As constant expressions can no longer trap, it only makes sense to
call isSafeToSpeculativelyExecute on Instructions, so limit the
API to accept only them, rather than general Operators or Values.
As integer div/rem constant expressions are no longer supported,
constants can no longer trap and are always safe to speculate.
Remove the Constant::canTrap() method and its usages.
Enhance getConstantDataArrayInfo to let the memchr and memcmp library
call folders look through arbitrarily long sequences of bitcast and
GEP instructions.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D128364
A llvm.vscale will always be at least 1, never zero. Teaching that to
isKnownNonZero can help fold away some statically known compares.
Differential Revision: https://reviews.llvm.org/D128217
Remove the known limitation of the library function call folders to only
work with top-level arrays of characters (as per the TODO comment in
the code) and allows them to also fold calls involving subobjects of
constant aggregates such as member arrays.
This extends a similar pattern from D125500 and D127754.
If we know that operand 1 (RHS) of a subtract is itself a
non-overflowing subtract from operand 0 (LHS), then the
final/outer subtract is also non-overflowing:
https://alive2.llvm.org/ce/z/Bqan8v
InstCombine uses this analysis to trigger a narrowing
optimization, so that is what the first changed test shows.
The last test models a motivating case from issue #48013.
In that example, we determine 'nuw' on the first sub from
the urem, then we determine that the 2nd sub can be narrowed,
and that leads to eliminating both subtracts.
here are still several missing subtract narrowing optimizations
demonstrated in the tests above the diffs shown here - those
should be handled in InstCombine with another set of patches.
This extends a similar pattern from D125500.
If we know that operand 1 (RHS) of a subtract is itself a
non-overflowing subtract from operand 0 (LHS), then the
final/outer subtract is also non-overflowing:
https://alive2.llvm.org/ce/z/Bqan8v
InstCombine uses this analysis to trigger a narrowing
optimization, so that is what the first changed test shows.
The last test models the motivating case from issue #48013.
In that example, we determine 'nsw' on the first sub from
the srem, then we determine that the 2nd sub can be narrowed,
and that leads to eliminating both subtracts.
This works for unsigned sub too, but I left that out to keep
the patch minimal. If this looks ok, I will follow up with
that change. There are also several missing subtract narrowing
optimizations demonstrated in the tests above the diffs shown
here - those should be handled in InstCombine with another set
of patches.
Differential Revision: https://reviews.llvm.org/D127754
Now that SimpleLoopUnswitch and other transforms no longer introduce
branch on poison, enable the -branch-on-poison-as-ub option by
default. The practical impact of this is mostly better flag
preservation in SCEV, and some freeze instructions no longer being
necessary.
Differential Revision: https://reviews.llvm.org/D125299
VP intrinsics show UB if the %evl parameter is out of bounds - they must
not carry the speculatable attribute. The out-of-bounds UB disappears
when the %evl parameter is expanded into the mask or expansion replaces
the entire VP intrinsic with non-VP code.
This patch
- Removes the speculatable attribute on all VP intrinsics.
- Generalizes the isSafeToSpeculativelyExecute function to let VP
expansion know whether the VP intrinsic replacement will be
speculatable. VP expansion may only discard %evl where this is the
case.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D125296
Add Value Tracking support to deduce induction variable being a power of 2, allowing urem optimizations
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D126018
A load with !dereferenceable or !dereferenceable_or_null metadata
must return a well-defined (non-undef/poison) value. Effectively
they imply !noundef. This is the same as we do for the
dereferenceable(N) attribute.
This should fix https://github.com/llvm/llvm-project/issues/55672,
or at least the specific case discussed there.
Differential Revision: https://reviews.llvm.org/D126296
Add Value Tracking support to deduce induction variable being a power of 2, allowing urem optimizations
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D125332
isImpliedCondition() currently handles and/or on the LHS, but not
on the RHS, resulting in asymmetric behavior. This patch adds two
new implication rules:
* LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
* LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
Differential Revision: https://reviews.llvm.org/D125551
I fixed some poison-safety violations on related patterns in InstCombine
and noticed that we missed adding nsw/nuw on them, so this adds clauses
to the underlying analysis for that.
We need the undef input restriction to make this safe according to Alive2:
https://alive2.llvm.org/ce/z/48g9K8
Differential Revision: https://reviews.llvm.org/D125500
This extends haveNoCommonBitsSet() to two additional cases, allowing
the following folds:
* `A + (B & ~A)` --> `A | (B & ~A)`
(https://alive2.llvm.org/ce/z/crxxhN)
* `A + ((A & B) ^ B)` --> `A | ((A & B) ^ B)`
(https://alive2.llvm.org/ce/z/A_wsH_)
These should further fold to just `A | B`, though this currently
only works in the first case.
The reason why the second fold is necessary is that we consider
this to be the canonical form if B is a constant. (I did check
whether we can change that, but it looks like a number of folds
depend on the current canonicalization, so I ended up adding both
patterns here.)
Differential Revision: https://reviews.llvm.org/D124763
This reverts commit e810d558093cff40caaa1aff24d289c76c59916d.
The commit was not taken into account the fact that strduped string could be
modified. Checking if such modification happens would make the function very
costly, without a test case in mind it's not worth the effort.
Two interesting ommissions:
* When reordering in either direction, reordering two calls which both
contain inf-loops is illegal. This one is possibly a change in behavior
for certain callers (e.g. fixes a latent bug.)
* When moving down, control dependence must be respected by checking the
inverse of isSafeToSpeculativeExecute. Current callers all seem to
handle this case - though admitted, I did not do an exhaustive audit.
Most seem to be only interested in moving upwards within a block. This
is mostly a case of future proofing an API so that it implements what
the comments says, not just what current callers need.
Noticed via inspection. I don't have a test case.
Currently some optimizations are disabled because llvm::CannotBeNegativeZero()
does not know how to deal with the constrained intrinsics. This patch fixes
that by extending the existing implementation.
Differential Revision: https://reviews.llvm.org/D121483
We still need the code after stripAndAccumulateConstantOffsets() since
it doesn't handle GEPs of scalable types and non-constant but identical
indexes.
Differential Revision: https://reviews.llvm.org/D120523
This is a revert of cfcc42bdc. The analysis is wrong as shown by
the minimal tests for instcombine:
https://alive2.llvm.org/ce/z/y9Dp8A
There may be a way to salvage some of the other tests,
but that can be done as follow-ups. This avoids a miscompile
and fixes#54311.
This is the same special logic we apply for SPF signed clamps
when computing the number of sign bits, just for intrinsics.
This just uses the same logic as the select case, but there's
multiple directions this could be improved in: We could also use
the num sign bits from the clamped value, we could do this during
constant range calculation, and there's probably unsigned analogues
for the constant range case at least.
This one tries to fix:
https://github.com/llvm/llvm-project/issues/53357.
Simply, this one would check (x & y) and ~(x | y) in
haveNoCommonBitsSet. Since they shouldn't have common bits (we could
traverse the case by enumerating), and we could convert this one to (x &
y) | ~(x | y) . Then the compiler could handle it in
InstCombineAndOrXor.
Further more, since ((x & y) + (~x & ~y)) would be converted to ((x & y)
+ ~(x | y)), this patch would fix it too.
https://alive2.llvm.org/ce/z/qsKzRS
Reviewed By: spatel, xbolva00, RKSimon, lebedev.ri
Differential Revision: https://reviews.llvm.org/D118094
Fixes a MemCpyOpt miscompile with opaque pointers.
This function can be further cleaned up, but let's just fix the miscompile first.
Reviewed By: #opaque-pointers, nikic
Differential Revision: https://reviews.llvm.org/D119652
D108992 added KnownBits handling for 'Quadratic Reciprocity' self-multiplication patterns (bit[1] == 0), which can be used for non-undef values (poison is OK).
This patch adds noundef selfmultiply handling to value tracking so demanded bits patterns can make use of it.
Differential Revision: https://reviews.llvm.org/D117995
The behavior in Analysis (knownbits) implements poison semantics already,
and we expect the transforms (for example, in instcombine) derived from
those semantics, so this patch changes the LangRef and remaining code to
be consistent. This is one more step in removing "undef" from LLVM.
Without this, I think https://github.com/llvm/llvm-project/issues/53330
has a legitimate complaint because that report wants to allow subsequent
code to mask off bits, and that is allowed with undef values. The clang
builtins are not actually documented anywhere AFAICT, but we might want
to add that to remove more uncertainty.
Differential Revision: https://reviews.llvm.org/D117912
This was noted in post-commit review for D116322 / 0edf99950e6 .
I am not seeing how to expose the bug in a test though because
we don't pass an assumption cache into this analysis from there.
This function returns an upper bound on the number of bits needed
to represent the signed value. Use "Max" to match similar functions
in KnownBits like countMaxActiveBits.
Rename APInt::getMinSignedBits->getSignificantBits. Keeping the old
name around to keep this patch size down. Will do a bulk rename as
follow up.
Rename KnownBits::countMaxSignedBits->countMaxSignificantBits.
Reviewed By: lebedev.ri, RKSimon, spatel
Differential Revision: https://reviews.llvm.org/D116522
We should not lose analysis precision if an 'add' has both no-wrap
flags (nsw and nuw) compared to just one or the other.
This patch is modeled on a similar construct that was added with
D59386.
I don't think it is possible to expose a problem with an unsigned
compare because of the way this was coded (nuw is handled first).
InstCombine has an assert that fires with the example from:
https://github.com/llvm/llvm-project/issues/52884
...because it was expecting InstSimplify to handle this kind of
pattern with an smax.
Fixes#52884
Differential Revision: https://reviews.llvm.org/D116322