llvm-capstone/llvm/lib/Target/RISCV/RISCVInsertVSETVLI.cpp
Philip Reames d199bf9822 [RISCV][InsertVSETVLI] Handle partially transparent instructions in PRE
The PRE implementation was being overly strict when checking to see if a vsetvli was removed in the current block. For instructions which don't use all the fields of VTYPE or VL, we can propagate a changed state past the first instruction with an SEW operand and remove a vsetvli later in the block. We do need to be careful now to ensure that the state convergences before the end of the block or we'd invalidate the cached data flow results.

Taking a step back, we're modeling the effect of the emitVSETVLIs pass which runs just after PRE. This is unfortunate, and makes me think we should probably reevaluate doing the PRE as a post-pass instead of as surgery in the data flow phases. Doing that requires us to get more aggressive about mutating user written vsetvlis which we've tried not to do up to now, but well, maybe it's time? Anyways, that's a thought for the future, not something I'm proposing doing now.

Differential Revision: https://reviews.llvm.org/D142409
2023-01-27 11:52:09 -08:00

1456 lines
49 KiB
C++

//===- RISCVInsertVSETVLI.cpp - Insert VSETVLI instructions ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a function pass that inserts VSETVLI instructions where
// needed and expands the vl outputs of VLEFF/VLSEGFF to PseudoReadVL
// instructions.
//
// This pass consists of 3 phases:
//
// Phase 1 collects how each basic block affects VL/VTYPE.
//
// Phase 2 uses the information from phase 1 to do a data flow analysis to
// propagate the VL/VTYPE changes through the function. This gives us the
// VL/VTYPE at the start of each basic block.
//
// Phase 3 inserts VSETVLI instructions in each basic block. Information from
// phase 2 is used to prevent inserting a VSETVLI before the first vector
// instruction in the block if possible.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "RISCVSubtarget.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include <queue>
using namespace llvm;
#define DEBUG_TYPE "riscv-insert-vsetvli"
#define RISCV_INSERT_VSETVLI_NAME "RISCV Insert VSETVLI pass"
static cl::opt<bool> DisableInsertVSETVLPHIOpt(
"riscv-disable-insert-vsetvl-phi-opt", cl::init(false), cl::Hidden,
cl::desc("Disable looking through phis when inserting vsetvlis."));
static cl::opt<bool> UseStrictAsserts(
"riscv-insert-vsetvl-strict-asserts", cl::init(true), cl::Hidden,
cl::desc("Enable strict assertion checking for the dataflow algorithm"));
namespace {
static unsigned getVLOpNum(const MachineInstr &MI) {
return RISCVII::getVLOpNum(MI.getDesc());
}
static unsigned getSEWOpNum(const MachineInstr &MI) {
return RISCVII::getSEWOpNum(MI.getDesc());
}
static bool isVectorConfigInstr(const MachineInstr &MI) {
return MI.getOpcode() == RISCV::PseudoVSETVLI ||
MI.getOpcode() == RISCV::PseudoVSETVLIX0 ||
MI.getOpcode() == RISCV::PseudoVSETIVLI;
}
/// Return true if this is 'vsetvli x0, x0, vtype' which preserves
/// VL and only sets VTYPE.
static bool isVLPreservingConfig(const MachineInstr &MI) {
if (MI.getOpcode() != RISCV::PseudoVSETVLIX0)
return false;
assert(RISCV::X0 == MI.getOperand(1).getReg());
return RISCV::X0 == MI.getOperand(0).getReg();
}
static uint16_t getRVVMCOpcode(uint16_t RVVPseudoOpcode) {
const RISCVVPseudosTable::PseudoInfo *RVV =
RISCVVPseudosTable::getPseudoInfo(RVVPseudoOpcode);
if (!RVV)
return 0;
return RVV->BaseInstr;
}
static bool isScalarMoveInstr(const MachineInstr &MI) {
switch (getRVVMCOpcode(MI.getOpcode())) {
default:
return false;
case RISCV::VMV_S_X:
case RISCV::VFMV_S_F:
return true;
}
}
/// Get the EEW for a load or store instruction. Return std::nullopt if MI is
/// not a load or store which ignores SEW.
static std::optional<unsigned> getEEWForLoadStore(const MachineInstr &MI) {
switch (getRVVMCOpcode(MI.getOpcode())) {
default:
return std::nullopt;
case RISCV::VLE8_V:
case RISCV::VLSE8_V:
case RISCV::VSE8_V:
case RISCV::VSSE8_V:
return 8;
case RISCV::VLE16_V:
case RISCV::VLSE16_V:
case RISCV::VSE16_V:
case RISCV::VSSE16_V:
return 16;
case RISCV::VLE32_V:
case RISCV::VLSE32_V:
case RISCV::VSE32_V:
case RISCV::VSSE32_V:
return 32;
case RISCV::VLE64_V:
case RISCV::VLSE64_V:
case RISCV::VSE64_V:
case RISCV::VSSE64_V:
return 64;
}
}
/// Return true if this is an operation on mask registers. Note that
/// this includes both arithmetic/logical ops and load/store (vlm/vsm).
static bool isMaskRegOp(const MachineInstr &MI) {
if (!RISCVII::hasSEWOp(MI.getDesc().TSFlags))
return false;
const unsigned Log2SEW = MI.getOperand(getSEWOpNum(MI)).getImm();
// A Log2SEW of 0 is an operation on mask registers only.
return Log2SEW == 0;
}
/// Which subfields of VL or VTYPE have values we need to preserve?
struct DemandedFields {
// Some unknown property of VL is used. If demanded, must preserve entire
// value.
bool VLAny = false;
// Only zero vs non-zero is used. If demanded, can change non-zero values.
bool VLZeroness = false;
bool SEW = false;
bool LMUL = false;
bool SEWLMULRatio = false;
bool TailPolicy = false;
bool MaskPolicy = false;
// Return true if any part of VTYPE was used
bool usedVTYPE() const {
return SEW || LMUL || SEWLMULRatio || TailPolicy || MaskPolicy;
}
// Return true if any property of VL was used
bool usedVL() {
return VLAny || VLZeroness;
}
// Mark all VTYPE subfields and properties as demanded
void demandVTYPE() {
SEW = true;
LMUL = true;
SEWLMULRatio = true;
TailPolicy = true;
MaskPolicy = true;
}
// Mark all VL properties as demanded
void demandVL() {
VLAny = true;
VLZeroness = true;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Support for debugging, callable in GDB: V->dump()
LLVM_DUMP_METHOD void dump() const {
print(dbgs());
dbgs() << "\n";
}
/// Implement operator<<.
void print(raw_ostream &OS) const {
OS << "{";
OS << "VLAny=" << VLAny << ", ";
OS << "VLZeroness=" << VLZeroness << ", ";
OS << "SEW=" << SEW << ", ";
OS << "LMUL=" << LMUL << ", ";
OS << "SEWLMULRatio=" << SEWLMULRatio << ", ";
OS << "TailPolicy=" << TailPolicy << ", ";
OS << "MaskPolicy=" << MaskPolicy;
OS << "}";
}
#endif
};
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_ATTRIBUTE_USED
inline raw_ostream &operator<<(raw_ostream &OS, const DemandedFields &DF) {
DF.print(OS);
return OS;
}
#endif
/// Return true if the two values of the VTYPE register provided are
/// indistinguishable from the perspective of an instruction (or set of
/// instructions) which use only the Used subfields and properties.
static bool areCompatibleVTYPEs(uint64_t VType1,
uint64_t VType2,
const DemandedFields &Used) {
if (Used.SEW &&
RISCVVType::getSEW(VType1) != RISCVVType::getSEW(VType2))
return false;
if (Used.LMUL &&
RISCVVType::getVLMUL(VType1) != RISCVVType::getVLMUL(VType2))
return false;
if (Used.SEWLMULRatio) {
auto Ratio1 = RISCVVType::getSEWLMULRatio(RISCVVType::getSEW(VType1),
RISCVVType::getVLMUL(VType1));
auto Ratio2 = RISCVVType::getSEWLMULRatio(RISCVVType::getSEW(VType2),
RISCVVType::getVLMUL(VType2));
if (Ratio1 != Ratio2)
return false;
}
if (Used.TailPolicy &&
RISCVVType::isTailAgnostic(VType1) != RISCVVType::isTailAgnostic(VType2))
return false;
if (Used.MaskPolicy &&
RISCVVType::isMaskAgnostic(VType1) != RISCVVType::isMaskAgnostic(VType2))
return false;
return true;
}
/// Return the fields and properties demanded by the provided instruction.
static DemandedFields getDemanded(const MachineInstr &MI) {
// Warning: This function has to work on both the lowered (i.e. post
// emitVSETVLIs) and pre-lowering forms. The main implication of this is
// that it can't use the value of a SEW, VL, or Policy operand as they might
// be stale after lowering.
// Most instructions don't use any of these subfeilds.
DemandedFields Res;
// Start conservative if registers are used
if (MI.isCall() || MI.isInlineAsm() || MI.readsRegister(RISCV::VL))
Res.demandVL();;
if (MI.isCall() || MI.isInlineAsm() || MI.readsRegister(RISCV::VTYPE))
Res.demandVTYPE();
// Start conservative on the unlowered form too
uint64_t TSFlags = MI.getDesc().TSFlags;
if (RISCVII::hasSEWOp(TSFlags)) {
Res.demandVTYPE();
if (RISCVII::hasVLOp(TSFlags))
Res.demandVL();
// Behavior is independent of mask policy.
if (!RISCVII::usesMaskPolicy(TSFlags))
Res.MaskPolicy = false;
}
// Loads and stores with implicit EEW do not demand SEW or LMUL directly.
// They instead demand the ratio of the two which is used in computing
// EMUL, but which allows us the flexibility to change SEW and LMUL
// provided we don't change the ratio.
// Note: We assume that the instructions initial SEW is the EEW encoded
// in the opcode. This is asserted when constructing the VSETVLIInfo.
if (getEEWForLoadStore(MI)) {
Res.SEW = false;
Res.LMUL = false;
}
// Store instructions don't use the policy fields.
if (RISCVII::hasSEWOp(TSFlags) && MI.getNumExplicitDefs() == 0) {
Res.TailPolicy = false;
Res.MaskPolicy = false;
}
// If this is a mask reg operation, it only cares about VLMAX.
// TODO: Possible extensions to this logic
// * Probably ok if available VLMax is larger than demanded
// * The policy bits can probably be ignored..
if (isMaskRegOp(MI)) {
Res.SEW = false;
Res.LMUL = false;
}
// For vmv.s.x and vfmv.s.f, there are only two behaviors, VL = 0 and VL > 0.
if (isScalarMoveInstr(MI)) {
Res.LMUL = false;
Res.SEWLMULRatio = false;
Res.VLAny = false;
}
return Res;
}
/// Defines the abstract state with which the forward dataflow models the
/// values of the VL and VTYPE registers after insertion.
class VSETVLIInfo {
union {
Register AVLReg;
unsigned AVLImm;
};
enum : uint8_t {
Uninitialized,
AVLIsReg,
AVLIsImm,
Unknown,
} State = Uninitialized;
// Fields from VTYPE.
RISCVII::VLMUL VLMul = RISCVII::LMUL_1;
uint8_t SEW = 0;
uint8_t TailAgnostic : 1;
uint8_t MaskAgnostic : 1;
uint8_t SEWLMULRatioOnly : 1;
public:
VSETVLIInfo()
: AVLImm(0), TailAgnostic(false), MaskAgnostic(false),
SEWLMULRatioOnly(false) {}
static VSETVLIInfo getUnknown() {
VSETVLIInfo Info;
Info.setUnknown();
return Info;
}
bool isValid() const { return State != Uninitialized; }
void setUnknown() { State = Unknown; }
bool isUnknown() const { return State == Unknown; }
void setAVLReg(Register Reg) {
AVLReg = Reg;
State = AVLIsReg;
}
void setAVLImm(unsigned Imm) {
AVLImm = Imm;
State = AVLIsImm;
}
bool hasAVLImm() const { return State == AVLIsImm; }
bool hasAVLReg() const { return State == AVLIsReg; }
Register getAVLReg() const {
assert(hasAVLReg());
return AVLReg;
}
unsigned getAVLImm() const {
assert(hasAVLImm());
return AVLImm;
}
unsigned getSEW() const { return SEW; }
RISCVII::VLMUL getVLMUL() const { return VLMul; }
bool hasNonZeroAVL() const {
if (hasAVLImm())
return getAVLImm() > 0;
if (hasAVLReg())
return getAVLReg() == RISCV::X0;
return false;
}
bool hasEquallyZeroAVL(const VSETVLIInfo &Other) const {
if (hasSameAVL(Other))
return true;
return (hasNonZeroAVL() && Other.hasNonZeroAVL());
}
bool hasSameAVL(const VSETVLIInfo &Other) const {
if (hasAVLReg() && Other.hasAVLReg())
return getAVLReg() == Other.getAVLReg();
if (hasAVLImm() && Other.hasAVLImm())
return getAVLImm() == Other.getAVLImm();
return false;
}
void setVTYPE(unsigned VType) {
assert(isValid() && !isUnknown() &&
"Can't set VTYPE for uninitialized or unknown");
VLMul = RISCVVType::getVLMUL(VType);
SEW = RISCVVType::getSEW(VType);
TailAgnostic = RISCVVType::isTailAgnostic(VType);
MaskAgnostic = RISCVVType::isMaskAgnostic(VType);
}
void setVTYPE(RISCVII::VLMUL L, unsigned S, bool TA, bool MA) {
assert(isValid() && !isUnknown() &&
"Can't set VTYPE for uninitialized or unknown");
VLMul = L;
SEW = S;
TailAgnostic = TA;
MaskAgnostic = MA;
}
unsigned encodeVTYPE() const {
assert(isValid() && !isUnknown() && !SEWLMULRatioOnly &&
"Can't encode VTYPE for uninitialized or unknown");
return RISCVVType::encodeVTYPE(VLMul, SEW, TailAgnostic, MaskAgnostic);
}
bool hasSEWLMULRatioOnly() const { return SEWLMULRatioOnly; }
bool hasSameVTYPE(const VSETVLIInfo &Other) const {
assert(isValid() && Other.isValid() &&
"Can't compare invalid VSETVLIInfos");
assert(!isUnknown() && !Other.isUnknown() &&
"Can't compare VTYPE in unknown state");
assert(!SEWLMULRatioOnly && !Other.SEWLMULRatioOnly &&
"Can't compare when only LMUL/SEW ratio is valid.");
return std::tie(VLMul, SEW, TailAgnostic, MaskAgnostic) ==
std::tie(Other.VLMul, Other.SEW, Other.TailAgnostic,
Other.MaskAgnostic);
}
unsigned getSEWLMULRatio() const {
assert(isValid() && !isUnknown() &&
"Can't use VTYPE for uninitialized or unknown");
return RISCVVType::getSEWLMULRatio(SEW, VLMul);
}
// Check if the VTYPE for these two VSETVLIInfos produce the same VLMAX.
// Note that having the same VLMAX ensures that both share the same
// function from AVL to VL; that is, they must produce the same VL value
// for any given AVL value.
bool hasSameVLMAX(const VSETVLIInfo &Other) const {
assert(isValid() && Other.isValid() &&
"Can't compare invalid VSETVLIInfos");
assert(!isUnknown() && !Other.isUnknown() &&
"Can't compare VTYPE in unknown state");
return getSEWLMULRatio() == Other.getSEWLMULRatio();
}
bool hasCompatibleVTYPE(const DemandedFields &Used,
const VSETVLIInfo &Require) const {
return areCompatibleVTYPEs(encodeVTYPE(), Require.encodeVTYPE(), Used);
}
// Determine whether the vector instructions requirements represented by
// Require are compatible with the previous vsetvli instruction represented
// by this. MI is the instruction whose requirements we're considering.
bool isCompatible(const DemandedFields &Used, const VSETVLIInfo &Require) const {
assert(isValid() && Require.isValid() &&
"Can't compare invalid VSETVLIInfos");
assert(!Require.SEWLMULRatioOnly &&
"Expected a valid VTYPE for instruction!");
// Nothing is compatible with Unknown.
if (isUnknown() || Require.isUnknown())
return false;
// If only our VLMAX ratio is valid, then this isn't compatible.
if (SEWLMULRatioOnly)
return false;
// If the instruction doesn't need an AVLReg and the SEW matches, consider
// it compatible.
if (Require.hasAVLReg() && Require.AVLReg == RISCV::NoRegister)
if (SEW == Require.SEW)
return true;
if (Used.VLAny && !hasSameAVL(Require))
return false;
if (Used.VLZeroness && !hasEquallyZeroAVL(Require))
return false;
return areCompatibleVTYPEs(encodeVTYPE(), Require.encodeVTYPE(), Used);
}
bool operator==(const VSETVLIInfo &Other) const {
// Uninitialized is only equal to another Uninitialized.
if (!isValid())
return !Other.isValid();
if (!Other.isValid())
return !isValid();
// Unknown is only equal to another Unknown.
if (isUnknown())
return Other.isUnknown();
if (Other.isUnknown())
return isUnknown();
if (!hasSameAVL(Other))
return false;
// If the SEWLMULRatioOnly bits are different, then they aren't equal.
if (SEWLMULRatioOnly != Other.SEWLMULRatioOnly)
return false;
// If only the VLMAX is valid, check that it is the same.
if (SEWLMULRatioOnly)
return hasSameVLMAX(Other);
// If the full VTYPE is valid, check that it is the same.
return hasSameVTYPE(Other);
}
bool operator!=(const VSETVLIInfo &Other) const {
return !(*this == Other);
}
// Calculate the VSETVLIInfo visible to a block assuming this and Other are
// both predecessors.
VSETVLIInfo intersect(const VSETVLIInfo &Other) const {
// If the new value isn't valid, ignore it.
if (!Other.isValid())
return *this;
// If this value isn't valid, this must be the first predecessor, use it.
if (!isValid())
return Other;
// If either is unknown, the result is unknown.
if (isUnknown() || Other.isUnknown())
return VSETVLIInfo::getUnknown();
// If we have an exact, match return this.
if (*this == Other)
return *this;
// Not an exact match, but maybe the AVL and VLMAX are the same. If so,
// return an SEW/LMUL ratio only value.
if (hasSameAVL(Other) && hasSameVLMAX(Other)) {
VSETVLIInfo MergeInfo = *this;
MergeInfo.SEWLMULRatioOnly = true;
return MergeInfo;
}
// Otherwise the result is unknown.
return VSETVLIInfo::getUnknown();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Support for debugging, callable in GDB: V->dump()
LLVM_DUMP_METHOD void dump() const {
print(dbgs());
dbgs() << "\n";
}
/// Implement operator<<.
/// @{
void print(raw_ostream &OS) const {
OS << "{";
if (!isValid())
OS << "Uninitialized";
if (isUnknown())
OS << "unknown";
if (hasAVLReg())
OS << "AVLReg=" << (unsigned)AVLReg;
if (hasAVLImm())
OS << "AVLImm=" << (unsigned)AVLImm;
OS << ", "
<< "VLMul=" << (unsigned)VLMul << ", "
<< "SEW=" << (unsigned)SEW << ", "
<< "TailAgnostic=" << (bool)TailAgnostic << ", "
<< "MaskAgnostic=" << (bool)MaskAgnostic << ", "
<< "SEWLMULRatioOnly=" << (bool)SEWLMULRatioOnly << "}";
}
#endif
};
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_ATTRIBUTE_USED
inline raw_ostream &operator<<(raw_ostream &OS, const VSETVLIInfo &V) {
V.print(OS);
return OS;
}
#endif
struct BlockData {
// The VSETVLIInfo that represents the net changes to the VL/VTYPE registers
// made by this block. Calculated in Phase 1.
VSETVLIInfo Change;
// The VSETVLIInfo that represents the VL/VTYPE settings on exit from this
// block. Calculated in Phase 2.
VSETVLIInfo Exit;
// The VSETVLIInfo that represents the VL/VTYPE settings from all predecessor
// blocks. Calculated in Phase 2, and used by Phase 3.
VSETVLIInfo Pred;
// Keeps track of whether the block is already in the queue.
bool InQueue = false;
BlockData() = default;
};
class RISCVInsertVSETVLI : public MachineFunctionPass {
const TargetInstrInfo *TII;
MachineRegisterInfo *MRI;
std::vector<BlockData> BlockInfo;
std::queue<const MachineBasicBlock *> WorkList;
public:
static char ID;
RISCVInsertVSETVLI() : MachineFunctionPass(ID) {
initializeRISCVInsertVSETVLIPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override { return RISCV_INSERT_VSETVLI_NAME; }
private:
bool needVSETVLI(const MachineInstr &MI, const VSETVLIInfo &Require,
const VSETVLIInfo &CurInfo) const;
bool needVSETVLIPHI(const VSETVLIInfo &Require,
const MachineBasicBlock &MBB) const;
void insertVSETVLI(MachineBasicBlock &MBB, MachineInstr &MI,
const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo);
void insertVSETVLI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator InsertPt, DebugLoc DL,
const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo);
void transferBefore(VSETVLIInfo &Info, const MachineInstr &MI);
void transferAfter(VSETVLIInfo &Info, const MachineInstr &MI);
bool computeVLVTYPEChanges(const MachineBasicBlock &MBB);
void computeIncomingVLVTYPE(const MachineBasicBlock &MBB);
void emitVSETVLIs(MachineBasicBlock &MBB);
void doLocalPostpass(MachineBasicBlock &MBB);
void doPRE(MachineBasicBlock &MBB);
void insertReadVL(MachineBasicBlock &MBB);
};
} // end anonymous namespace
char RISCVInsertVSETVLI::ID = 0;
INITIALIZE_PASS(RISCVInsertVSETVLI, DEBUG_TYPE, RISCV_INSERT_VSETVLI_NAME,
false, false)
static VSETVLIInfo computeInfoForInstr(const MachineInstr &MI, uint64_t TSFlags,
const MachineRegisterInfo *MRI) {
VSETVLIInfo InstrInfo;
bool TailAgnostic, MaskAgnostic;
unsigned UseOpIdx;
if (MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
// Start with undisturbed.
TailAgnostic = false;
MaskAgnostic = false;
// If there is a policy operand, use it.
if (RISCVII::hasVecPolicyOp(TSFlags)) {
const MachineOperand &Op = MI.getOperand(MI.getNumExplicitOperands() - 1);
uint64_t Policy = Op.getImm();
assert(Policy <= (RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC) &&
"Invalid Policy Value");
TailAgnostic = Policy & RISCVII::TAIL_AGNOSTIC;
MaskAgnostic = Policy & RISCVII::MASK_AGNOSTIC;
}
// If the tied operand is an IMPLICIT_DEF we can use TailAgnostic and
// MaskAgnostic.
const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
MachineInstr *UseMI = MRI->getVRegDef(UseMO.getReg());
if (UseMI && UseMI->isImplicitDef()) {
TailAgnostic = true;
MaskAgnostic = true;
}
// Some pseudo instructions force a tail agnostic policy despite having a
// tied def.
if (RISCVII::doesForceTailAgnostic(TSFlags))
TailAgnostic = true;
if (!RISCVII::usesMaskPolicy(TSFlags))
MaskAgnostic = true;
} else {
// If there is no tied operand,, there shouldn't be a policy operand.
assert(!RISCVII::hasVecPolicyOp(TSFlags) && "Unexpected policy operand");
// No tied operand use agnostic policies.
TailAgnostic = true;
MaskAgnostic = true;
}
RISCVII::VLMUL VLMul = RISCVII::getLMul(TSFlags);
unsigned Log2SEW = MI.getOperand(getSEWOpNum(MI)).getImm();
// A Log2SEW of 0 is an operation on mask registers only.
unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
if (RISCVII::hasVLOp(TSFlags)) {
const MachineOperand &VLOp = MI.getOperand(getVLOpNum(MI));
if (VLOp.isImm()) {
int64_t Imm = VLOp.getImm();
// Conver the VLMax sentintel to X0 register.
if (Imm == RISCV::VLMaxSentinel)
InstrInfo.setAVLReg(RISCV::X0);
else
InstrInfo.setAVLImm(Imm);
} else {
InstrInfo.setAVLReg(VLOp.getReg());
}
} else {
InstrInfo.setAVLReg(RISCV::NoRegister);
}
#ifndef NDEBUG
if (std::optional<unsigned> EEW = getEEWForLoadStore(MI)) {
assert(SEW == EEW && "Initial SEW doesn't match expected EEW");
}
#endif
InstrInfo.setVTYPE(VLMul, SEW, TailAgnostic, MaskAgnostic);
return InstrInfo;
}
void RISCVInsertVSETVLI::insertVSETVLI(MachineBasicBlock &MBB, MachineInstr &MI,
const VSETVLIInfo &Info,
const VSETVLIInfo &PrevInfo) {
DebugLoc DL = MI.getDebugLoc();
insertVSETVLI(MBB, MachineBasicBlock::iterator(&MI), DL, Info, PrevInfo);
}
void RISCVInsertVSETVLI::insertVSETVLI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator InsertPt, DebugLoc DL,
const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo) {
// Use X0, X0 form if the AVL is the same and the SEW+LMUL gives the same
// VLMAX.
if (PrevInfo.isValid() && !PrevInfo.isUnknown() &&
Info.hasSameAVL(PrevInfo) && Info.hasSameVLMAX(PrevInfo)) {
BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETVLIX0))
.addReg(RISCV::X0, RegState::Define | RegState::Dead)
.addReg(RISCV::X0, RegState::Kill)
.addImm(Info.encodeVTYPE())
.addReg(RISCV::VL, RegState::Implicit);
return;
}
if (Info.hasAVLImm()) {
BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETIVLI))
.addReg(RISCV::X0, RegState::Define | RegState::Dead)
.addImm(Info.getAVLImm())
.addImm(Info.encodeVTYPE());
return;
}
Register AVLReg = Info.getAVLReg();
if (AVLReg == RISCV::NoRegister) {
// We can only use x0, x0 if there's no chance of the vtype change causing
// the previous vl to become invalid.
if (PrevInfo.isValid() && !PrevInfo.isUnknown() &&
Info.hasSameVLMAX(PrevInfo)) {
BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETVLIX0))
.addReg(RISCV::X0, RegState::Define | RegState::Dead)
.addReg(RISCV::X0, RegState::Kill)
.addImm(Info.encodeVTYPE())
.addReg(RISCV::VL, RegState::Implicit);
return;
}
// Otherwise use an AVL of 0 to avoid depending on previous vl.
BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETIVLI))
.addReg(RISCV::X0, RegState::Define | RegState::Dead)
.addImm(0)
.addImm(Info.encodeVTYPE());
return;
}
if (AVLReg.isVirtual())
MRI->constrainRegClass(AVLReg, &RISCV::GPRNoX0RegClass);
// Use X0 as the DestReg unless AVLReg is X0. We also need to change the
// opcode if the AVLReg is X0 as they have different register classes for
// the AVL operand.
Register DestReg = RISCV::X0;
unsigned Opcode = RISCV::PseudoVSETVLI;
if (AVLReg == RISCV::X0) {
DestReg = MRI->createVirtualRegister(&RISCV::GPRRegClass);
Opcode = RISCV::PseudoVSETVLIX0;
}
BuildMI(MBB, InsertPt, DL, TII->get(Opcode))
.addReg(DestReg, RegState::Define | RegState::Dead)
.addReg(AVLReg)
.addImm(Info.encodeVTYPE());
}
// Return a VSETVLIInfo representing the changes made by this VSETVLI or
// VSETIVLI instruction.
static VSETVLIInfo getInfoForVSETVLI(const MachineInstr &MI) {
VSETVLIInfo NewInfo;
if (MI.getOpcode() == RISCV::PseudoVSETIVLI) {
NewInfo.setAVLImm(MI.getOperand(1).getImm());
} else {
assert(MI.getOpcode() == RISCV::PseudoVSETVLI ||
MI.getOpcode() == RISCV::PseudoVSETVLIX0);
Register AVLReg = MI.getOperand(1).getReg();
assert((AVLReg != RISCV::X0 || MI.getOperand(0).getReg() != RISCV::X0) &&
"Can't handle X0, X0 vsetvli yet");
NewInfo.setAVLReg(AVLReg);
}
NewInfo.setVTYPE(MI.getOperand(2).getImm());
return NewInfo;
}
/// Return true if a VSETVLI is required to transition from CurInfo to Require
/// before MI.
bool RISCVInsertVSETVLI::needVSETVLI(const MachineInstr &MI,
const VSETVLIInfo &Require,
const VSETVLIInfo &CurInfo) const {
assert(Require == computeInfoForInstr(MI, MI.getDesc().TSFlags, MRI));
if (!CurInfo.isValid() || CurInfo.isUnknown() || CurInfo.hasSEWLMULRatioOnly())
return true;
DemandedFields Used = getDemanded(MI);
if (isScalarMoveInstr(MI)) {
// For vmv.s.x and vfmv.s.f, if writing to an implicit_def operand, we don't
// need to preserve any other bits and are thus compatible with any larger,
// etype and can disregard policy bits. Warning: It's tempting to try doing
// this for any tail agnostic operation, but we can't as TA requires
// tail lanes to either be the original value or -1. We are writing
// unknown bits to the lanes here.
auto *VRegDef = MRI->getVRegDef(MI.getOperand(1).getReg());
if (VRegDef && VRegDef->isImplicitDef() &&
CurInfo.getSEW() >= Require.getSEW()) {
Used.SEW = false;
Used.TailPolicy = false;
}
}
if (CurInfo.isCompatible(Used, Require))
return false;
// We didn't find a compatible value. If our AVL is a virtual register,
// it might be defined by a VSET(I)VLI. If it has the same VLMAX we need
// and the last VL/VTYPE we observed is the same, we don't need a
// VSETVLI here.
if (Require.hasAVLReg() && Require.getAVLReg().isVirtual() &&
CurInfo.hasCompatibleVTYPE(Used, Require)) {
if (MachineInstr *DefMI = MRI->getVRegDef(Require.getAVLReg())) {
if (isVectorConfigInstr(*DefMI)) {
VSETVLIInfo DefInfo = getInfoForVSETVLI(*DefMI);
if (DefInfo.hasSameAVL(CurInfo) && DefInfo.hasSameVLMAX(CurInfo))
return false;
}
}
}
return true;
}
// Given an incoming state reaching MI, modifies that state so that it is minimally
// compatible with MI. The resulting state is guaranteed to be semantically legal
// for MI, but may not be the state requested by MI.
void RISCVInsertVSETVLI::transferBefore(VSETVLIInfo &Info, const MachineInstr &MI) {
uint64_t TSFlags = MI.getDesc().TSFlags;
if (!RISCVII::hasSEWOp(TSFlags))
return;
const VSETVLIInfo NewInfo = computeInfoForInstr(MI, TSFlags, MRI);
if (Info.isValid() && !needVSETVLI(MI, NewInfo, Info))
return;
const VSETVLIInfo PrevInfo = Info;
Info = NewInfo;
if (!RISCVII::hasVLOp(TSFlags))
return;
// For vmv.s.x and vfmv.s.f, there are only two behaviors, VL = 0 and
// VL > 0. We can discard the user requested AVL and just use the last
// one if we can prove it equally zero. This removes a vsetvli entirely
// if the types match or allows use of cheaper avl preserving variant
// if VLMAX doesn't change. If VLMAX might change, we couldn't use
// the 'vsetvli x0, x0, vtype" variant, so we avoid the transform to
// prevent extending live range of an avl register operand.
// TODO: We can probably relax this for immediates.
if (isScalarMoveInstr(MI) && PrevInfo.isValid() &&
PrevInfo.hasEquallyZeroAVL(Info) &&
Info.hasSameVLMAX(PrevInfo)) {
if (PrevInfo.hasAVLImm())
Info.setAVLImm(PrevInfo.getAVLImm());
else
Info.setAVLReg(PrevInfo.getAVLReg());
return;
}
// If AVL is defined by a vsetvli with the same VLMAX, we can
// replace the AVL operand with the AVL of the defining vsetvli.
// We avoid general register AVLs to avoid extending live ranges
// without being sure we can kill the original source reg entirely.
if (!Info.hasAVLReg() || !Info.getAVLReg().isVirtual())
return;
MachineInstr *DefMI = MRI->getVRegDef(Info.getAVLReg());
if (!DefMI || !isVectorConfigInstr(*DefMI))
return;
VSETVLIInfo DefInfo = getInfoForVSETVLI(*DefMI);
if (DefInfo.hasSameVLMAX(Info) &&
(DefInfo.hasAVLImm() || DefInfo.getAVLReg() == RISCV::X0)) {
if (DefInfo.hasAVLImm())
Info.setAVLImm(DefInfo.getAVLImm());
else
Info.setAVLReg(DefInfo.getAVLReg());
return;
}
}
// Given a state with which we evaluated MI (see transferBefore above for why
// this might be different that the state MI requested), modify the state to
// reflect the changes MI might make.
void RISCVInsertVSETVLI::transferAfter(VSETVLIInfo &Info, const MachineInstr &MI) {
if (isVectorConfigInstr(MI)) {
Info = getInfoForVSETVLI(MI);
return;
}
if (RISCV::isFaultFirstLoad(MI)) {
// Update AVL to vl-output of the fault first load.
Info.setAVLReg(MI.getOperand(1).getReg());
return;
}
// If this is something that updates VL/VTYPE that we don't know about, set
// the state to unknown.
if (MI.isCall() || MI.isInlineAsm() || MI.modifiesRegister(RISCV::VL) ||
MI.modifiesRegister(RISCV::VTYPE))
Info = VSETVLIInfo::getUnknown();
}
bool RISCVInsertVSETVLI::computeVLVTYPEChanges(const MachineBasicBlock &MBB) {
bool HadVectorOp = false;
BlockData &BBInfo = BlockInfo[MBB.getNumber()];
BBInfo.Change = BBInfo.Pred;
for (const MachineInstr &MI : MBB) {
transferBefore(BBInfo.Change, MI);
if (isVectorConfigInstr(MI) || RISCVII::hasSEWOp(MI.getDesc().TSFlags))
HadVectorOp = true;
transferAfter(BBInfo.Change, MI);
}
return HadVectorOp;
}
void RISCVInsertVSETVLI::computeIncomingVLVTYPE(const MachineBasicBlock &MBB) {
BlockData &BBInfo = BlockInfo[MBB.getNumber()];
BBInfo.InQueue = false;
// Start with the previous entry so that we keep the most conservative state
// we have ever found.
VSETVLIInfo InInfo = BBInfo.Pred;
if (MBB.pred_empty()) {
// There are no predecessors, so use the default starting status.
InInfo.setUnknown();
} else {
for (MachineBasicBlock *P : MBB.predecessors())
InInfo = InInfo.intersect(BlockInfo[P->getNumber()].Exit);
}
// If we don't have any valid predecessor value, wait until we do.
if (!InInfo.isValid())
return;
// If no change, no need to rerun block
if (InInfo == BBInfo.Pred)
return;
BBInfo.Pred = InInfo;
LLVM_DEBUG(dbgs() << "Entry state of " << printMBBReference(MBB)
<< " changed to " << BBInfo.Pred << "\n");
// Note: It's tempting to cache the state changes here, but due to the
// compatibility checks performed a blocks output state can change based on
// the input state. To cache, we'd have to add logic for finding
// never-compatible state changes.
computeVLVTYPEChanges(MBB);
VSETVLIInfo TmpStatus = BBInfo.Change;
// If the new exit value matches the old exit value, we don't need to revisit
// any blocks.
if (BBInfo.Exit == TmpStatus)
return;
BBInfo.Exit = TmpStatus;
LLVM_DEBUG(dbgs() << "Exit state of " << printMBBReference(MBB)
<< " changed to " << BBInfo.Exit << "\n");
// Add the successors to the work list so we can propagate the changed exit
// status.
for (MachineBasicBlock *S : MBB.successors())
if (!BlockInfo[S->getNumber()].InQueue) {
BlockInfo[S->getNumber()].InQueue = true;
WorkList.push(S);
}
}
// If we weren't able to prove a vsetvli was directly unneeded, it might still
// be unneeded if the AVL is a phi node where all incoming values are VL
// outputs from the last VSETVLI in their respective basic blocks.
bool RISCVInsertVSETVLI::needVSETVLIPHI(const VSETVLIInfo &Require,
const MachineBasicBlock &MBB) const {
if (DisableInsertVSETVLPHIOpt)
return true;
if (!Require.hasAVLReg())
return true;
Register AVLReg = Require.getAVLReg();
if (!AVLReg.isVirtual())
return true;
// We need the AVL to be produce by a PHI node in this basic block.
MachineInstr *PHI = MRI->getVRegDef(AVLReg);
if (!PHI || PHI->getOpcode() != RISCV::PHI || PHI->getParent() != &MBB)
return true;
for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
PHIOp += 2) {
Register InReg = PHI->getOperand(PHIOp).getReg();
MachineBasicBlock *PBB = PHI->getOperand(PHIOp + 1).getMBB();
const BlockData &PBBInfo = BlockInfo[PBB->getNumber()];
// If the exit from the predecessor has the VTYPE we are looking for
// we might be able to avoid a VSETVLI.
if (PBBInfo.Exit.isUnknown() || !PBBInfo.Exit.hasSameVTYPE(Require))
return true;
// We need the PHI input to the be the output of a VSET(I)VLI.
MachineInstr *DefMI = MRI->getVRegDef(InReg);
if (!DefMI || !isVectorConfigInstr(*DefMI))
return true;
// We found a VSET(I)VLI make sure it matches the output of the
// predecessor block.
VSETVLIInfo DefInfo = getInfoForVSETVLI(*DefMI);
if (!DefInfo.hasSameAVL(PBBInfo.Exit) ||
!DefInfo.hasSameVTYPE(PBBInfo.Exit))
return true;
}
// If all the incoming values to the PHI checked out, we don't need
// to insert a VSETVLI.
return false;
}
void RISCVInsertVSETVLI::emitVSETVLIs(MachineBasicBlock &MBB) {
VSETVLIInfo CurInfo = BlockInfo[MBB.getNumber()].Pred;
// Track whether the prefix of the block we've scanned is transparent
// (meaning has not yet changed the abstract state).
bool PrefixTransparent = true;
for (MachineInstr &MI : MBB) {
const VSETVLIInfo PrevInfo = CurInfo;
transferBefore(CurInfo, MI);
// If this is an explicit VSETVLI or VSETIVLI, update our state.
if (isVectorConfigInstr(MI)) {
// Conservatively, mark the VL and VTYPE as live.
assert(MI.getOperand(3).getReg() == RISCV::VL &&
MI.getOperand(4).getReg() == RISCV::VTYPE &&
"Unexpected operands where VL and VTYPE should be");
MI.getOperand(3).setIsDead(false);
MI.getOperand(4).setIsDead(false);
PrefixTransparent = false;
}
uint64_t TSFlags = MI.getDesc().TSFlags;
if (RISCVII::hasSEWOp(TSFlags)) {
if (PrevInfo != CurInfo) {
// If this is the first implicit state change, and the state change
// requested can be proven to produce the same register contents, we
// can skip emitting the actual state change and continue as if we
// had since we know the GPR result of the implicit state change
// wouldn't be used and VL/VTYPE registers are correct. Note that
// we *do* need to model the state as if it changed as while the
// register contents are unchanged, the abstract model can change.
if (!PrefixTransparent || needVSETVLIPHI(CurInfo, MBB))
insertVSETVLI(MBB, MI, CurInfo, PrevInfo);
PrefixTransparent = false;
}
if (RISCVII::hasVLOp(TSFlags)) {
MachineOperand &VLOp = MI.getOperand(getVLOpNum(MI));
if (VLOp.isReg()) {
// Erase the AVL operand from the instruction.
VLOp.setReg(RISCV::NoRegister);
VLOp.setIsKill(false);
}
MI.addOperand(MachineOperand::CreateReg(RISCV::VL, /*isDef*/ false,
/*isImp*/ true));
}
MI.addOperand(MachineOperand::CreateReg(RISCV::VTYPE, /*isDef*/ false,
/*isImp*/ true));
}
if (MI.isCall() || MI.isInlineAsm() || MI.modifiesRegister(RISCV::VL) ||
MI.modifiesRegister(RISCV::VTYPE))
PrefixTransparent = false;
transferAfter(CurInfo, MI);
}
// If we reach the end of the block and our current info doesn't match the
// expected info, insert a vsetvli to correct.
if (!UseStrictAsserts) {
const VSETVLIInfo &ExitInfo = BlockInfo[MBB.getNumber()].Exit;
if (CurInfo.isValid() && ExitInfo.isValid() && !ExitInfo.isUnknown() &&
CurInfo != ExitInfo) {
// Note there's an implicit assumption here that terminators never use
// or modify VL or VTYPE. Also, fallthrough will return end().
auto InsertPt = MBB.getFirstInstrTerminator();
insertVSETVLI(MBB, InsertPt, MBB.findDebugLoc(InsertPt), ExitInfo,
CurInfo);
CurInfo = ExitInfo;
}
}
if (UseStrictAsserts && CurInfo.isValid()) {
const auto &Info = BlockInfo[MBB.getNumber()];
if (CurInfo != Info.Exit) {
LLVM_DEBUG(dbgs() << "in block " << printMBBReference(MBB) << "\n");
LLVM_DEBUG(dbgs() << " begin state: " << Info.Pred << "\n");
LLVM_DEBUG(dbgs() << " expected end state: " << Info.Exit << "\n");
LLVM_DEBUG(dbgs() << " actual end state: " << CurInfo << "\n");
}
assert(CurInfo == Info.Exit &&
"InsertVSETVLI dataflow invariant violated");
}
}
/// Return true if the VL value configured must be equal to the requested one.
static bool hasFixedResult(const VSETVLIInfo &Info, const RISCVSubtarget &ST) {
if (!Info.hasAVLImm())
// VLMAX is always the same value.
// TODO: Could extend to other registers by looking at the associated vreg
// def placement.
return RISCV::X0 == Info.getAVLReg();
unsigned AVL = Info.getAVLImm();
unsigned SEW = Info.getSEW();
unsigned AVLInBits = AVL * SEW;
unsigned LMul;
bool Fractional;
std::tie(LMul, Fractional) = RISCVVType::decodeVLMUL(Info.getVLMUL());
if (Fractional)
return ST.getRealMinVLen() / LMul >= AVLInBits;
return ST.getRealMinVLen() * LMul >= AVLInBits;
}
/// Perform simple partial redundancy elimination of the VSETVLI instructions
/// we're about to insert by looking for cases where we can PRE from the
/// beginning of one block to the end of one of its predecessors. Specifically,
/// this is geared to catch the common case of a fixed length vsetvl in a single
/// block loop when it could execute once in the preheader instead.
void RISCVInsertVSETVLI::doPRE(MachineBasicBlock &MBB) {
const MachineFunction &MF = *MBB.getParent();
const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>();
if (!BlockInfo[MBB.getNumber()].Pred.isUnknown())
return;
MachineBasicBlock *UnavailablePred = nullptr;
VSETVLIInfo AvailableInfo;
for (MachineBasicBlock *P : MBB.predecessors()) {
const VSETVLIInfo &PredInfo = BlockInfo[P->getNumber()].Exit;
if (PredInfo.isUnknown()) {
if (UnavailablePred)
return;
UnavailablePred = P;
} else if (!AvailableInfo.isValid()) {
AvailableInfo = PredInfo;
} else if (AvailableInfo != PredInfo) {
return;
}
}
// Unreachable, single pred, or full redundancy. Note that FRE is handled by
// phase 3.
if (!UnavailablePred || !AvailableInfo.isValid())
return;
// Critical edge - TODO: consider splitting?
if (UnavailablePred->succ_size() != 1)
return;
// If VL can be less than AVL, then we can't reduce the frequency of exec.
if (!hasFixedResult(AvailableInfo, ST))
return;
// Model the effect of changing the input state of the block MBB to
// AvailableInfo. We're looking for two issues here; one legality,
// one profitability.
// 1) If the block doesn't use some of the fields from VL or VTYPE, we
// may hit the end of the block with a different end state. We can
// not make this change without reflowing later blocks as well.
// 2) If we don't actually remove a transition, inserting a vsetvli
// into the predecessor block would be correct, but unprofitable.
VSETVLIInfo OldInfo = BlockInfo[MBB.getNumber()].Pred;
VSETVLIInfo CurInfo = AvailableInfo;
int TransitionsRemoved = 0;
for (const MachineInstr &MI : MBB) {
const VSETVLIInfo LastInfo = CurInfo;
const VSETVLIInfo LastOldInfo = OldInfo;
transferBefore(CurInfo, MI);
transferBefore(OldInfo, MI);
if (CurInfo == LastInfo)
TransitionsRemoved++;
if (LastOldInfo == OldInfo)
TransitionsRemoved--;
transferAfter(CurInfo, MI);
transferAfter(OldInfo, MI);
if (CurInfo == OldInfo)
// Convergence. All transitions after this must match by construction.
break;
}
if (CurInfo != OldInfo || TransitionsRemoved <= 0)
// Issues 1 and 2 above
return;
// Finally, update both data flow state and insert the actual vsetvli.
// Doing both keeps the code in sync with the dataflow results, which
// is critical for correctness of phase 3.
auto OldExit = BlockInfo[UnavailablePred->getNumber()].Exit;
LLVM_DEBUG(dbgs() << "PRE VSETVLI from " << MBB.getName() << " to "
<< UnavailablePred->getName() << " with state "
<< AvailableInfo << "\n");
BlockInfo[UnavailablePred->getNumber()].Exit = AvailableInfo;
BlockInfo[MBB.getNumber()].Pred = AvailableInfo;
// Note there's an implicit assumption here that terminators never use
// or modify VL or VTYPE. Also, fallthrough will return end().
auto InsertPt = UnavailablePred->getFirstInstrTerminator();
insertVSETVLI(*UnavailablePred, InsertPt,
UnavailablePred->findDebugLoc(InsertPt),
AvailableInfo, OldExit);
}
static void doUnion(DemandedFields &A, DemandedFields B) {
A.VLAny |= B.VLAny;
A.VLZeroness |= B.VLZeroness;
A.SEW |= B.SEW;
A.LMUL |= B.LMUL;
A.SEWLMULRatio |= B.SEWLMULRatio;
A.TailPolicy |= B.TailPolicy;
A.MaskPolicy |= B.MaskPolicy;
}
static bool isNonZeroAVL(const MachineOperand &MO) {
if (MO.isReg())
return RISCV::X0 == MO.getReg();
assert(MO.isImm());
return 0 != MO.getImm();
}
// Return true if we can mutate PrevMI to match MI without changing any the
// fields which would be observed.
static bool canMutatePriorConfig(const MachineInstr &PrevMI,
const MachineInstr &MI,
const DemandedFields &Used) {
// If the VL values aren't equal, return false if either a) the former is
// demanded, or b) we can't rewrite the former to be the later for
// implementation reasons.
if (!isVLPreservingConfig(MI)) {
if (Used.VLAny)
return false;
// TODO: Requires more care in the mutation...
if (isVLPreservingConfig(PrevMI))
return false;
// We don't bother to handle the equally zero case here as it's largely
// uninteresting.
if (Used.VLZeroness &&
(!isNonZeroAVL(MI.getOperand(1)) ||
!isNonZeroAVL(PrevMI.getOperand(1))))
return false;
// TODO: Track whether the register is defined between
// PrevMI and MI.
if (MI.getOperand(1).isReg() &&
RISCV::X0 != MI.getOperand(1).getReg())
return false;
// TODO: We need to change the result register to allow this rewrite
// without the result forming a vl preserving vsetvli which is not
// a correct state merge.
if (PrevMI.getOperand(0).getReg() == RISCV::X0 &&
MI.getOperand(1).isReg())
return false;
}
if (!PrevMI.getOperand(2).isImm() || !MI.getOperand(2).isImm())
return false;
auto PriorVType = PrevMI.getOperand(2).getImm();
auto VType = MI.getOperand(2).getImm();
return areCompatibleVTYPEs(PriorVType, VType, Used);
}
void RISCVInsertVSETVLI::doLocalPostpass(MachineBasicBlock &MBB) {
MachineInstr *NextMI = nullptr;
// We can have arbitrary code in successors, so VL and VTYPE
// must be considered demanded.
DemandedFields Used;
Used.demandVL();
Used.demandVTYPE();
SmallVector<MachineInstr*> ToDelete;
for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
if (!isVectorConfigInstr(MI)) {
doUnion(Used, getDemanded(MI));
continue;
}
Register VRegDef = MI.getOperand(0).getReg();
if (VRegDef != RISCV::X0 &&
!(VRegDef.isVirtual() && MRI->use_nodbg_empty(VRegDef)))
Used.demandVL();
if (NextMI) {
if (!Used.usedVL() && !Used.usedVTYPE()) {
ToDelete.push_back(&MI);
// Leave NextMI unchanged
continue;
} else if (canMutatePriorConfig(MI, *NextMI, Used)) {
if (!isVLPreservingConfig(*NextMI)) {
if (NextMI->getOperand(1).isImm())
MI.getOperand(1).ChangeToImmediate(NextMI->getOperand(1).getImm());
else
MI.getOperand(1).ChangeToRegister(NextMI->getOperand(1).getReg(), false);
MI.setDesc(NextMI->getDesc());
}
MI.getOperand(2).setImm(NextMI->getOperand(2).getImm());
ToDelete.push_back(NextMI);
// fallthrough
}
}
NextMI = &MI;
Used = getDemanded(MI);
}
for (auto *MI : ToDelete)
MI->eraseFromParent();
}
void RISCVInsertVSETVLI::insertReadVL(MachineBasicBlock &MBB) {
for (auto I = MBB.begin(), E = MBB.end(); I != E;) {
MachineInstr &MI = *I++;
if (RISCV::isFaultFirstLoad(MI)) {
Register VLOutput = MI.getOperand(1).getReg();
if (!MRI->use_nodbg_empty(VLOutput))
BuildMI(MBB, I, MI.getDebugLoc(), TII->get(RISCV::PseudoReadVL),
VLOutput);
// We don't use the vl output of the VLEFF/VLSEGFF anymore.
MI.getOperand(1).setReg(RISCV::X0);
}
}
}
bool RISCVInsertVSETVLI::runOnMachineFunction(MachineFunction &MF) {
// Skip if the vector extension is not enabled.
const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>();
if (!ST.hasVInstructions())
return false;
LLVM_DEBUG(dbgs() << "Entering InsertVSETVLI for " << MF.getName() << "\n");
TII = ST.getInstrInfo();
MRI = &MF.getRegInfo();
assert(BlockInfo.empty() && "Expect empty block infos");
BlockInfo.resize(MF.getNumBlockIDs());
bool HaveVectorOp = false;
// Phase 1 - determine how VL/VTYPE are affected by the each block.
for (const MachineBasicBlock &MBB : MF) {
HaveVectorOp |= computeVLVTYPEChanges(MBB);
// Initial exit state is whatever change we found in the block.
BlockData &BBInfo = BlockInfo[MBB.getNumber()];
BBInfo.Exit = BBInfo.Change;
LLVM_DEBUG(dbgs() << "Initial exit state of " << printMBBReference(MBB)
<< " is " << BBInfo.Exit << "\n");
}
// If we didn't find any instructions that need VSETVLI, we're done.
if (!HaveVectorOp) {
BlockInfo.clear();
return false;
}
// Phase 2 - determine the exit VL/VTYPE from each block. We add all
// blocks to the list here, but will also add any that need to be revisited
// during Phase 2 processing.
for (const MachineBasicBlock &MBB : MF) {
WorkList.push(&MBB);
BlockInfo[MBB.getNumber()].InQueue = true;
}
while (!WorkList.empty()) {
const MachineBasicBlock &MBB = *WorkList.front();
WorkList.pop();
computeIncomingVLVTYPE(MBB);
}
// Perform partial redundancy elimination of vsetvli transitions.
for (MachineBasicBlock &MBB : MF)
doPRE(MBB);
// Phase 3 - add any vsetvli instructions needed in the block. Use the
// Phase 2 information to avoid adding vsetvlis before the first vector
// instruction in the block if the VL/VTYPE is satisfied by its
// predecessors.
for (MachineBasicBlock &MBB : MF)
emitVSETVLIs(MBB);
// Now that all vsetvlis are explicit, go through and do block local
// DSE and peephole based demanded fields based transforms. Note that
// this *must* be done outside the main dataflow so long as we allow
// any cross block analysis within the dataflow. We can't have both
// demanded fields based mutation and non-local analysis in the
// dataflow at the same time without introducing inconsistencies.
for (MachineBasicBlock &MBB : MF)
doLocalPostpass(MBB);
// Once we're fully done rewriting all the instructions, do a final pass
// through to check for VSETVLIs which write to an unused destination.
// For the non X0, X0 variant, we can replace the destination register
// with X0 to reduce register pressure. This is really a generic
// optimization which can be applied to any dead def (TODO: generalize).
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (MI.getOpcode() == RISCV::PseudoVSETVLI ||
MI.getOpcode() == RISCV::PseudoVSETIVLI) {
Register VRegDef = MI.getOperand(0).getReg();
if (VRegDef != RISCV::X0 && MRI->use_nodbg_empty(VRegDef))
MI.getOperand(0).setReg(RISCV::X0);
}
}
}
// Insert PseudoReadVL after VLEFF/VLSEGFF and replace it with the vl output
// of VLEFF/VLSEGFF.
for (MachineBasicBlock &MBB : MF)
insertReadVL(MBB);
BlockInfo.clear();
return HaveVectorOp;
}
/// Returns an instance of the Insert VSETVLI pass.
FunctionPass *llvm::createRISCVInsertVSETVLIPass() {
return new RISCVInsertVSETVLI();
}