Summary:
This revision removes all of the functionality related to successor operands on the core Operation class. This greatly simplifies a lot of handling of operands, as well as successors. For example, DialectConversion no longer needs a special "matchAndRewrite" for branching terminator operations.(Note, the existing method was also broken for operations with variadic successors!!)
This also enables terminator operations to define their own relationships with successor arguments, instead of the hardcoded "pass-through" behavior that exists today.
Differential Revision: https://reviews.llvm.org/D75318
The existing API for successor operands on operations is in the process of being removed. This revision simplifies a later one that completely removes the existing API.
Differential Revision: https://reviews.llvm.org/D75316
This interface contains the necessary components to provide the same builtin behavior that terminators have. This will be used in future revisions to remove many of the hardcoded constraints placed on successors and successor operands. The interface initially contains three methods:
```c++
// Return a set of values corresponding to the operands for successor 'index', or None if the operands do not correspond to materialized values.
Optional<OperandRange> getSuccessorOperands(unsigned index);
// Return true if this terminator can have it's successor operands erased.
bool canEraseSuccessorOperand();
// Erase the operand of a successor. This is only valid to call if 'canEraseSuccessorOperand' returns true.
void eraseSuccessorOperand(unsigned succIdx, unsigned opIdx);
```
Differential Revision: https://reviews.llvm.org/D75314
Summary: This class wraps around the various different ways to construct a range of Type, without forcing the materialization of that range into a contiguous vector.
Differential Revision: https://reviews.llvm.org/D74646
Summary: The new internal representation of operation results now allows for accessing the result types to be more efficient. Changing the API to ArrayRef is more efficient and removes the need to explicitly materialize vectors in several places.
Differential Revision: https://reviews.llvm.org/D73429
Summary: This fixes the return value of helper methods on the base range class.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D72127
Summary:
This changes the implementation of OpResult to have some of the results be represented inline in Value, via a pointer int pair of Operation*+result number, and the rest being trailing objects on the main operation. The full details of the new representation is detailed in the proposal here:
https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
The only difference between here and the above proposal is that we only steal 2-bits for the Value kind instead of 3. This means that we can only fit 2-results inline instead of 6. This allows for other users to steal the final bit for PointerUnion/etc. If necessary, we can always steal this bit back in the future to save more space if 3-6 results are common enough.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D72020
This will enable future commits to reimplement the internal implementation of OpResult without needing to change all of the existing users. This is part of a chain of commits optimizing the size of operation results.
PiperOrigin-RevId: 286930047
This will enable future commits to reimplement the internal implementation of OpResult without needing to change all of the existing users. This is part of a chain of commits optimizing the size of operation results.
PiperOrigin-RevId: 286919966
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
This has several benefits:
* The implementation is much cleaner and more efficient.
* The ranges now have support for many useful operations: operator[], slice, drop_front, size, etc.
* Value ranges can now directly query a range for their types via 'getTypes()': e.g:
void foo(Operation::operand_range operands) {
auto operandTypes = operands.getTypes();
}
PiperOrigin-RevId: 284834912
This allows for users to provide operand_range and result_range in builder.create<> calls, instead of requiring an explicit copy into a separate data structure like SmallVector/std::vector.
PiperOrigin-RevId: 284360710
The GPU Launch operation may take constants as arguments, in particular
affine-to-GPU mapping pass automatically forwards potentially constant lower
bounds of loops into the kernel. Define a canonicalization pattern for
LaunchOp that recreates the constants inside the kernel region instead of
accepting them as kernel arguments. This is currently restricted to standard
constants but may be extended to other constant operations.
Also fix an off-by-one indexing bug in OperandStorage::eraseOperand.
PiperOrigin-RevId: 256035437
Now that Locations are Attributes they contain a direct reference to the MLIRContext, i.e. the context can be directly accessed from the given location instead of being explicitly passed in.
PiperOrigin-RevId: 254568329
Currently, regions can only be constructed by passing in a `Function` or an
`Instruction` pointer referencing the parent object, unlike `Function`s or
`Instruction`s themselves that can be created without a parent. It leads to a
rather complex flow in operation construction where one has to create the
operation first before being able to work with its regions. It may be
necessary to work with the regions before the operation is created. In
particular, in `build` and `parse` functions that are executed _before_ the
operation is created in cases where boilerplate region manipulation is required
(for example, inserting the hypothetical default terminator in affine regions).
Allow creating standalone regions. Such regions are meant to own a list of
blocks and transfer them to other regions on demand.
Each instruction stores a fixed number of regions as trailing objects and has
ownership of them. This decreases the size of the Instruction object for the
common case of instructions without regions. Keep this behavior intact. To
allow some flexibility in construction, make OperationState store an owning
vector of regions. When the Builder creates an Instruction from
OperationState, the bodies of the regions are transferred into the
instruction-owned regions to minimize copying. Thus, it becomes possible to
fill standalone regions with blocks and move them to an operation when it is
constructed, or move blocks from a region to an operation region, e.g., for
inlining.
PiperOrigin-RevId: 240368183