Summary: The attribute grammar includes an optional trailing colon type, so for attributes without a constant buildable type this will generally lead to unexpected and undesired behavior. Given that, it's better to just error out on these cases.
Differential Revision: https://reviews.llvm.org/D77293
Summary: It is a very common user trap to think that the location printed along with the diagnostic is the same as the current operation that caused the error. This revision changes the behavior to always print the current operation, except for when diagnostics are being verified. This is achieved by moving the command line flags in IR/ to be options on the MLIRContext.
Differential Revision: https://reviews.llvm.org/D77095
Summary:
A recent extension allowed the `loop.if` operation to return results yielded by
its regions. However, such operations could not be lowered to a CFG of standard
operations because it would have required to modify the argument list of a
block, which is not allowed in a conversion pattern. Now that the conversion
infrastructure supports block creation, use it to create a block with an
argument list that dominates the operations following the `loop.if` and forward
the results as arguments of this block.
Depends On D77416
Differential Revision: https://reviews.llvm.org/D77418
Summary:
Linalg makes it possible to interface codegen with externally precompiled HPC libraries. The mechanism to allow such interop uses a normalized ABI and the emission of C interface wrappers.
The mechanism controlling these C interface emission is too aggressive and makes it very easy to obtained undefined symbols for external function (e.g. the ones coming from libm).
This revision uses the newly introduced llvm.emit_c_interface function attribute which allows controlling this behavior at a function granularity. As a consequence LinalgToLLVM does not need to activate the C wrapper emission when adding the StdToLLVM patterns.
Differential Revision: https://reviews.llvm.org/D77364
PatternRewriter and derived classes provide a set of virtual methods to
manipulate blocks, which ConversionPatternRewriter overrides to keep track of
the manipulations and undo them in case the conversion fails. However, one can
currently create a block only by splitting another block into two. This not
only makes the API inconsistent (`splitBlock` is allowed in conversion
patterns, but `createBlock` is not), but it also make it impossible for one to
create blocks with argument lists different from those of already existing
blocks since in-place block updates are not supported either. Such
functionality precludes dialect conversion infrastructure from being used more
extensively on region-containing ops, for example, for value-returning "if"
operations. At the same time, ConversionPatternRewriter already allows one to
undo block creation as block creation is one of the primitive operations in
already supported region inlining.
Support block creation in conversion patterns by hooking `createBlock` on the
block action undo mechanism. This requires to make `Builder::createBlock`
virtual, similarly to Op insertion. This is a minimal change to the Builder
infrastructure that will later help support additional use cases such as block
signature changes. `createBlock` now additionally takes the types of the block
arguments that are added immediately so as to avoid in-place argument list
manipulation that would be illegal in conversion patterns.
Previously, the tablegen() cmake command, which defines custom
commands for running tablegen, included several hardcoded paths. This
becomes unwieldy as there are more users for which these paths are
insufficient. For most targets, cmake uses include_directories() and
the INCLUDE_DIRECTORIES directory property to specify include paths.
This change picks up the INCLUDE_DIRECTORIES property and adds it
to the include path used when running tablegen. As a side effect, this
allows us to remove several hard coded paths to tablegen that are redundant
with specified include_directories().
I haven't removed the hardcoded path to CMAKE_CURRENT_SOURCE_DIR, which
seems generically useful. There are several users in clang which apparently
don't have the current directory as an include_directories(). This could
be considered separately.
The new version of this path uses list APPEND rather than list TRANSFORM,
in order to be compatible with cmake 3.4.3. If we update to cmake 3.12 then
we can use list TRANSFORM instead.
Differential Revision: https://reviews.llvm.org/D77156
Previously, the tablegen() cmake command, which defines custom
commands for running tablegen, included several hardcoded paths. This
becomes unwieldy as there are more users for which these paths are
insufficient. For most targets, cmake uses include_directories() and
the INCLUDE_DIRECTORIES directory property to specify include paths.
This change picks up the INCLUDE_DIRECTORIES property and adds it
to the include path used when running tablegen. As a side effect, this
allows us to remove several hard coded paths to tablegen that are redundant
with specified include_directories().
I haven't removed the hardcoded path to CMAKE_CURRENT_SOURCE_DIR, which
seems generically useful. There are several users in clang which apparently
don't have the current directory as an include_directories(). This could
be considered separately.
Differential Revision: https://reviews.llvm.org/D77156
Two back-to-back transpose operations are combined into a single transpose, which uses a combination of their permutation vectors.
Differential Revision: https://reviews.llvm.org/D77331
A certain number of EDSCs have a named form (e.g. `linalg.matmul`) and a generic form (e.g. `linalg.generic` with matmul traits).
Despite living in different namespaces, using the same name is confusiong in clients.
Rename them as `linalg_matmul` and `linalg_generic_matmul` respectively.
This slightly tweaks the generated code from:
#ifdef GEN_PASS_REGISTRATION
::mlir::registerPass("flag1", ...
::mlir::registerPass("flag2", ...
#endif // GEN_PASS_REGISTRATION
to:
#ifdef GEN_PASS_REGISTRATION
#define GEN_PASS_REGISTRATION_Pass1
#define GEN_PASS_REGISTRATION_Pass2
#endif // GEN_PASS_REGISTRATION
#ifdef GEN_PASS_REGISTRATION_Pass1
::mlir::registerPass("flag1", ...
#endif
#ifdef GEN_PASS_REGISTRATION_Pass1
::mlir::registerPass("flag2", ...
#endif
That way the generated code can be included by defining the
`GEN_PASS_REGISTRATION` macro as currenty and register all the passes,
but one can also define only `GEN_PASS_REGISTRATION_Pass1` to register a
subset of the passes.
Differential Revision: https://reviews.llvm.org/D77322
C interface emission is controlled by a flag and has coarse granularity.
With this coarse control, interfaces are emitted for all external functions.
This makes is easy to get undefined symbols.
This revision adds support for controlling per-function emission with an "emit_c_interface" attribute.
Summary:
LLVM IR functions can have arbitrary attributes attached to them, some of which
affect may affect code transformations. Until we can model all attributes
consistently, provide a pass-through mechanism that forwards attributes from
the LLVMFuncOp in MLIR to LLVM IR functions during translation. This mechanism
relies on LLVM IR being able to recognize string representations of the
attributes and performs some additional checking to avoid hitting assertions
within LLVM code.
Differential Revision: https://reviews.llvm.org/D77072
Add a method that given an affine map returns another with just its unique
results. Use this to drop redundant bounds in max/min for affine.for. Update
affine.for's canonicalization pattern and createCanonicalizedForOp to use
this.
Differential Revision: https://reviews.llvm.org/D77237
There is no need to directly depends on this from mlir-opt, some library
may transitively depend on a subset of the targets when enabled (like
NVPTX for Cuda codegen tests) but this is handled by CMake already.
Modernize/cleanup code in loop transforms utils - a lot of this code was
written prior to the currently available IR support / code style. This
patch also does some variable renames including inst -> op, comment
updates, turns getCleanupLoopLowerBound into a local function.
Differential Revision: https://reviews.llvm.org/D77175
Summary:
This is to allow optimizations like loop invariant code motion to work
on the ParallelOp.
Additional small cleanup on the ForOp implementation of
LoopLikeInterface and the test file of loop-invariant-code-motion.
Differential Revision: https://reviews.llvm.org/D77128
Summary:
This revision adds support for auto-generating pass documentation, replacing the need to manually keep Passes.md up-to-date. This matches the behavior already in place for dialect and interface documentation.
Differential Revision: https://reviews.llvm.org/D76660
This revision adds support for generating utilities for passes such as options/statistics/etc. that can be inferred from the tablegen definition. This removes additional boilerplate from the pass, and also makes it easier to remove the reliance on the pass registry to provide certain things(e.g. the pass argument).
Differential Revision: https://reviews.llvm.org/D76659
This removes the need to statically register conversion passes, and also puts all of the conversions within one centralized file.
Differential Revision: https://reviews.llvm.org/D76658
This generates a Passes.td for all of the dialects that have transformation passes. This removes the need for global registration for all of the dialect passes.
Differential Revision: https://reviews.llvm.org/D76657
This will greatly simplify a number of things related to passes:
* Enables generation of pass registration
* Enables generation of boiler plate pass utilities
* Enables generation of pass documentation
This revision focuses on adding the basic structure and adds support for generating the registration for passes in the Transforms/ directory. Future revisions will add more support and move more passes over.
Differential Revision: https://reviews.llvm.org/D76656
Summary:
The commit provides a single method to build affine maps with zero or more
results. Users of mlir::AffineMap previously had to dispatch between two methods
depending on the number of results.
At the same time, this commit fixes the method for building affine map with zero
results that was previously ignoring its `symbolCount` argument.
Differential Revision: https://reviews.llvm.org/D77126
Summary:
OpBuilder(Block) is specifically replaced with
OpBuilder::atBlockEnd(Block);
This is to make insertion behavior clear due to there being no one
correct answer for which location in a block the default insertion
point should be.
Differential Revision: https://reviews.llvm.org/D77060
Summary:
The RAW fusion happens only if the produecer block dominates the consumer block.
The WAW pattern also works with the precondition. I.e., if a producer can
dominate the consumer, they can fairly fuse together.
Since they are all tilable, we can think the pattern like this way:
Input:
```
linalg_op1 view
tile_loop
subview_2
linalg_op2 subview_2
```
Tile the first Linalg op as same as the second Linalg.
```
tile_loop
subview_1
linalg_op1 subview_1
tile_loop
subview_2
liangl_op2 subview_2
```
Since the first Linalg op is tilable in the same way and the computation are
independently, it's fair to fuse it with the second Linalg op.
```
tile_loop
subview_1
linalg_op1 subview_1
linalg_op2 subview_2
```
In short, this patch includes:
- Handling both RAW and WAW pattern.
- Adding a interface method to get input and output buffers.
- Exposing a method to get a StringRef of a dependency type.
- Fixing existing WAW tests and add one more use case: initialize the buffer
before conv op.
Differential Revision: https://reviews.llvm.org/D76897
Summary:
Performs an N-D pooling operation similarly to the description in the TF
documentation:
https://www.tensorflow.org/api_docs/python/tf/nn/pool
Different from the description, this operation doesn't perform on batch and
channel. It only takes tensors of rank `N`.
```
output[x[0], ..., x[N-1]] =
REDUCE_{z[0], ..., z[N-1]}
input[
x[0] * strides[0] - pad_before[0] + dilation_rate[0]*z[0],
...
x[N-1]*strides[N-1] - pad_before[N-1] + dilation_rate[N-1]*z[N-1]
],
```
The required optional arguments are:
- strides: an i64 array specifying the stride (i.e. step) for window
loops.
- dilations: an i64 array specifying the filter upsampling/input
downsampling rate
- padding: an i64 array of pairs (low, high) specifying the number of
elements to pad along a dimension.
If strides or dilations attributes are missing then the default value is
one for each of the input dimensions. Similarly, padding values are zero
for both low and high in each of the dimensions, if not specified.
Differential Revision: https://reviews.llvm.org/D76414
This commit changes the separator line for dividing auto-generated
docs from spec and manually added appendix from "### Custom assembly
form" to "<!-- End of AutoGen section -->". This is in preparation
to use the declarative assembly form in MLIR core. We will replace
more and more manually written assembly forms to be autogenerated.
Differential Revision: https://reviews.llvm.org/D77158
Move lower-affine.mlir from test/Transforms to
test/Conversion/AffineToStandard/. Other related NFC.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D77008
Existing tiling implementation of Linalg would still work for tiling
the batch dimensions of the convolution op.
Differential Revision: https://reviews.llvm.org/D76637
Summary:
Add support for TupleGetOp folding through InsertSlicesOp and ExtractSlicesOp.
Vector-to-vector transformations for unrolling and lowering to hardware vectors
can generate chains of structured vector operations (InsertSlicesOp,
ExtractSlicesOp and ShapeCastOp) between the producer of a hardware vector
value and its consumer. Because InsertSlicesOp, ExtractSlicesOp and ShapeCastOp
are structured, we can track the location (tuple index and vector offsets) of
the consumer vector value through the chain of structured operations to the
producer, enabling a much more powerful producer-consumer fowarding of values
through structured ops and tuple, which in turn enables a more powerful
TupleGetOp folding transformation.
Reviewers: nicolasvasilache, aartbik
Reviewed By: aartbik
Subscribers: grosul1, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76889
Summary: This object file has grown beyond the default limit, and elsewhere in LLVM, we seem to be setting this flag as a one-off, so continuing that here.
Reviewers: mravishankar, antiagainst
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77002