This reverts commit a6e1080b87db8fbe0e1afadd96af5a3c0bd5e279.
Fix the conditions when the `memmove` optimization can be applied and refactor them out into a reusable type trait, fix and significantly expand the tests.
Differential Revision: https://reviews.llvm.org/D139235
Instead of using `reverse_iterator`, share the optimization between the 4 algorithms. The key observation here that `memmove` applies to both `copy` and `move` identically, and to their `_backward` versions very similarly. All algorithms now follow the same pattern along the lines of:
```
if constexpr (can_memmove<InIter, OutIter>) {
memmove(first, last, out);
} else {
naive_implementation(first, last, out);
}
```
A follow-up will delete `unconstrained_reverse_iterator`.
This patch removes duplication and divergence between `std::copy`, `std::move` and `std::move_backward`. It also improves testing:
- the test for whether the optimization is used only applied to `std::copy` and, more importantly, was essentially a no-op because it would still pass if the optimization was not used;
- there were no tests to make sure the optimization is not used when the effect would be visible.
Differential Revision: https://reviews.llvm.org/D130695
When we ship LLVM 16, <ranges> won't be considered experimental anymore.
We might as well do this sooner rather than later.
Differential Revision: https://reviews.llvm.org/D132151
- create the headers (but not include them from `<algorithm>`);
- define the niebloid and its member functions with the right signatures
(as no-ops);
- make sure all the right headers are included that are required by each
algorithm's signature;
- update `CMakeLists.txt` and the module map;
- create the test files with the appropriate synopses.
The synopsis in `<algorithm>` is deliberately not updated because that
could be taken as a readiness signal. The new headers aren't included
from `<algorithm>` for the same reason.
Differential Revision: https://reviews.llvm.org/D129549