In the LLVM-IR for this test, the inlined argument "b" in the "a" function
is optimized out on certain architectures, not on others. This hasn't been
reported as a test failure since 93faeecd8f and ff2073a51 because we would
create a variable that looks like this:
DW_TAG_formal_parameter
DW_AT_abstract_origin
With no further information (and no location). With D95617 however, we
stop emitting such variables.
Prior to landing D95617: make this test stricter by checking that the
variable mentioned above has a location. We have to accept that on certain
architectures this goes missing, so add those to the XFail list.
I've run a few experiments, and right now it looks likely only powerpc64
still drops the variable location.
This patch adds support for both the fadd reduction intrinsic, in both
the ordered and unordered modes.
The fmin and fmax intrinsics are not currently supported due to a
discrepancy between the LLVM semantics and the RVV ISA behaviour with
regards to signaling NaNs. This behaviour is likely fixed in version 2.3
of the RISC-V F/D/Q extension, but until then the intrinsics can be left
unsupported.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D95870
This reverts commit 511dd4f438 along with
a couple fixes.
Original message:
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Phabricator: https://reviews.llvm.org/D96111
Fixes TableGen parser errors reported by D95874 due to incompatible types being used on multiclass templates.
Differential Revision: https://reviews.llvm.org/D96205
Native register descriptions in LLDB specify lldb register numbers in
value_regs and invalidate_regs lists. These register numbers may not
match with Process gdb-remote register numbers which are generated by
native process after counting all registers in its register sets.
It was coincidentally not causing any problems as we never came across
a native target with dynamically changing register sets and register
numbers generated by counter matched with LLDB native register numbers.
This came up while testing target AArch64 SVE which can choose register
sets based on underlying hardware.
This patch fixes this behavior and always tries to use remote register
numbers while reading/writing registers over gdb-remote protocol.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D77043
This patch correctly reports success/failure of `ParseLangArgs`. Besides being consistent with other `Parse` functions, this is required to make round-tripping of `LangOptions` work.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D95792
These headers can be in a Clang module like the rest. This also fixes the
modules build that is currently struggling with these headers being textually
included in several other modules.
`CompilerInvocation::CreateFromArgs` doesn't always report command line parsing failures through the return value. Sometimes, errors are only reported via diagnostics.
Some clients like `c-index-test` only check the return value and don't check the state of `DiagnosticsEngine`.
If we were to start returning the correct return value from `CreateFromArgs`, this index test starts to fail, because it specifies `-std=c++11` for a C input, which is invalid.
This patch fixes that issue by adding forgotten `-x c++` argument.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D95879
This adds another tablegen fold that converts an i16 odd-lane-insert of
an even-lane-extract into a VINS. We extract the existing f32 value from
the destination register and VINS the new value into it. The rest of the
backend then is able to optimize the INSERT_SUBREG / COPY_TO_REGCLASS /
EXTRACT_SUBREG.
Differential Revision: https://reviews.llvm.org/D95456
This patch implements generation of remaining preprocessor options and tests it by performing parse-generate-parse round trip.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D95366
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D96111
This patch implements generation of remaining analyzer options and tests it by performing parse-generate-parse round trip.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D95369
This patch tries to improve memory-read from core files
(in order to improve disassembly functionality).
I am using RHEL 7.7 (linux kernel 3.10) and for a lot of cases,
I was not able to disassemble some functions from backtrace when
debugging crashes from core files. It outputs some dummy code.
The cause of the problem was the fact we are returning all the zeros
from ProcessElfCore::ReadMemory() that is being called within
Disassembler::ParseInstructions() and it disassembles some dummy
opcodes from the buffer returned. Therefore, we are removing zero
bytes filling (padding) completely.
Differential Revision: https://reviews.llvm.org/D93939
This will allow to use `NativeOpTrait` and Operations
declared outside of `mlir` namespace.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D96128
clang static analysis reports can be generated in html, plist, or sarif
format. This updates scan-build-py to be able to specify SARIF as the
desired output format, as previously it only support plist and html
formats.
Differential Revision: https://reviews.llvm.org/D94251
GNU as does not sort local symbols. This has several advantages:
* The .symtab order is roughly the symbol occurrence order.
* The closest preceding STT_SECTION symbol is the definition of a local symbol.
* The closest preceding STT_FILE symbol is the defining file of a local symbol, if there are multiple default-version .file directives. (Not implemented in MC.)
This patch updates some places where VectorLoopValueMap is accessed
directly to instead go through VPTransformState.
As we move towards managing created values exclusively in VPTransformState,
this ensures the use always can fetch the correct value.
This is in preparation for D92285, which switches to managing scalarized
values through VPValues.
In the future, the various fix* functions should be moved directly into
the VPlan codegen stage.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D95757
`modernize-loop-convert` handles //array-like// objects like vectors fairly well, but strips slightly too much information from the iteration expression by converting:
```
Vector<Vector<int>> X;
for (int J = 0; J < X[5].size(); ++J)
copyArg(X[5][J]);
```
to
```
Vector<Vector<int>> X;
for (int J : X) // should be for (int J : X[5])
copyArg(J);
```
The `[5]` is a call to `operator[]` and gets stripped by `LoopConvertCheck::getContainerString`. This patch fixes that and adds several test cases.
Reviewed By: njames93
Differential Revision: https://reviews.llvm.org/D95771
As discussed in:
https://llvm.org/PR49055
We invert instcombine's add->or transform here
because it makes it easier to identify factorization
transforms like the mul in the motivating test.
This extends the logic added with:
https://reviews.llvm.org/rG70472f3https://reviews.llvm.org/rG93f3d7f
(I intentionally kept the formatting fix in this patch
to provide more context about the calling logic.)