Summary:
Change the default ABI to be compatible with GCC. For 32-bit ELF
targets other than Linux, Clang now returns small structs in registers
r3/r4. This affects FreeBSD, NetBSD, OpenBSD. There is no change for
32-bit Linux, where Clang continues to return all structs in memory.
Add clang options -maix-struct-return (to return structs in memory) and
-msvr4-struct-return (to return structs in registers) to be compatible
with gcc. These options are only for PPC32; reject them on PPC64 and
other targets. The options are like -fpcc-struct-return and
-freg-struct-return for X86_32, and use similar code.
To actually return a struct in registers, coerce it to an integer of the
same size. LLVM may optimize the code to remove unnecessary accesses to
memory, and will return i32 in r3 or i64 in r3:r4.
Fixes PR#40736
Patch by George Koehler!
Reviewed By: jhibbits, nemanjai
Differential Revision: https://reviews.llvm.org/D73290
Summary:
This commit adds two command-line options to clang.
These options let the user decide which functions will receive SanitizerCoverage instrumentation.
This is most useful in the libFuzzer use case, where it enables targeted coverage-guided fuzzing.
Patch by Yannis Juglaret of DGA-MI, Rennes, France
libFuzzer tests its target against an evolving corpus, and relies on SanitizerCoverage instrumentation to collect the code coverage information that drives corpus evolution. Currently, libFuzzer collects such information for all functions of the target under test, and adds to the corpus every mutated sample that finds a new code coverage path in any function of the target. We propose instead to let the user specify which functions' code coverage information is relevant for building the upcoming fuzzing campaign's corpus. To this end, we add two new command line options for clang, enabling targeted coverage-guided fuzzing with libFuzzer. We see targeted coverage guided fuzzing as a simple way to leverage libFuzzer for big targets with thousands of functions or multiple dependencies. We publish this patch as work from DGA-MI of Rennes, France, with proper authorization from the hierarchy.
Targeted coverage-guided fuzzing can accelerate bug finding for two reasons. First, the compiler will avoid costly instrumentation for non-relevant functions, accelerating fuzzer execution for each call to any of these functions. Second, the built fuzzer will produce and use a more accurate corpus, because it will not keep the samples that find new coverage paths in non-relevant functions.
The two new command line options are `-fsanitize-coverage-whitelist` and `-fsanitize-coverage-blacklist`. They accept files in the same format as the existing `-fsanitize-blacklist` option <https://clang.llvm.org/docs/SanitizerSpecialCaseList.html#format>. The new options influence SanitizerCoverage so that it will only instrument a subset of the functions in the target. We explain these options in detail in `clang/docs/SanitizerCoverage.rst`.
Consider now the woff2 fuzzing example from the libFuzzer tutorial <https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md>. We are aware that we cannot conclude much from this example because mutating compressed data is generally a bad idea, but let us use it anyway as an illustration for its simplicity. Let us use an empty blacklist together with one of the three following whitelists:
```
# (a)
src:*
fun:*
# (b)
src:SRC/*
fun:*
# (c)
src:SRC/src/woff2_dec.cc
fun:*
```
Running the built fuzzers shows how many instrumentation points the compiler adds, the fuzzer will output //XXX PCs//. Whitelist (a) is the instrument-everything whitelist, it produces 11912 instrumentation points. Whitelist (b) focuses coverage to instrument woff2 source code only, ignoring the dependency code for brotli (de)compression; it produces 3984 instrumented instrumentation points. Whitelist (c) focuses coverage to only instrument functions in the main file that deals with WOFF2 to TTF conversion, resulting in 1056 instrumentation points.
For experimentation purposes, we ran each fuzzer approximately 100 times, single process, with the initial corpus provided in the tutorial. We let the fuzzer run until it either found the heap buffer overflow or went out of memory. On this simple example, whitelists (b) and (c) found the heap buffer overflow more reliably and 5x faster than whitelist (a). The average execution times when finding the heap buffer overflow were as follows: (a) 904 s, (b) 156 s, and (c) 176 s.
We explain these results by the fact that WOFF2 to TTF conversion calls the brotli decompression algorithm's functions, which are mostly irrelevant for finding bugs in WOFF2 font reconstruction but nevertheless instrumented and used by whitelist (a) to guide fuzzing. This results in longer execution time for these functions and a partially irrelevant corpus. Contrary to whitelist (a), whitelists (b) and (c) will execute brotli-related functions without instrumentation overhead, and ignore new code paths found in them. This results in faster bug finding for WOFF2 font reconstruction.
The results for whitelist (b) are similar to the ones for whitelist (c). Indeed, WOFF2 to TTF conversion calls functions that are mostly located in SRC/src/woff2_dec.cc. The 2892 extra instrumentation points allowed by whitelist (b) do not tamper with bug finding, even though they are mostly irrelevant, simply because most of these functions do not get called. We get a slightly faster average time for bug finding with whitelist (b), which might indicate that some of the extra instrumentation points are actually relevant, or might just be random noise.
Reviewers: kcc, morehouse, vitalybuka
Reviewed By: morehouse, vitalybuka
Subscribers: pratyai, vitalybuka, eternalsakura, xwlin222, dende, srhines, kubamracek, #sanitizers, lebedev.ri, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D63616
Now compiler defines 5 sets of constants to represent rounding mode.
These are:
1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes
defined by IEEE-754 and is used in `APFloat` implementation.
2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754
rounding modes and a special value for dynamic rounding mode. It is used
in clang frontend.
3. `llvm::fp::RoundingMode`. Defines the same values as
`clang::LangOptions::FPRoundingModeKind` but in different order. It is
used to specify rounding mode in in IR and functions that operate IR.
4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7).
Besides constants for rounding mode it also uses a special value to
indicate error. It is convenient to use in intrinsic functions, as it
represents platform-independent representation for rounding mode. In this
role it is used in some pending patches.
5. Values like `FE_DOWNWARD` and other, which specify rounding mode in
library calls `fesetround` and `fegetround`. Often they represent bits
of some control register, so they are target-dependent. The same names
(not values) and a special name `FE_DYNAMIC` are used in
`#pragma STDC FENV_ROUND`.
The first 4 sets of constants are target independent and could have the
same numerical representation. It would simplify conversion between the
representations. Also now `clang::LangOptions::FPRoundingModeKind` and
`llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding
direction `roundTiesToAway`, although it is supported natively on
some targets.
This change defines all the rounding mode type via one `llvm::RoundingMode`,
which also contains rounding mode for IEEE rounding direction `roundTiesToAway`.
Differential Revision: https://reviews.llvm.org/D77379
Prior to this change the clang interface stubs format resembled
something ending with a symbol list like this:
Symbols:
a: { Type: Func }
This was problematic because we didn't actually want a map format and
also because we didn't like that an empty symbol list required
"Symbols: {}". That is to say without the empty {} llvm-ifs would crash
on an empty list.
With this new format it is much more clear which field is the symbol
name, and instead the [] that is used to express an empty symbol vector
is optional, ie:
Symbols:
- { Name: a, Type: Func }
or
Symbols: []
or
Symbols:
This further diverges the format from existing llvm-elftapi. This is a
good thing because although the format originally came from the same
place, they are not the same in any way.
Differential Revision: https://reviews.llvm.org/D76979
The driver enables -fdiagnostics-show-option by default, so flip the CC1
default to reduce the lengths of common CC1 command lines.
This change also makes ParseDiagnosticArgs() consistently enable
-fdiagnostics-show-option by default.
Summary:
CGProfilePass is run by default in certain new pass manager optimization pipeline. Assemblers other than llvm as (such as gnu as) cannot recognize the .cgprofile entries generated and emitted from this pass, causing build time error.
This patch adds new options in clang CodeGenOpts and PassBuilder options so that we can turn cgprofile off when not using integrated assembler.
Reviewers: Bigcheese, xur, george.burgess.iv, chandlerc, manojgupta
Reviewed By: manojgupta
Subscribers: manojgupta, void, hiraditya, dexonsmith, llvm-commits, tcwang, llozano
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D62627
This reverts commit 0788acbccbec094903a3425ffe5a98f8d55cbd64.
This reverts commit c2d7a1f79cedfc9fcb518596aa839da4de0adb69: Revert "[clangd] Add test for FindTarget+RecoveryExpr (which already works). NFC"
It causes a crash on invalid code:
class X {
decltype(unresolved()) foo;
};
constexpr int s = sizeof(X);
Normally clang avoids creating expressions when it encounters semantic
errors, even if the parser knows which expression to produce.
This works well for the compiler. However, this is not ideal for
source-level tools that have to deal with broken code, e.g. clangd is
not able to provide navigation features even for names that compiler
knows how to resolve.
The new RecoveryExpr aims to capture the minimal set of information
useful for the tools that need to deal with incorrect code:
source range of the expression being dropped,
subexpressions of the expression.
We aim to make constructing RecoveryExprs as simple as possible to
ensure writing code to avoid dropping expressions is easy.
Producing RecoveryExprs can result in new code paths being taken in the
frontend. In particular, clang can produce some new diagnostics now and
we aim to suppress bogus ones based on Expr::containsErrors.
We deliberately produce RecoveryExprs only in the parser for now to
minimize the code affected by this patch. Producing RecoveryExprs in
Sema potentially allows to preserve more information (e.g. type of an
expression), but also results in more code being affected. E.g.
SFINAE checks will have to take presence of RecoveryExprs into account.
Initial implementation only works in C++ mode, as it relies on compiler
postponing diagnostics on dependent expressions. C and ObjC often do not
do this, so they require more work to make sure we do not produce too
many bogus diagnostics on the new expressions.
See documentation of RecoveryExpr for more details.
original patch from Ilya
This change is based on https://reviews.llvm.org/D61722
Reviewers: sammccall, rsmith
Reviewed By: sammccall, rsmith
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69330
Passing small data limit to RISCVELFTargetObjectFile by module flag,
So the backend can set small data section threshold by the value.
The data will be put into the small data section if the data smaller than
the threshold.
Differential Revision: https://reviews.llvm.org/D57497
This flag is used by avr-gcc (starting with v10) to set the width of the
double type. The double type is by default interpreted as a 32-bit
floating point number in avr-gcc instead of a 64-bit floating point
number as is common on other architectures. Starting with GCC 10, a new
option has been added to control this behavior:
https://gcc.gnu.org/wiki/avr-gcc#Deviations_from_the_Standard
This commit keeps the default double at 32 bits but adds support for the
-mdouble flag (-mdouble=32 and -mdouble=64) to control this behavior.
Differential Revision: https://reviews.llvm.org/D76181
After a first attempt to fix the test-suite failures, my first recommit
caused the same failures again. I had updated CMakeList.txt files of
tests that needed -fcommon, but it turns out that there are also
Makefiles which are used by some bots, so I've updated these Makefiles
now too.
See the original commit message for more details on this change:
0a9fc9233e172601e26381810d093e02ef410f65
This includes fixes for:
- test-suite: some benchmarks need to be compiled with -fcommon, see D75557.
- compiler-rt: one test needed -fcommon, and another a change, see D75520.
Summary:
User can select the version of SYCL the compiler will
use via the flag -sycl-std, similar to -cl-std.
The flag defines the LangOpts.SYCLVersion option to the
version of SYCL. The default value is undefined.
If driver is building SYCL code, flag is set to the default SYCL
version (1.2.1)
The preprocessor uses this variable to define CL_SYCL_LANGUAGE_VERSION macro,
which should be defined according to SYCL 1.2.1 standard.
Only valid value at this point for the flag is 1.2.1.
Co-Authored-By: David Wood <Q0KPU0H1YOEPHRY1R2SN5B5RL@david.davidtw.co>
Signed-off-by: Ruyman Reyes <ruyman@codeplay.com>
Subscribers: ebevhan, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72857
The -fsystem-module flag is used when explicitly building a module. It
forces the module to be treated as a system module. This is used when
converting an implicit build to an explicit build to match the
systemness the implicit build would have had for a given module.
Differential Revision: https://reviews.llvm.org/D75395
This reverts commit 0a9fc9233e172601e26381810d093e02ef410f65.
Going to look at the asan failures.
I find the failures in the test suite weird, because they look
like compile time test and I don't understand how that can be
failing, but will have a brief look at that too.
This makes -fno-common the default for all targets because this has performance
and code-size benefits and is more language conforming for C code.
Additionally, GCC10 also defaults to -fno-common and so we get consistent
behaviour with GCC.
With this change, C code that uses tentative definitions as definitions of a
variable in multiple translation units will trigger multiple-definition linker
errors. Generally, this occurs when the use of the extern keyword is neglected
in the declaration of a variable in a header file. In some cases, no specific
translation unit provides a definition of the variable. The previous behavior
can be restored by specifying -fcommon.
As GCC has switched already, we benefit from applications already being ported
and existing documentation how to do this. For example:
- https://gcc.gnu.org/gcc-10/porting_to.html
- https://wiki.gentoo.org/wiki/Gcc_10_porting_notes/fno_common
Differential revision: https://reviews.llvm.org/D75056
Summary:
User can select the version of SYCL the compiler will
use via the flag -sycl-std, similar to -cl-std.
The flag defines the LangOpts.SYCLVersion option to the
version of SYCL. The default value is undefined.
If driver is building SYCL code, flag is set to the default SYCL
version (1.2.1)
The preprocessor uses this variable to define CL_SYCL_LANGUAGE_VERSION macro,
which should be defined according to SYCL 1.2.1 standard.
Only valid value at this point for the flag is 1.2.1.
Co-Authored-By: David Wood <Q0KPU0H1YOEPHRY1R2SN5B5RL@david.davidtw.co>
Signed-off-by: Ruyman Reyes <ruyman@codeplay.com>
Subscribers: ebevhan, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72857
Signed-off-by: Alexey Bader <alexey.bader@intel.com>
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Summary:
This is trying to implement the functionality proposed in:
http://lists.llvm.org/pipermail/cfe-dev/2017-April/053417.html
An exception can throw, but no cleanup is going to happen.
A module compiled with exceptions on, can catch the exception throws
from module compiled with -fignore-exceptions.
The use cases for enabling this option are:
1. Performance analysis of EH instrumentation overhead
2. The ability to QA non EH functionality when EH functionality is not available.
3. User of EH enabled headers knows the calls won't throw in their program and
wants the performance gain from ignoring EH construct.
The implementation tried to accomplish that by removing any landing pad code
that might get generated.
Reviewed by: aaron.ballman
Differential Revision: https://reviews.llvm.org/D72644
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
The function attributes xray-skip-entry, xray-skip-exit, and
xray-ignore-loops were only being applied if a function had an
xray-instrument attribute, but they should apply if xray is enabled
globally too.
Differential Revision: https://reviews.llvm.org/D73842
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a357a8f685b3540246c5d762734e035f with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a357a8f685b3540246c5d762734e035f with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a357a8f685b3540246c5d762734e035f with better option
handling and more portable testing
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a357a8f685b3540246c5d762734e035f with correct option
flags set.
Differential Revision: https://reviews.llvm.org/D68720
This re-lands commits f41ec709d9d388dc43469e6ac7f51b6313f7e4af (https://reviews.llvm.org/D74076)
and commit 5fedc2b410853a6aef05e8edf19ebfc4e071e28f (https://reviews.llvm.org/D74070)
The previous build break was caused by '#pragma clang __debug llvm_unreachable' used in a non-assert build. Move it to a separate test in crash-report-with-asserts.c.
This reverts commit 39f50da2a357a8f685b3540246c5d762734e035f.
The -fstack-clash-protection is being passed to the linker too, which
is not intended.
Reverting and fixing that in a later commit.
Summary:
Following the AAPCS, every store to a volatile bit-field requires to generate one load of that field, even if all the bits are going to be replaced.
This patch allows the user to opt-in in following such rule, whenever the a.
AAPCS Release 2019Q1.1 (https://static.docs.arm.com/ihi0042/g/aapcs32.pdf)
section 8.1 Data Types, page 35, paragraph: Volatile bit-fields – preserving number and width of container accesses
```
When a volatile bit-field is written, and its container does not overlap with any non-bit-field member, its
container must be read exactly once and written exactly once using the access width appropriate to the
type of the container. The two accesses are not atomic.
```
Reviewers: lebedev.ri, ostannard, jfb, eli.friedman
Reviewed By: jfb
Subscribers: rsmith, rjmccall, dexonsmith, kristof.beyls, jfb, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67399