case
`ReportLoopOverlapWithNonAffineSubRegion.ll` is adapted and renamed as well.
The schedule generation in `buildSchedule()` is based on the following
assumption:
Given some block B that is contained in a loop L and a SESE region R,
we assume that L is contained in R or the other way around.
However, this assumption is broken in the presence of endless loops that are
nested inside other loops. Therefore, in order to prevent erroneous behavior
in `buildSchedule()`, r265280 introduced a corresponding check in
`canUseISLTripCount()` to reject endless loops. Unfortunately, it was possible
to bypass this check with -polly-allow-nonaffine-loops which was fixed by adding
another check to reject endless loops in `allowOverApproximatedRegion()` in
r273905. Hence there existed two separate locations that handled this case.
Thank you Johannes Doerfert for helping to provide the above background
information.
Reviewers: Meinersbur, grosser
Subscribers: _jdoerfert, pollydev
Differential Revision: https://reviews.llvm.org/D24560
Contributed-by: Matthias Reisinger <d412vv1n@gmail.com>
llvm-svn: 281987
In case sequential kernels are found deeper in the loop tree than any parallel
kernel, the overall scop is probably mostly sequential. Hence, run it on the
CPU.
llvm-svn: 281849
Offloading to a GPU is only beneficial if there is a sufficient amount of
compute that can be accelerated. Many kernels just have a very small number
of dynamic compute, which means GPU acceleration is not beneficial. We
compute at run-time an approximation of how many dynamic instructions will be
executed and fall back to CPU code in case this number is not sufficiently
large. To keep the run-time checking code simple, we over-approximate the
number of instructions executed in each statement by computing the volume of
the rectangular hull of its iteration space.
llvm-svn: 281848
We may generate GPU kernels that store into scalars in case we run some
sequential code on the GPU because the remaining data is expected to already be
on the GPU. For these kernels it is important to not keep the scalar values
in thread-local registers, but to store them back to the corresponding device
memory objects that backs them up.
We currently only store scalars back at the end of a kernel. This is only
correct if precisely one thread is executed. In case more than one thread may
be run, we currently invalidate the scop. To support such cases correctly,
we would need to always load and store back from a corresponding global
memory slot instead of a thread-local alloca slot.
llvm-svn: 281838
Our alias checks precisely check that the minimal and maximal accessed elements
do not overlap in a kernel. Hence, we must ensure that our host <-> device
transfers do not touch additional memory locations that are not covered in
the alias check. To ensure this, we make sure that the data we copy for a
given array is only the data from the smallest element accessed to the largest
element accessed.
We also adjust the size of the array according to the offset at which the array
is actually accessed.
An interesting result of this is: In case array are accessed with negative
subscripts ,e.g., A[-100], we automatically allocate and transfer _more_ data to
cover the full array. This is important as such code indeed exists in the wild.
llvm-svn: 281611
This is the fourth patch to apply the BLIS matmul optimization pattern on matmul
kernels (http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus two
packing routines. The macro-kernel is implemented in terms of two additional
loops around a micro-kernel. The micro-kernel is a loop around a rank-1
(i.e., outer product) update. In this change we perform copying to created
arrays, which is the last step to implement the packing transformation.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23260
llvm-svn: 281441
This line makes BUILD_SHARED_LIBS=ON work for Polly-ACC. Without it, ld
complains about missing isl symbols when constructing the shared library.
llvm-svn: 281396
The alias to the array element is read-only and a primitive type (pointer),
therefore use the value directly instead of a reference to it.
llvm-svn: 281311
The flag -fvisibility=hidden flag was used for the integrated Integer
Set Library (and PPCG) to keep their definitions local to Polly. The
motivation was the be loaded into a DragonEgg-powered GCC, where GCC
might itself use ISL for its Graphite extension. The symbols of Polly's
ISL and GCC's ISL would clash.
The DragonEgg project is not actively developed anymore, but Polly's
unittests need to call ISL functions to set up a testing environment.
Unfortunately, the -fvisibility=hidden flag means that the ISL symbols
are not available to the gtest executable as it resides outside of
libPolly when linked dynamically. Currently, CMake links a second copy
of ISL into the unittests which leads to subtle bugs. What got observed
is that two isl_ids for isl_id_none exist, one for each library
instance. Because isl_id's are compared by address, isl_id_none could
happen to be different from isl_id_none, depending on which library
instance set the address and does the comparison.
Also remove the FORCE_STATIC flag which was introduced to keep the ISL
symbols visible inside the same libPolly shared object, even when build
with BUILD_SHARED_LIBS.
Differential Revision: https://reviews.llvm.org/D24460
llvm-svn: 281242
We do not need the size of the outermost dimension in most cases, but if we
allocate memory for newly created arrays, that size is needed.
Reviewed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: https://reviews.llvm.org/D23991
llvm-svn: 281234
Instead of aborting, we now bail out gracefully in case the kernel IR we
generate is invalid. This can currently happen in case the SCoP stores
pointer values, which we model as arrays, as data values into other arrays. In
this case, the original pointer value is not available on the device and can
consequently not be stored. As detecting this ahead of time is not so easy, we
detect these situations after the invalid IR has been generated and bail out.
llvm-svn: 281193
If these arrays have never been accessed we failed to derive an upper bound
of the accesses and consequently a size for the outermost dimension. We
now explicitly check for empty access sets and then just use zero as size
for the outermost dimension.
llvm-svn: 281165
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
... to preserve reference counting logic.
In practice the missing assignment would not have caused any issues. We still
fix it as the code is wrong and it also causes noise in the clang static
analysis runs.
llvm-svn: 280946
When running the clang static analyser to check for memory issues, this code
originally showed a double free, as the analyser was unable to understand that
isl_set_free always returns NULL and consequently later uses of the isl object
we just freed will never be reached. Without this knowledge, the analyser has
to issue a warning.
We refactor the code to make it clear that for empty maps the current loop
iteration is aborted.
llvm-svn: 280940
When running the clang static analyser to check for memory issues, this code
originally showed a double free, as the analyser was unable to understand that
isl_union_map_free always returns NULL and consequently later uses of the isl
object we just freed will never be reached. Without this knowledge, the analyser
has to issue a warning.
We refactor the code to make it clear that for empty maps the current loop
iteration is aborted.
llvm-svn: 280938
Disable some Visual C++ warnings on ISL. These are not reported by GCC/Clang in
the ISL build system. We do not intend to fix them in the Polly in-tree copy,
hence disable these warnings.
llvm-svn: 280811
... but instead rely on the assumptions that we derive for load/store
instructions.
Before we were able to delinearize arrays, we used GEP pointer instructions
to derive information about the likely range of induction variables, which
gave us more freedom during loop scheduling. Today, this is not needed
any more as we delinearize multi-dimensional memory accesses and as part
of this process also "assume" that all accesses to these arrays remain
inbounds. The old derive-assumptions-from-GEP code has consequently become
mostly redundant. We drop it both to clean up our code, but also to improve
compile time. This change reduces the scop construction time for 3mm in
no-asserts mode on my machine from 48 to 37 ms.
llvm-svn: 280601
Without reductions we do not need a flat union_map schedule describing
the computation we want to perform, but can work purely on the schedule
tree. This reduces the dependence computation and scheduling time from 33ms
to 25ms. Another 30% reduction.
llvm-svn: 280558
In case we do not compute reduction dependences or dependences that are more
fine-grained than statement level dependences, we can avoid the corresponding
part of the dependence analysis all together. For the 3mm benchmark, this
reduces scheduling + dependence analysis time from 62ms to 33ms for a no-asserts
build. The majority of the compile time is anyhow spent in the LLVM backends,
when doing code generation. Nevertheless, there is no need to waste compile time
either.
llvm-svn: 280557
We replace the options
-polly-code-generator=none
=isl
with the options
-polly-code-generation=none
=ast
=full
This allows us to measure the overhead of Polly itself, versus the compile
time increases due to us generating more IR and consequently the LLVM backends
spending more time on this IR.
We also use this opportunity to rename the option. The original name was
introduced at a point where we still had two code generators. CLooG and the
isl AST generator. Since we only have one AST generator left, there is no need
to distinguish between 'isl' and something else. However, being able to disable
code generation all together has been shown useful for debugging. Hence, we
rename and extend this option to make it a good fit for its new use case.
llvm-svn: 280554
LLVM's coding guideline suggests to not use @brief for one-sentence doxygen
comments to improve readability. Switch this once and for all to ensure people
do not copy @brief comments from other parts of Polly, when writing new code.
llvm-svn: 280468
Change the code around setNewAccessRelation to allow to use a an existing array
element for memory instead of an ad-hoc alloca. This facility will be used for
DeLICM/DeGVN to convert scalar dependencies into regular ones.
The changes necessary include:
- Make the code generator use the implicit locations instead of the alloca ones.
- A test case
- Make the JScop importer accept changes of scalar accesses for that test case.
- Adapt the MemoryAccess interface to the fact that the MemoryKind can change.
They are named (get|is)OriginalXXX() to get the status of the memory access
before any change by setNewAccessRelation() (some properties such as
getIncoming() do not change even if the kind is changed and are still
required). To get the modified properties, there is (get|is)LatestXXX(). The
old accessors without Original|Latest become synonyms of the
(get|is)OriginalXXX() to not make functional changes in unrelated code.
Differential Revision: https://reviews.llvm.org/D23962
llvm-svn: 280408
There are some constraints on maps that can be access relations. In builds with assertions enabled, verify
- The access domain is the same space as the statement's domain (modulo parameters).
- Whether an access is defined for every instance of the statement. (codegen does not yet support partial access relations)
- Whether the access range links to an array, represented by a ScopArrayInfo.
- The number of access dimensions equals the dimensions of the array.
- The array is not an indirect access. (also not supported by codegen)
Differential Revision: https://reviews.llvm.org/D23916
llvm-svn: 280404
The recent unit tests we gained made clear that the semantics of
isl_valFromAPInt are not clear, due to missing documentation. In this change we
document both the calling interface as well as the implementation of
isl_valFromAPInt.
We also make the implementation easier to read by removing integer wrappig in
abs() when passing in the minimal integer value for a given bitwidth. Even
though wrapping and subsequently interpreting the result as unsigned value gives
the correct result, this is far from obvious. Instead, we explicitly add one
more bit to the input type to ensure that abs will never wrap. This change did
not uncover a bug in the old implementation, but was introduced to increase
readability.
We update the tests to add a test case for this special case and use this
opportunity to also test a number larger than 64 bit. Finally, we order the
arguments of the test cases to make sure the expected output is first. This
helps readability in case of failing test cases as gtest assumes the first value
to be the exected value.
Reviewed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: https://reviews.llvm.org/D23917
llvm-svn: 279815
The recent unit tests we gained made clear that the semantics of APIntFromVal
are not clear, due to missing documentation. In this change we document both
the calling interface as well as the implementation of APIntFromVal. We also
make the implementation easier to read by removing the use of magic numbers.
Finally, we add tests to check the bitwidth of the created values as well as
the correct modeling of very large numbers.
Reviewed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: https://reviews.llvm.org/D23910
llvm-svn: 279813
Dump polyhedral descriptions of Scops optimized with the isl scheduling
optimizer and the set of post-scheduling transformations applied
on the schedule tree to be able to check the work of the IslScheduleOptimizer
pass at the polyhedral level.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23740
llvm-svn: 279395
getAccessFunctions() is dead code and the 'BB' argument
of getOrCreateAccessFunctions() is not used. This patch deletes
getAccessFunctions and transforms AccFuncMap into
a std::vector<std::unique_ptr<MemoryAccess>> AccessFunctions.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23759
llvm-svn: 279394
The existing code would add the operands in the wrong order, and eventually
crash because the SCEV expression doesn't exactly match the parameter SCEV
expression in SCEVAffinator::visit. (SCEV doesn't sort the operands to
getMulExpr in general.)
Differential Revision: https://reviews.llvm.org/D23592
llvm-svn: 279087
We already invalidated a couple of critical values earlier on, but we now
invalidate all instructions contained in a scop after the scop has been code
generated. This is necessary as later scops may otherwise obtain SCEV
expressions that reference values in the earlier scop that before dominated
the later scop, but which had been moved into the conditional branch and
consequently do not dominate the later scop any more. If these very values are
then used during code generation of the later scop, we generate used that are
dominated by the values they use.
This fixes: http://llvm.org/PR28984
llvm-svn: 279047
Normally this is ensured when adding PHI nodes, but as PHI node dependences
do not need to be added in case all incoming blocks are within the same
non-affine region, this was missed.
This corrects an issue visible in LNT's sqlite3, in case invariant load hoisting
was disabled.
llvm-svn: 278792
With invariant load hoisting enabled the LLVM buildbots currently show some
miscompiles, which are possibly caused by invariant load hosting itself.
Confirming and fixing this requires a more in-depth analysis. To meanwhile get
back green buildbots that allow us to observe other regressions, we disable
invariant code hoisting temporarily. The relevant bug is tracked at:
http://llvm.org/PR28985
llvm-svn: 278681
This is the third patch to apply the BLIS matmul optimization pattern on matmul
kernels (http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus two
packing routines. The macro-kernel is implemented in terms of two additional
loops around a micro-kernel. The micro-kernel is a loop around a rank-1
(i.e., outer product) update. In this change we perform replacement of
the access relations and create empty arrays, which are steps to implement
the packing transformation. In subsequent changes we will implement copying
to created arrays.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D22187
llvm-svn: 278666
To do so we change the way array exents are computed. Instead of the precise
set of memory locations accessed, we now compute the extent as the range between
minimal and maximal address in the first dimension and the full extent defined
by the sizes of the inner array dimensions.
We also move the computation of the may_persist region after the construction
of the arrays, as it relies on array information. Without arrays being
constructed no useful information is computed at all.
llvm-svn: 278212
Ensure the right scalar allocations are used as the host location of data
transfers. For the device code, we clear the allocation cache before device
code generation to be able to generate new device-specific allocation and
we need to make sure to add back the old host allocations as soon as the
device code generation is finished.
llvm-svn: 278126
This increases the readability of the IR and also clarifies that the GPU
inititialization is executed _after_ the scalar initialization which needs
to before the code of the transformed scop is executed.
Besides increased readability, the IR should not change. Specifically, I
do not expect any changes in program semantics due to this patch.
llvm-svn: 278125
In case some code -- not guarded by control flow -- would be emitted directly in
the start block, it may happen that this code would use uninitalized scalar
values if the scalar initialization is only emitted at the end of the start
block. This is not a problem today in normal Polly, as all statements are
emitted in their own basic blocks, but Polly-ACC emits host-to-device copy
statements into the start block.
Additional Polly-ACC test coverage will be added in subsequent changes that
improve the handling of PHI nodes in Polly-ACC.
llvm-svn: 278124
After having generated the code for a ScopStmt, we run a simple dead-code
elimination that drops all instructions that are known to be and remain unused.
Until this change, we only considered instructions for dead-code elimination, if
they have a corresponding instruction in the original BB that belongs to
ScopStmt. However, when generating code we do not only copy code from the BB
belonging to a ScopStmt, but also generate code for operands referenced from BB.
After this change, we now also considers code for dead code elimination, which
does not have a corresponding instruction in BB.
This fixes a bug in Polly-ACC where such dead-code referenced CPU code from
within a GPU kernel, which is possible as we do not guarantee that all variables
that are used in known-dead-code are moved to the GPU.
llvm-svn: 278103
The function expandRegion() frees Region* objects again when it determines that
these are not valid SCoPs. However, the DetectionContext added to the
DetectionContextMap still holds a reference. The validity is checked using the
ValidRegions lookup table. When a new Region is added to that list, it might
share the same address, such that the DetectionContext contains two
Region* associations that are in ValidRegions, but that are unrelated and of
which one has already been free.
Also remove the DetectionContext when not a valid expansion.
llvm-svn: 278062
When adding code that avoids to pass values used in isl expressions and
LLVM instructions twice, we forgot to make single variable passed to the
kernel available in the ValueMap that makes it usable for instructions that
are not replaced with isl ast expressions. This change adds the variable
that is passed to the kernel to the ValueMap to ensure it is available
for such use cases as well.
llvm-svn: 278039
There is no need to reset the position of the builder, as we can just continue
to insert code at the current position of the IRBuilder, which happens to
be precisely the location we reset the builder to.
llvm-svn: 278014
... instead of adding instructions at the end of the basic block the builder
is currently at. This makes it easier to reason about where IR is generated,
as with the IRBuilder there is just a single location that specificies where
IR is generated.
llvm-svn: 278013
The map is iterated over when generating the values escaping the SCoP. The
indeterministic iteration order of DenseMap causes the output IR to change at
every compilation, adding noise to comparisons.
Replace DenseMap by a MapVector to ensure the same iteration order at every
compilation.
llvm-svn: 277832
When entering the dependence computation and the max_operations is set, the
operations counter may have already exceeded the counter, thus aborting any ISL
computation from the start. The counter is reset at the end of the dependence
calculation such that a follow-up recomputation might succeed, ie. the success
of the first dependence calculation depends on unrelated ISL operations that
happened before, giving it a disadvantage to the following calculations.
This patch resets the operations counter at the beginning of the dependence
recalculation to not depend on previous actions. Otherwise additional
preprocessing of the Scop that aims to improve its schedulability (eg. DeLICM)
do have the effect that DependenceInfo and hence the scheduling fail more
likely, contraproductive to the goal of said preprocessing.
llvm-svn: 277810
Before this commit we generated the array type in reverse order and we also
added the outermost dimension size to the new array declaration, which is
incorrect as Polly additionally assumed an additional unsized outermost
dimension, such that we had an off-by-one error in the linearization of access
expressions.
llvm-svn: 277802
These annotations ensure that the NVIDIA PTX assembler limits the number of
registers used such that we can be certain the resulting kernel can be executed
for the number of threads in a thread block that we are planning to use.
llvm-svn: 277799
Pass the content of scalar array references to the alloca on the kernel side
and do not pass them additional as normal LLVM scalar value.
llvm-svn: 277699
Otherwise, we would try to re-optimize them with Polly-ACC and possibly even
generate kernels that try to offload themselves, which does not work as the
GPURuntime is not available on the accelerator and also does not make any
sense.
llvm-svn: 277589
Extend the jscop interface to allow the user to export arrays. It is required
that already existing arrays of the list of arrays correspond to arrays
of the SCoP. Each array that is appended to the list will be newly created.
Furthermore, we allow the user to modify access expressions to reference
any array in case it has the same element type.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D22828
llvm-svn: 277263
Before this change we used the array index, which would result in us accessing
the parameter array out-of-bounds. This bug was visible for test cases where not
all arrays in a scop are passed to a given kernel.
llvm-svn: 276961
Adding a new pass PolyhedralInfo. This pass will be the interface to Polly.
Initially, we will provide the following interface:
- #IsParallel(Loop *L) - return a bool depending on whether the loop is
parallel or not for the given program order.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D21486
llvm-svn: 276637
Also factor out getArraySize() to avoid code dupliciation and reorder some
function arguments to indicate the direction into which data is transferred.
llvm-svn: 276636
At the beginning of each SCoP, we allocate device arrays for all arrays
used on the GPU and we free such arrays after the SCoP has been executed.
llvm-svn: 276635
Do not process SCoPs with infeasible runtime context in the new
ScopInfoWrapperPass. Do not compute dependences for such SCoPs in the new
DependenceInfoWrapperPass.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D22402
llvm-svn: 276631
This is the second patch to apply the BLIS matmul optimization pattern
on matmul kernels
(http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus
two packing routines. The macro-kernel is implemented in terms
of two additional loops around a micro-kernel. The micro-kernel
is a loop around a rank-1 (i.e., outer product) update. In this change
we create the BLIS macro-kernel by applying a combination of tiling
and interchanging. In subsequent changes we will implement the packing
transformation.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D21491
llvm-svn: 276627
There is no need to expose the selected device at the moment. We also pass back
pointers as return values, as this simplifies the interface.
llvm-svn: 276623
This allows the finalization routine of the IslNodeBuilder to be overwritten
by derived classes. Being here, we also drop the unnecessary 'Scop' postfix
and the unnecessary 'Scop' parameter.
llvm-svn: 276622
We optimize the kernel _after_ dumping the IR we generate to make the IR we
dump easier readable and independent of possible changes in the general
purpose LLVM optimizers.
llvm-svn: 276551
Run the NVPTX backend over the GPUModule IR and write the resulting assembly
code in a string.
To work correctly, it is important to invalidate analysis results that still
reference the IR in the kernel module. Hence, this change clears all references
to dominators, loop info, and scalar evolution.
Finally, the NVPTX backend has troubles to generate code for various special
floating point types (not surprising), but also for uncommon integer types. This
commit does not resolve these issues, but pulls out problematic test cases into
separate files to XFAIL them individually and resolve them in future (not
immediate) changes one by one.
llvm-svn: 276396
This change introduces the actual compute code in the GPU kernels. To ensure
all values referenced from the statements in the GPU kernel are indeed available
we scan all ScopStmts in the GPU kernel for references to llvm::Values that
are not yet covered by already modeled outer loop iterators, parameters, or
array base pointers and also pass these additional llvm::Values to the
GPU kernel.
For arrays used in the GPU kernel we introduce a new ScopArrayInfo object, which
is referenced by the newly generated access functions within the GPU kernel and
which is used to help with code generation.
llvm-svn: 276270
This is useful for external users using IslExprBuilder, in case they cannot
embed ScopArrayInfo data into their isl_ids, because the isl_ids either already
carry other information or the isl_ids have been created and their user pointers
cannot be updated any more.
llvm-svn: 276268
This ensures that no trivially dead code is generated. This is not only cleaner,
but also avoids troubles in case code is generated in a separate function and
some of this dead code contains references to values that are not available.
This issue may happen, in case the memory access functions have been updated
and old getelementptr instructions remain in the code. With normal Polly,
a test case is difficult to draft, but the upcoming GPU code generation can
possibly trigger such problems. We will later extend this dead-code elimination
to region and vector statements.
llvm-svn: 276263
This makes the structure of the code clearer and reduces the size of runOnScop.
We also adjust the coding style to the latest LLVM style guide.
llvm-svn: 276246
This makes the structure of the code clearer and reduces the size of runOnScop.
We also adjust the coding style to the latest LLVM style guide.
llvm-svn: 276245
This makes the structure of the code clearer and reduces the size of runOnScop.
We also adjust the coding style to the latest LLVM style guide.
llvm-svn: 276244
This is currently not supported and will only be added later. Also update the
test cases to ensure no invariant code hoisting is applied.
llvm-svn: 275987
This simplifies the upcoming patches to add code generation for ScopStmts. Load
hoisting support will later be added in a separate commit. This commit will
be implicitly tested by the subsequent GPGPU changes.
llvm-svn: 275969
We use this opportunity to further classify the different user statements that
can arise and add TODOs for the ones not yet implemented.
llvm-svn: 275957
Create for each kernel a separate LLVM-IR module containing a single function
marked as kernel function and taking one pointer for each array referenced
by this kernel. Add debugging output to verify the kernels are generated
correctly.
llvm-svn: 275952
Initialize the list of references to a GPU array to ensure that the arrays that
need to be passed to kernel calls are computed correctly. Furthermore, the very
same information is also necessary to compute synchronization correctly. As the
functionality to compute these references is already available, what is left for
us to do is only to connect the necessary functionality to compute array
reference information.
llvm-svn: 275798
Create LLVM-IR for all host-side control flow of a given GPU AST. We implement
this by introducing a new GPUNodeBuilder class derived from IslNodeBuilder. The
IslNodeBuilder will take care of generating all general-purpose ast nodes, but
we provide our own createUser implementation to handle the different GPU
specific user statements. For now, we just skip any user statement and only
generate a host-code sceleton, but in subsequent commits we will add handling of
normal ScopStmt's performing computations, kernel calls, as well as host-device
data transfers. We will also introduce run-time check generation and LICM in
subsequent commits.
llvm-svn: 275783
This ensures that accidental calls to these functions will break loadly instead
of corrupting the stack with invalid return values.
These functions have been introduced earlier as replacement of pet and parts of
ppcg which we will never use and consequently have not been imported or compiled
into Polly.
llvm-svn: 275680
Otherwise ppcg would try to call into pet functionality that this not available,
which obviously will cause trouble. As we can easily print these statements
ourselves, we just do so.
llvm-svn: 275579
This option increases the scalability of the scheduler and allows us to remove
the 'gisting' workaround we introduced in r275565 to handle a more complicated
test case. Another benefit of using this option is also that the generated
code looks a lot more streamlined.
Thanks to Sven Verdoolaege for reminding me of this option.
llvm-svn: 275573
This works around a shortcoming of the isl scheduler, which even for some
smaller test cases does not terminate in case domain constraints are part
of the flow dependences.
llvm-svn: 275565
It seems we forgot to actually add the memory access ids to the tagged accesses,
but instead just tagged the accesses with empty isl_ids. This issue was found
by inspection and without code generation it is difficult to test just by
itself. We fix it for now without test case and expect our code generation
tests to cover this later on.
llvm-svn: 275557
We do not have them in Polly and the code to check for them is directly
referring to pet data structures which we do not have available.
This commit avoids undefined behavior. As such issues are difficult to
reproduce, this commit comes without a test case.
llvm-svn: 275553
Instead of directly linking to ppcg's main source directory, we link to the
parent director. This allows us to access ppcg's include files with
'ppcg/cuda.h' and avoids a conflict with NVIDIA's cuda.h header.
Also drop an include directory that is currently not used.
llvm-svn: 275536
For this we need to provide an explicit list of statements as they occur in
the polly::Scop to ppcg.
We also setup basic AST printing facilities to facilitate debugging. To allow
code reuse some (minor) changes in ppcg are have been necessary.
llvm-svn: 275436
Instead of calling to a pet function that does not return anything, we pass
our own dummy implementation to ppcg that always returns a nullptr. This
ensures that the list of ast expressions always contains a nullptr and we do
not accidentally free a random (uninitalized) pointer. This resolves the
last valgrind warning we see.
We provide an implementation for this function, when the generated AST
expressions can be used and consequently can be tested.
llvm-svn: 275435
The tile size was previously uninitialized. As a result, it was often zero (aka.
no tiling), which is not what we want in general. More importantly, there was
the risk for arbitrary tile sizes to be choosen, which we did not observe, but
which still is highly problematic.
llvm-svn: 275418
This change now applies ppcg's GPU mapping on our initial schedule. For this
to work, we need to also initialize the set of all names (isl_ids) used in
the scop as well as the program context.
llvm-svn: 275396
To do so we copy the necessary information to compute an initial schedule from
polly::Scop to ppcg's scop. Most of the necessary information is directly
available and only needs to be passed on to ppcg, with the exception of 'tagged'
access relations, access relations that additionally carry information about
which memory access an access relation originates from.
We could possibly perform the construction of tagged accesses as part of
ScopInfo, but as this format is currently specific to ppcg we do not do this
yet, but keep this functionality local to our GPU code generation.
After the scop has been initialized, we compute data dependences and ask ppcg to
compute an initial schedule. Some of this functionality is already available in
polly::DependenceInfo and polly::ScheduleOptimizer, but to keep differences
to ppcg small we use ppcg's functionality here. We may later investiage if
a closer integration of these tools makes sense.
llvm-svn: 275390
At this stage, we do not yet modify the IR but just generate a default
initialized ppcg_scop and gpu_prog and free both immediately. Both will later be
filled with data from the polly::Scop and are needed to use PPCG for GPU
schedule generation. This commit does not yet perform any GPU code generation,
but ensures that the basic infrastructure has been put in place.
We also add a simple test case to ensure the new code is run and use this
opportunity to verify that GPU_CODEGEN tests are only run if GPU code generation
has been enabled in cmake.
llvm-svn: 275389
Add a new pass to serve as basis for automatic accelerator mapping in Polly.
The pass structure and the analyses preserved are copied from
CodeGeneration.cpp, as we will rely on IslNodeBuilder and IslExprBuilder for
LLVM-IR code generation.
Polly's accelerator code generation is enabled with -polly-target=gpu
I would like to use this commit as opportunity to thank Yabin Hu for his work in
the context of two Google summer of code projects during which he implemented
initial prototypes of the Polly accelerator code generation -- in parts this
code is already available in todays Polly (e.g., tools/GPURuntime). More will
come as part of the upcoming Polly ACC changes.
Reviewers: Meinersbur
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D22036
llvm-svn: 275275
ppcg will be used to provide mapping decisions for GPU code generation.
As we do not use C as input language, we do not include pet. However, we include
pet.h from pet 82cacb71 plus a set of dummy functions to ensure ppcg links
without problems.
The version of ppcg committed is unmodified ppcg-0.04 which has been well tested
in the context of LLVM. It does not provide an official library interface yet,
which means that in upcoming commits we will add minor modifications to make
necessary functionality accessible. We will aim to upstream these modifications
after we gained enough experience with GPU generation support in Polly to
propose a stable interface.
Reviewers: Meinersbur
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D22033
llvm-svn: 275274
An assertion in visitSDivInstruction() checked whether the divisor is constant
by checking whether the argument is a ConstantInt. However, SCEVValidator allows
the divisor to be simplified to a constant by ScalarEvolution.
We synchronize the implementation of SCEVValidator and SCEVAffinator to both
accept simplified SCEV expressions.
llvm-svn: 275174
Summary: LLVM adds a new value FMRB_DoesNotReadMemory in the enumeration.
Reviewers: andrew.w.kaylor, chrisj, zinob, grosser, jdoerfert
Subscribers: Meinersbur, pollydev
Differential Revision: http://reviews.llvm.org/D22109
llvm-svn: 275085
Commit r275056 introduced a gcc compile failure due to us using two
types named 'Type', the first being the newly introduced member variable
'Type' the second being llvm::Type. We resolve this issue by renaming
the newly introduced member variable to AccessType.
llvm-svn: 275057
Summary:
With a struct we can use named accessors instead of generic std::get<3>()
calls. This increases readability of the source code.
Reviewers: jdoerfert
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D21955
llvm-svn: 275056
We now compute the invalid context of memory accesses only for the domain under
which the memory access is executed. Without limiting ourselves to this
restricted domain, invalid accesses outside of the domain of actually executed
statement instances may result in the execution domain of the statement to
become empty despite the fact that the statement will actually be executed. As a
result, such scops would use unitialized values for their computations which
results in incorrect computations.
This fixes http://llvm.org/PR27944 and unbreaks the
-polly-position=before-vectorizer buildbots.
llvm-svn: 275053
For llvm the memory accesses from nonaffine loops should be visible,
however for polly those nonaffine loops should be invisible/boxed.
This fixes llvm.org/PR28245
Cointributed-by: Huihui Zhang <huihuiz@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D21591
llvm-svn: 274842
This is a regular maintenance update to ensure the latest version of isl is
tested.
Interesting Changes:
- AST nodes and expressions are now printed as YAML
llvm-svn: 274614
Since r274197 -polly-position=before-vectorizer caused various LNT failures
for example in SingleSource/Benchmarks/Linpack. These failures seem to only
occur when the CFLAA pass is scheduled in our codegen-cleanup passes, which
suggests that the way we call this AA pass is somehow problematic. As this pass
is not of high importance, we drop the pass for now to prevent these failures
from happening. At a later point, we might investigate more in-depth why this
specific usage scenario caused correctness issues.
llvm-svn: 274427
This ensures that the error status set with -polly-on-isl-error-abort is
maintained even after running DependenceInfo and ScheduleOptimizer. Both
passes temporarily set the error status to CONTINUE as the dependence
analysis uses a compute-out and the scheduler may not be able to derive
a schedule. In both cases we want to not abort, but to handle the error
gracefully. Before this commit, we always set the error reporting to ABORT
after these passes. After this commit, we use the error reporting mode that was
active earlier.
This comes without a test case as this would require us to introduce (memory)
errors which would trigger the isl errors.
llvm-svn: 274272
It is only used internally by the ScopInfo pass. By moving it into its
own header file we avoid it being processed that use only ScopInfo.
llvm-svn: 273983
The methods in ScopBuilder are used for the construction of a Scop,
while the remaining classes of ScopInfo are required by all passes that
use Polly's polyhedral analysis.
llvm-svn: 273982
This function is used by both ScopInfo and ScopBuilder. A common
location for this function is required when ScopInfo and ScopBuilder are
separated into separate files in the next commit.
llvm-svn: 273981
Reject and report regions that contains loops overlapping nonaffine region.
This situation typically happens in the presence of inifinite loops.
This addresses bug llvm.org/PR28071.
Differential Revision: http://reviews.llvm.org/D21312
Contributed-by: Huihui Zhang <huihuiz@codeaurora.org>
llvm-svn: 273905
This patch addresses:
- A new function pass to compute polyhedral dependences. This is
required to avoid the region pass manager.
- Stores a map of Scop to Dependence object for all the scops present
in a function. By default, access wise dependences are stored.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: http://reviews.llvm.org/D21105
llvm-svn: 273881
This patch adds a new function pass ScopInfoWrapperPass so that the
polyhedral description of a region, the SCoP, can be constructed and
used in a function pass.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: http://reviews.llvm.org/D20962
llvm-svn: 273856
1. SCoP object is not owned by ScopBuilder. It just creates a SCoP and
hand over ownership through getScop() method.
2. ScopInfoRegionPass owns the SCoP object for a given region.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: http://reviews.llvm.org/D20912
llvm-svn: 273855
llvm commonly adds a comment to the closing brace of a namespace to indicate
which namespace is closed. clang-tidy provides with llvm-namespace-comment
a handy tool to check for this habit. We use it to ensure we consitently use
namespace comments in Polly.
There are slightly different styles in how namespaces are closed in LLVM. As
there is no large difference between the different comment styles we go for the
style clang-tidy suggests by default.
To reproduce this fix run:
for i in `ls tools/polly/lib/*/*.cpp`; \
clang-tidy -checks='-*,llvm-namespace-comment' -p build $i -fix \
-header-filter=".*"; \
done
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273621
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273437
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273436
Instead of using 0 or NULL use the C++11 nullptr symbol when referencing null
pointers.
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273435
This is the first patch to apply the BLIS matmul optimization pattern
on matmul kernels
(http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel,
plus two packing routines. The macro-kernel is implemented in terms
of two additional loops around a micro-kernel. The micro-kernel
is a loop around a rank-1 (i.e., outer product) update.
In this change we create the BLIS micro-kernel by applying
a combination of tiling and unrolling. In subsequent changes
we will add the extraction of the BLIS macro-kernel
and implement the packing transformation.
Contributed-by: Roman Gareev <gareevroman@gmail.com>
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D21140
llvm-svn: 273397
ScalarReplAggregatesPass was deprecated and replaced by SROAPass.
ScalarReplAggregatesPass got finally removed in LLVM commit r272737, hence this
patch is also a compile fix.
llvm-svn: 272783
As part of this simplification we pull complex logic out of the loop body and
skip the previously redundantly executed first loop iteration.
This is a partial recommit of r271514 and r271535 which where in conflict with
the revert in r272483 and consequently also had to be reverted temporarily. The
original patch was contributed by Johannes Doerfert.
This patch is mostly a NFC, but dropping the first loop iteration can sometimes
result in slightly simpler code.
llvm-svn: 272502
With this update the isl AST generation extracts disjunctive constraints early
on. As a result, code that previously resulted in two branches with (close-to)
identical code within them:
if (P <= -1) {
for (int c0 = 0; c0 < N; c0 += 1)
Stmt_store(c0);
} else if (P >= 1)
for (int c0 = 0; c0 < N; c0 += 1)
Stmt_store(c0);
results now in only a single branch body:
if (P <= -1 || P >= 1)
for (int c0 = 0; c0 < N; c0 += 1)
Stmt_store(c0);
This resolves http://llvm.org/PR27559
Besides the above change, this isl update brings better simplification of
sets/maps containing existentially quantified dimensions and fixes a bug in
isl's coalescing.
llvm-svn: 272500
IntToPtr and PtrToInt instructions are basically no-ops that we can handle as
such. In order to generate them properly as parameters we had to improve the
ScopExpander, though the change is the first in the direction of a more
aggressive scalar synthetization.
This patch was originally contributed by Johannes Doerfert in r271888, but was
in conflict with the revert in r272483. This is a recommit with some minor
adjustment to the test cases to take care of differing instruction names.
llvm-svn: 272485
The recent expression type changes still need more discussion, which will happen
on phabricator or on the mailing list. The precise list of commits reverted are:
- "Refactor division generation code"
- "[NFC] Generate runtime checks after the SCoP"
- "[FIX] Determine insertion point during SCEV expansion"
- "Look through IntToPtr & PtrToInt instructions"
- "Use minimal types for generated expressions"
- "Temporarily promote values to i64 again"
- "[NFC] Avoid unnecessary comparison for min/max expressions"
- "[Polly] Fix -Wunused-variable warnings (NFC)"
- "[NFC] Simplify min/max expression generation"
- "Simplify the type adjustment in the IslExprBuilder"
Some of them are just reverted as we would otherwise get conflicts. I will try
to re-commit them if possible.
llvm-svn: 272483
The 'Color' enum is only used for irreducible control flow detection. Johannes
already moved this enum in r270054 from ScopDetection.h to ScopDetection.cpp to
limit its scope to a single cpp file. We now move it into the only function
where this enum is needed to make clear that it is only needed locally in this
single function.
Thanks to Johannes for pointing out this cleanup opportunity.
llvm-svn: 272462
This patch refactors the code generation for divisions. This allows to
always generate a shift for a power-of-two division and to utilize
information about constant divisors in order to truncate the result
type.
llvm-svn: 271898
We now generate runtime checks __after__ the SCoP code generation and
not before, though they are still inserted at the same position int
the code. This allows to modify the runtime check during SCoP code
generation.
llvm-svn: 271894
IntToPtr and PtrToInt instructions are basically no-ops that we can handle as
such. In order to generate them properly as parameters we had to improve the
ScopExpander, though the change is the first in the direction of a more
aggressive scalar synthetization.
llvm-svn: 271888
We now use the minimal necessary bit width for the generated code. If
operations might overflow (add/sub/mul) we will try to adjust the types in
order to ensure a non-wrapping computation. If the type adjustment is not
possible, thus the necessary type is bigger than the type value of
--polly-max-expr-bit-width, we will use assumptions to verify the computation
will not wrap. However, for run-time checks we cannot build assumptions but
instead utilize overflow tracking intrinsics.
llvm-svn: 271878
In case of modulo compared to zero, we need to do signed modulo
operation as unsigned can give different results based on whether the
dividend is negative or not.
This addresses llvm.org/PR27707
Contributed-by: Chris Jenneisch <chrisj@codeaurora.org>
Reviewers: _jdoerfert, grosser, Meinersbur
Differential Revision: http://reviews.llvm.org/D20145
llvm-svn: 271707
Operands of binary operations that might overflow will be temporarily
promoted to i64 again, though that is not a sound solution for the problem.
llvm-svn: 271538
We now have a simple function to adjust/unify the types of two (or three)
operands before an operation that requieres the same type for all operands.
Due to this change we will not promote parameters that are added to i64
anymore if that is not needed.
llvm-svn: 271513
multiplication
Fix small issues related to characters, operators and descriptions of tests.
Differential Revision: http://reviews.llvm.org/D20806
llvm-svn: 271264
Created a new pass ScopInfoRegionPass. As name suggests, it is a
region pass and it is there to preserve compatibility with our
existing Polly passes. ScopInfoRegionPass will return a SCoP object
for a valid region while the creation of the SCoP stays in the
ScopInfo class.
Contributed-by: Utpal Bora <cs14mtech11017@iith.ac.in>
Reviewed-by: Tobias Grosser <tobias@grosser.es>,
Johannes Doerfert <doerfert@cs.uni-saarland.de>
Differential Revision: http://reviews.llvm.org/D20770
llvm-svn: 271259
This header is required to make the ISO 646 alternative operator
spellings ("and", "or" instead of "&&", "||") work. Should these
operators be replaced by the standard ones as already suggested by
Johannes, also remove this #include again.
llvm-svn: 271206
Summary:
API-wise `apply` is a somewhat unidiomatic one-off function, and
removing the only(?) use in polly will let me remove it from SCEV's
exposed interface.
Reviewers: jdoerfert, Meinersbur, grosser
Subscribers: grosser, mcrosier, pollydev
Differential Revision: http://reviews.llvm.org/D20779
llvm-svn: 271177
Add determination of statements that contain, in particular,
matrix multiplications and can be optimized with [1] to try to
get close-to-peak performance. It can be enabled
via polly-pm-based-opts, which is false by default.
Refs:
[1] - http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf
Contributed-by: Roman Gareev <gareevroman@gmail.com>
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D20575
llvm-svn: 271128