Based on the output of include-what-you-use.
This is a big chunk of changes. It is very likely to break downstream code
unless they took a lot of care in avoiding hidden ehader dependencies, something
the LLVM codebase doesn't do that well :-/
I've tried to summarize the biggest change below:
- llvm/include/llvm-c/Core.h: no longer includes llvm-c/ErrorHandling.h
- llvm/IR/DIBuilder.h no longer includes llvm/IR/DebugInfo.h
- llvm/IR/IRBuilder.h no longer includes llvm/IR/IntrinsicInst.h
- llvm/IR/LLVMRemarkStreamer.h no longer includes llvm/Support/ToolOutputFile.h
- llvm/IR/LegacyPassManager.h no longer include llvm/Pass.h
- llvm/IR/Type.h no longer includes llvm/ADT/SmallPtrSet.h
- llvm/IR/PassManager.h no longer includes llvm/Pass.h nor llvm/Support/Debug.h
And the usual count of preprocessed lines:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/IR/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 6400831
after: 6189948
200k lines less to process is no that bad ;-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D118652
This is the patch for LLVM proper in my series for adding GNUInstallDirs support in all project.
Additionally:
Create a new `CACHE STRING` variable, `LLVM_EXAMPLES_INSTALL_DIR`, to control where the examples are installed on analogy with the other variables.
---
This patch supersedes D28234, which tried to do the same thing but hand-rolled without GNUInstallDirs.
This patch nearly reverts commit 3 0fc88bf1dc15a72e2d9809d28019d386b7a7cc0, which was a revert of a prior attempt."
(I had to add a space here or else Phabricator detects a reference cycle and won't let me do the form submit.)
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D100810
This re-applies 133f86e95492b2a00b944e070878424cfa73f87c, which was reverted in
c5965a411c635106a47738b8d2e24db822b7416f while I investigated bot failures.
The original failure contained an arithmetic conversion think-o (on line 419 of
EHFrameSupport.cpp) that could cause failures on 32-bit platforms. The issue
should be fixed in this patch.
This reverts commit 492de35df443d5f31480173d5f1274c7835cd3d8.
I tried to apply John's changes in 8d897ec91528 that were expected to
fix his patch but that didn't work unfortunately.
Reverting this again to fix the macOS bots and leave him more time to
investigate the issue.
This reverts commit 797b50d4be873b4662983413a06806fca544c276.
See the original D99484. @mib who noticed the original problem could not longer
reproduce it, after I tried and also failed. We are threfore hoping it went
away on its own!
Reviewed By: mib
Differential Revision: https://reviews.llvm.org/D115544
MaterializationUnit::Interface holds the values that make up the interface
(for ORC's purposes) of a materialization unit: the symbol flags map and
initializer symbol.
Having a type for this will make functions that build materializer interfaces
more readable and maintainable.
This is a new draft of D28234. I previously did the unorthodox thing of
pushing to it when I wasn't the original author, but since this version
- Uses `GNUInstallDirs`, rather than mimics it, as the original author
was hesitant to do but others requested.
- Is much broader, effecting many more projects than LLVM itself.
I figured it was time to make a new revision.
I am using this patch (and many back-ports) as the basis of
https://github.com/NixOS/nixpkgs/pull/111487 for my distro (NixOS). It
looked like people were generally on board in D28234, but I make note of
this here in case extra motivation is useful.
---
As pointed out in the original issue, a central tension is that LLVM
already has some partial support for these sorts of things. For example
`LLVM_LIBDIR_SUFFIX`, or `COMPILER_RT_INSTALL_PATH`. Because it's not
quite clear yet what to do about those, we are holding off on changing
libdirs and `compiler-rt`. for this initial PR.
---
On the advice of @lebedev.ri, I am splitting this up a bit per
subproject, starting with LLVM. To allow it to be more easily reviewed. This and the subsequent patch must be landed together, as this will not build alone. But the rest can be landed on their own.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D100810
Adds explicit narrowing casts to JITLinkMemoryManager.cpp.
Honors -slab-address option in llvm-jitlink.cpp, which was accidentally
dropped in the refactor.
This effectively reverts commit 6641d29b70993bce6dbd7e0e0f1040753d38842f.
This commit substantially refactors the JITLinkMemoryManager API to: (1) add
asynchronous versions of key operations, (2) give memory manager implementations
full control over link graph address layout, (3) enable more efficient tracking
of allocated memory, and (4) support "allocation actions" and finalize-lifetime
memory.
Together these changes provide a more usable API, and enable more powerful and
efficient memory manager implementations.
To support these changes the JITLinkMemoryManager::Allocation inner class has
been split into two new classes: InFlightAllocation, and FinalizedAllocation.
The allocate method returns an InFlightAllocation that tracks memory (both
working and executor memory) prior to finalization. The finalize method returns
a FinalizedAllocation object, and the InFlightAllocation is discarded. Breaking
Allocation into InFlightAllocation and FinalizedAllocation allows
InFlightAllocation subclassses to be written more naturally, and FinalizedAlloc
to be implemented and used efficiently (see (3) below).
In addition to the memory manager changes this commit also introduces a new
MemProt type to represent memory protections (MemProt replaces use of
sys::Memory::ProtectionFlags in JITLink), and a new MemDeallocPolicy type that
can be used to indicate when a section should be deallocated (see (4) below).
Plugin/pass writers who were using sys::Memory::ProtectionFlags will have to
switch to MemProt -- this should be straightworward. Clients with out-of-tree
memory managers will need to update their implementations. Clients using
in-tree memory managers should mostly be able to ignore it.
Major features:
(1) More asynchrony:
The allocate and deallocate methods are now asynchronous by default, with
synchronous convenience wrappers supplied. The asynchronous versions allow
clients (including JITLink) to request and deallocate memory without blocking.
(2) Improved control over graph address layout:
Instead of a SegmentRequestMap, JITLinkMemoryManager::allocate now takes a
reference to the LinkGraph to be allocated. The memory manager is responsible
for calculating the memory requirements for the graph, and laying out the graph
(setting working and executor memory addresses) within the allocated memory.
This gives memory managers full control over JIT'd memory layout. For clients
that don't need or want this degree of control the new "BasicLayout" utility can
be used to get a segment-based view of the graph, similar to the one provided by
SegmentRequestMap. Once segment addresses are assigned the BasicLayout::apply
method can be used to automatically lay out the graph.
(3) Efficient tracking of allocated memory.
The FinalizedAlloc type is a wrapper for an ExecutorAddr and requires only
64-bits to store in the controller. The meaning of the address held by the
FinalizedAlloc is left up to the memory manager implementation, but the
FinalizedAlloc type enforces a requirement that deallocate be called on any
non-default values prior to destruction. The deallocate method takes a
vector<FinalizedAlloc>, allowing for bulk deallocation of many allocations in a
single call.
Memory manager implementations will typically store the address of some
allocation metadata in the executor in the FinalizedAlloc, as holding this
metadata in the executor is often cheaper and may allow for clean deallocation
even in failure cases where the connection with the controller is lost.
(4) Support for "allocation actions" and finalize-lifetime memory.
Allocation actions are pairs (finalize_act, deallocate_act) of JITTargetAddress
triples (fn, arg_buffer_addr, arg_buffer_size), that can be attached to a
finalize request. At finalization time, after memory protections have been
applied, each of the "finalize_act" elements will be called in order (skipping
any elements whose fn value is zero) as
((char*(*)(const char *, size_t))fn)((const char *)arg_buffer_addr,
(size_t)arg_buffer_size);
At deallocation time the deallocate elements will be run in reverse order (again
skipping any elements where fn is zero).
The returned char * should be null to indicate success, or a non-null
heap-allocated string error message to indicate failure.
These actions allow finalization and deallocation to be extended to include
operations like registering and deregistering eh-frames, TLS sections,
initializer and deinitializers, and language metadata sections. Previously these
operations required separate callWrapper invocations. Compared to callWrapper
invocations, actions require no extra IPC/RPC, reducing costs and eliminating
a potential source of errors.
Finalize lifetime memory can be used to support finalize actions: Sections with
finalize lifetime should be destroyed by memory managers immediately after
finalization actions have been run. Finalize memory can be used to support
finalize actions (e.g. with extra-metadata, or synthesized finalize actions)
without incurring permanent memory overhead.
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
Though this is a full port of the example, it is not yet fully functional due to a threading issue in the SimpleRemoteEPC implementation. The issue was discussed in D110530, but it needs a more thorough solution. For now we are dropping the dependency to the old `OrcRPC` here (it's been the last use-case in-tree). The test for the example is under review in ... and will be re-enabled once the threading issue is solved.
Functions in static code that should be callable from JITed code must be exported. For dynamic libraries extern functions are exported by default. For exectuables, linkers usually strip them away unless we explicitly ask for keeping them.
Reviewed By: xgupta
Differential Revision: https://reviews.llvm.org/D110345
Two typos, one unsused include and some leftovers from the TargetProcessControl -> ExecutorProcessControl renaming
Reviewed By: xgupta
Differential Revision: https://reviews.llvm.org/D110260
This fixes "Resolving symbol with incorrect flags" errors when running the
Kaleidoscope tutorials on Windows.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D108348
When compiling on ZLinux, we got this error:
/llvm-project/llvm/examples/OrcV2Examples/LLJITWithRemoteDebugging/ \
RemoteJITUtils.h:80:65: required from here...
/usr/include/c++/7/bits/unique_ptr.h:76:22: error: invalid application of
'sizeof' to incomplete type 'llvm::orc::RemoteExecutorProcessControl'
static_assert(sizeof(_Tp)>0,
This patch just removes nullptr from the initialization of
std::unique_ptr<RemoteExecutorProcessControl> to avoid the issue.
Patch by Tung D. Le (tung@jp.ibm.com). Thanks Tung!
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D107247
Pulled out the OptimizationLevel class from PassBuilder in order to be able to access it from within the PassManager and avoid include conflicts.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D107025
Wrapper function call and dispatch handler helpers are moved to
ExecutionSession, and existing EPC-based tools are re-written to take an
ExecutionSession argument instead.
Requiring an ExecutorProcessControl instance simplifies existing EPC based
utilities (which only need to take an ES now), and should encourage more
utilities to use the EPC interface. It also simplifies process termination,
since the session can automatically call ExecutorProcessControl::disconnect
(previously this had to be done manually, and carefully ordered with the
rest of JIT tear-down to work correctly).
This patch relands https://reviews.llvm.org/D104799, but fixes the
memory handling causing leak sanitizer failures.
This reverts commit a56fe117e04f7d4b953a4226af412dad59425fb5.
This is a first step towards consistently using the term 'executor' for the
process that executes JIT'd code. I've opted for 'executor' as the preferred
term over 'target' as target is already heavily overloaded ("the target
machine for the executor" is much clearer than "the target machine for the
target").
This patch was derived from Valentin Churavy's work in
https://reviews.llvm.org/D104480. It adds support for setting the transform on
an IRTransformLayer, and for accessing the IRTransformLayer in LLJIT. It also
adds access to the ThreadSafeModule::withModuleDo method for thread-safe
access to modules.
A new example has been added to show how to use these APIs to optimize a module
during materialization.
Thanks Valentin!
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D103855
Provides ObjectTransformLayer APIs, a getter to access the
ObjectTransformLayer member of LLJIT, and the DumpObjects utility
to make construction of a dump-to-disk transform easy.
An example showing how the new APIs can be used has been added in
llvm/examples/OrcV2Examples/OrcV2CBindingsDumpObjects.