mirror of
https://github.com/PCSX2/pcsx2.git
synced 2026-01-31 01:15:24 +01:00
Compare commits
451 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
810295aafa | ||
|
|
ffd45d58fe | ||
|
|
852923ea34 | ||
|
|
979b34d717 | ||
|
|
34f92fe4e5 | ||
|
|
10b217e0c2 | ||
|
|
2b0593e5ff | ||
|
|
2b329e6899 | ||
|
|
5b0bf40508 | ||
|
|
210a936483 | ||
|
|
813e2d5b2c | ||
|
|
a18c940503 | ||
|
|
329d8acca7 | ||
|
|
bf2cdc3c9b | ||
|
|
61ce0d1117 | ||
|
|
e8201b115f | ||
|
|
5690742937 | ||
|
|
9f29f41288 | ||
|
|
828c0bcb99 | ||
|
|
fe0d31ae94 | ||
|
|
175d10c5d1 | ||
|
|
02b5349db2 | ||
|
|
a64d69560c | ||
|
|
e18205e6c7 | ||
|
|
0f542809a4 | ||
|
|
d171fb1570 | ||
|
|
b913523066 | ||
|
|
16588ab0bf | ||
|
|
5dc27ed275 | ||
|
|
63826f5567 | ||
|
|
0d3d115d67 | ||
|
|
a9959bcd62 | ||
|
|
93a4e67813 | ||
|
|
0e79db6cf7 | ||
|
|
7b1f6d7ce3 | ||
|
|
8c452288f4 | ||
|
|
bf5137ed6b | ||
|
|
c8e4f9160c | ||
|
|
fae4f7c8b4 | ||
|
|
2148d3d3ab | ||
|
|
8ccd442647 | ||
|
|
d44a7fc23a | ||
|
|
5c63d75c86 | ||
|
|
fef282fcd5 | ||
|
|
ec9e5402c0 | ||
|
|
a45378cadf | ||
|
|
a5127c7c07 | ||
|
|
0197aeeb4b | ||
|
|
8b84b0403b | ||
|
|
6a671a5cd1 | ||
|
|
1be4eee674 | ||
|
|
1eed8a2a86 | ||
|
|
e782ddc143 | ||
|
|
d91e3f568b | ||
|
|
98eb006cdd | ||
|
|
60154b7c26 | ||
|
|
dab9e7aaa2 | ||
|
|
0f8dceed89 | ||
|
|
affa091ccb | ||
|
|
8a022f877e | ||
|
|
579a542815 | ||
|
|
080d021fb3 | ||
|
|
10ec91065e | ||
|
|
25a3ea98bc | ||
|
|
5555e334af | ||
|
|
3c41c286c7 | ||
|
|
bf9fbc46fd | ||
|
|
824ef9a9d3 | ||
|
|
8a84d4812f | ||
|
|
ffe456ea7c | ||
|
|
a997845604 | ||
|
|
f887eae0f7 | ||
|
|
508c209270 | ||
|
|
4027304ece | ||
|
|
0ac59b4152 | ||
|
|
2272134442 | ||
|
|
1c828bd680 | ||
|
|
499867255b | ||
|
|
dc142a5531 | ||
|
|
2115e92520 | ||
|
|
c3d31f11e4 | ||
|
|
bf4d908eab | ||
|
|
2a3ba03226 | ||
|
|
5c6f72ac57 | ||
|
|
bfcf2d98b5 | ||
|
|
0b01e7edea | ||
|
|
84a4d114c4 | ||
|
|
44b47f4d88 | ||
|
|
1175a22d53 | ||
|
|
5aa8761c7e | ||
|
|
1668ec2fc6 | ||
|
|
eaf3b7943c | ||
|
|
1551b413fb | ||
|
|
05a1b0203b | ||
|
|
c83667e432 | ||
|
|
9203ae20cd | ||
|
|
43f658a82b | ||
|
|
3dcc6dc299 | ||
|
|
fe79c0d294 | ||
|
|
1f0a91c313 | ||
|
|
ae5cd7b3c3 | ||
|
|
2947e11b9b | ||
|
|
85670dd4a1 | ||
|
|
5d88c1a19e | ||
|
|
3004007f96 | ||
|
|
58244d5a3d | ||
|
|
ac97e0c6e9 | ||
|
|
d9bdb0d7e1 | ||
|
|
83da1773b5 | ||
|
|
44e4e0a2b3 | ||
|
|
9dad1d79d7 | ||
|
|
3a3a9af284 | ||
|
|
c2a7fbaadc | ||
|
|
b2789bea6b | ||
|
|
807e8642fa | ||
|
|
c9008bf78b | ||
|
|
a641d2a2de | ||
|
|
6186f39068 | ||
|
|
6bd1209146 | ||
|
|
2a9c379a1c | ||
|
|
1b983111f6 | ||
|
|
cf5dd8b822 | ||
|
|
069d2b275a | ||
|
|
368e35abb6 | ||
|
|
81a51d750c | ||
|
|
d93b137b85 | ||
|
|
d15f2a0cbe | ||
|
|
bd54729257 | ||
|
|
6123ef12bd | ||
|
|
14cf008a19 | ||
|
|
da8db72328 | ||
|
|
30e3a3a958 | ||
|
|
b384a2fff6 | ||
|
|
8dd866a35e | ||
|
|
b36e2eb5f4 | ||
|
|
9c4fdc18b8 | ||
|
|
357a90db71 | ||
|
|
8c65d4e131 | ||
|
|
07971d25a6 | ||
|
|
ce538a804d | ||
|
|
d480f19b24 | ||
|
|
5deb1d35e3 | ||
|
|
140514b408 | ||
|
|
34d40364a3 | ||
|
|
a4d7f5e7d1 | ||
|
|
b3aa3d3b83 | ||
|
|
3f9e4731b8 | ||
|
|
3e79a86008 | ||
|
|
126c6e1b6c | ||
|
|
90c6e4cd1b | ||
|
|
e1616af98c | ||
|
|
388e488bc1 | ||
|
|
b601c49f6c | ||
|
|
d9587e20c0 | ||
|
|
f5684c43dd | ||
|
|
d25700e241 | ||
|
|
9dde599e00 | ||
|
|
96f0d65f7d | ||
|
|
abe64ae8fb | ||
|
|
5df6fc4c1b | ||
|
|
a4a6929ca4 | ||
|
|
cc221f590c | ||
|
|
ec1b782f2c | ||
|
|
48549ff790 | ||
|
|
5633053655 | ||
|
|
92acbd006b | ||
|
|
8552a89838 | ||
|
|
ce90d81a2f | ||
|
|
f250b006b1 | ||
|
|
f46c3b36cc | ||
|
|
217999912a | ||
|
|
82e6192c05 | ||
|
|
03abfa9c59 | ||
|
|
97155c50c4 | ||
|
|
7b45e9296a | ||
|
|
c16836e7c0 | ||
|
|
1f88072eae | ||
|
|
858ea9c3de | ||
|
|
1248858303 | ||
|
|
a472a95945 | ||
|
|
c8af57c65d | ||
|
|
d00eb38bbc | ||
|
|
f8e1b9b11b | ||
|
|
bbb807d860 | ||
|
|
355c68f687 | ||
|
|
b74ae9fabf | ||
|
|
17d2fb1858 | ||
|
|
222fad315d | ||
|
|
124ba2a124 | ||
|
|
9b8dc448f6 | ||
|
|
0a44a81d18 | ||
|
|
c4ec841c0f | ||
|
|
6fe5d9a9e9 | ||
|
|
18c74a245d | ||
|
|
2fb311e090 | ||
|
|
d6822b85b3 | ||
|
|
d08461bd4c | ||
|
|
f4d63877e4 | ||
|
|
43335cd729 | ||
|
|
0678bb03d7 | ||
|
|
b15102d45a | ||
|
|
fb26842046 | ||
|
|
e703baf295 | ||
|
|
94670baa64 | ||
|
|
62c67435e6 | ||
|
|
1e492721ba | ||
|
|
2fe635a958 | ||
|
|
c1bdbffc87 | ||
|
|
a654f5bf13 | ||
|
|
7a8d99304a | ||
|
|
7e0ce1fa48 | ||
|
|
b84d3a5612 | ||
|
|
81b110feb6 | ||
|
|
4556f7b8a4 | ||
|
|
a9b6f8976e | ||
|
|
dfa6165662 | ||
|
|
ee3ee63ff5 | ||
|
|
3567d8913f | ||
|
|
8276054671 | ||
|
|
220117f07c | ||
|
|
728ca8aa9d | ||
|
|
e3a1125e84 | ||
|
|
02b64f4027 | ||
|
|
2ae44ca493 | ||
|
|
afdd63521f | ||
|
|
bced0b91a0 | ||
|
|
2a6f2939be | ||
|
|
13880354cf | ||
|
|
5df0c95e51 | ||
|
|
447054a14f | ||
|
|
5f348a8ea3 | ||
|
|
1d69411eba | ||
|
|
fb24a8fdb1 | ||
|
|
827fb7fa82 | ||
|
|
c6365bebac | ||
|
|
c7b94d0a42 | ||
|
|
86f82951d5 | ||
|
|
72b865b50e | ||
|
|
b2f7e4b16b | ||
|
|
2f01299472 | ||
|
|
5cc851e175 | ||
|
|
66986e66e3 | ||
|
|
9292bbcd1b | ||
|
|
dfba3c51fb | ||
|
|
da7e501e3a | ||
|
|
42ae23f279 | ||
|
|
c43775f7b2 | ||
|
|
86ee1270e2 | ||
|
|
b8cfd83d33 | ||
|
|
bfd56bf904 | ||
|
|
df2311cdaf | ||
|
|
d609c2b0ff | ||
|
|
70e1d2bf3d | ||
|
|
1697c2160c | ||
|
|
c28301bb7e | ||
|
|
b5eadb158c | ||
|
|
e94912cdb9 | ||
|
|
dfb967834f | ||
|
|
98f7c29683 | ||
|
|
0998c5539a | ||
|
|
1a79e23b12 | ||
|
|
d49323c7c4 | ||
|
|
98eb3cb7f0 | ||
|
|
c75ae73814 | ||
|
|
07519b7c28 | ||
|
|
4c62c82dab | ||
|
|
92a9554240 | ||
|
|
324a700fb7 | ||
|
|
a6b934758b | ||
|
|
cd5ec59f6a | ||
|
|
80fe813116 | ||
|
|
1262afef63 | ||
|
|
987489b34a | ||
|
|
9310861cc2 | ||
|
|
53f0db99ca | ||
|
|
2eb125f6e2 | ||
|
|
f805d9432e | ||
|
|
054cb9e9fa | ||
|
|
1f77e7d90a | ||
|
|
7ed33832b8 | ||
|
|
d19e9cc662 | ||
|
|
846c9cec6a | ||
|
|
460e4b8bb3 | ||
|
|
2e6bd23f22 | ||
|
|
7763948fe4 | ||
|
|
2a0f001902 | ||
|
|
14df69e180 | ||
|
|
28b6389b36 | ||
|
|
905c0b8c7a | ||
|
|
b674cc95ac | ||
|
|
bccb2509b5 | ||
|
|
cd980c6604 | ||
|
|
ddff4ec083 | ||
|
|
5bf97be8ef | ||
|
|
7fadb6ed05 | ||
|
|
89688d67dd | ||
|
|
279007544a | ||
|
|
1c0f0e1423 | ||
|
|
1ab909addc | ||
|
|
99dfd15469 | ||
|
|
be18ecf74e | ||
|
|
713bd132dc | ||
|
|
20f03e237e | ||
|
|
7d3c3911ea | ||
|
|
ccfee2be83 | ||
|
|
1193b0b990 | ||
|
|
5a3ba4e563 | ||
|
|
e9c342ef74 | ||
|
|
8927ffa035 | ||
|
|
fdb0312326 | ||
|
|
2f21caa41c | ||
|
|
51a35d40e5 | ||
|
|
6ec524adec | ||
|
|
7d4a7ec8c7 | ||
|
|
0256c4521d | ||
|
|
be3ed181c1 | ||
|
|
38cf7884fe | ||
|
|
25d426e8b2 | ||
|
|
edff9ae684 | ||
|
|
a622e3bda6 | ||
|
|
4d54e28e63 | ||
|
|
c89d023f91 | ||
|
|
c7cfea1daa | ||
|
|
beb07365a0 | ||
|
|
0787c65e51 | ||
|
|
d48dea7273 | ||
|
|
2432cc6ed2 | ||
|
|
cf523d4215 | ||
|
|
906d87c4b8 | ||
|
|
9c4a92c015 | ||
|
|
0c056ba691 | ||
|
|
424158b28d | ||
|
|
57f118a5b5 | ||
|
|
65e75f3da2 | ||
|
|
41174cde45 | ||
|
|
cb7d01fb36 | ||
|
|
3e78f8e87d | ||
|
|
f2c032ba07 | ||
|
|
2ef1589e76 | ||
|
|
5c394557e3 | ||
|
|
5c4a5b0a61 | ||
|
|
be22b7349d | ||
|
|
023e4774a1 | ||
|
|
56b706f25e | ||
|
|
9d07ee43eb | ||
|
|
147a6c81a1 | ||
|
|
5972f4947d | ||
|
|
9c99a624d7 | ||
|
|
d812d83dda | ||
|
|
f81c5c2455 | ||
|
|
dc8c5e6209 | ||
|
|
14833582b2 | ||
|
|
cca813fd1d | ||
|
|
d4102e75c5 | ||
|
|
76a04efc5c | ||
|
|
a34e139843 | ||
|
|
a1727a2ac7 | ||
|
|
7ac224adf3 | ||
|
|
d5e3d02a98 | ||
|
|
68ad3e8db4 | ||
|
|
31029b2fe4 | ||
|
|
8b0c101768 | ||
|
|
50b66f526b | ||
|
|
f3fcf010fb | ||
|
|
4da53bd00d | ||
|
|
c6cef45f0e | ||
|
|
e36cd7fe5c | ||
|
|
0c24f2db7b | ||
|
|
8866faa8d5 | ||
|
|
b2dc31ba80 | ||
|
|
061ea30199 | ||
|
|
0e9e94d090 | ||
|
|
3321cb37ef | ||
|
|
d60a818791 | ||
|
|
3937a52b4f | ||
|
|
2c3902b1a1 | ||
|
|
f43b5ee76f | ||
|
|
bab16a5251 | ||
|
|
08c734d7fd | ||
|
|
36126a3ad9 | ||
|
|
ce505d33bd | ||
|
|
de0d859502 | ||
|
|
ce96d4bcc5 | ||
|
|
fb242274d5 | ||
|
|
938bc7cdd7 | ||
|
|
36865f2930 | ||
|
|
12e79cccf6 | ||
|
|
6180f12ba3 | ||
|
|
c00b6c6237 | ||
|
|
dbdc74fdef | ||
|
|
5bb0a07164 | ||
|
|
543f09999f | ||
|
|
812f32efdd | ||
|
|
784264eba4 | ||
|
|
ff9ca059c7 | ||
|
|
d4b0c39485 | ||
|
|
87c42aeaf4 | ||
|
|
5ba6e57c71 | ||
|
|
6d2ba5c2d0 | ||
|
|
0d42b81285 | ||
|
|
9ce2ae613b | ||
|
|
13c9e0e666 | ||
|
|
784118e9c1 | ||
|
|
df32a32d99 | ||
|
|
655241aed3 | ||
|
|
60a2b246e2 | ||
|
|
ebd60d93f3 | ||
|
|
cc4ba935b5 | ||
|
|
824147fd7d | ||
|
|
c3446a16cc | ||
|
|
82135d1892 | ||
|
|
1cff63bc01 | ||
|
|
e488e74313 | ||
|
|
1a17c9da86 | ||
|
|
20e1f773fc | ||
|
|
56d80ff293 | ||
|
|
80e176136a | ||
|
|
0ae66d3e24 | ||
|
|
802ab8238e | ||
|
|
ec9c07a646 | ||
|
|
b75ad663f2 | ||
|
|
e4a017fc00 | ||
|
|
5b486ca6b8 | ||
|
|
1c39ed6130 | ||
|
|
a47563b12f | ||
|
|
84491ff655 | ||
|
|
e5991a4379 | ||
|
|
0b3d4615b8 | ||
|
|
a8f6336b47 | ||
|
|
0b33df3341 | ||
|
|
744cc4b705 | ||
|
|
9d3cd5784f | ||
|
|
06ea58198a | ||
|
|
3692d7d090 | ||
|
|
460a2dbbd3 | ||
|
|
228f4f1010 | ||
|
|
2703b91e41 | ||
|
|
24171787f8 | ||
|
|
49d3338d4a | ||
|
|
a9d693e1c3 | ||
|
|
4ef69248d0 | ||
|
|
247b3ed740 | ||
|
|
1edca6235c | ||
|
|
ab5c03b1d9 | ||
|
|
d4cb35469d | ||
|
|
fd1b1d0c24 | ||
|
|
bf96ceeacc | ||
|
|
2c08b385e5 | ||
|
|
051d13ec7a | ||
|
|
a2a9643123 | ||
|
|
1286bfe75b |
10
.github/CONTRIBUTING.md
vendored
10
.github/CONTRIBUTING.md
vendored
@@ -10,9 +10,9 @@ As a first step, please review these links as they'll help you understand how th
|
||||
|
||||
## Just Starting Out
|
||||
|
||||
* If you're unfamilar with git, check out this [brief introduction to Git](https://github.com/PCSX2/pcsx2/wiki/Git-survival-guide)
|
||||
* [How to build PCSX2 for Windows](https://github.com/PCSX2/pcsx2/wiki/Setting-up-the-PCSX2-repository-on-Windows-\(WIP---maybe-more-useful-as-a-manpage-instead%3F\))
|
||||
* [How to build PCSX2 for Linux](https://github.com/PCSX2/pcsx2/wiki/Installing-on-Linux)
|
||||
* If you're unfamilar with git, check out this [brief introduction to Git](https://github.com/PCSX2/pcsx2/wiki/07-Git-survival-guide)
|
||||
* [How to build PCSX2 for Windows](https://github.com/PCSX2/pcsx2/wiki/12-Building-on-Windows)
|
||||
* [How to build PCSX2 for Linux](https://github.com/PCSX2/pcsx2/wiki/10-Building-on-Linux)
|
||||
|
||||
## Issue Reporting
|
||||
|
||||
@@ -44,13 +44,11 @@ The following is a list of *general* style recommendations that will make review
|
||||
|
||||
## General Documentation And Coding Strategies
|
||||
|
||||
* [Commenting Etiquette](https://github.com/PCSX2/pcsx2/wiki/Commenting-Etiquette)
|
||||
* [Commenting Etiquette](https://github.com/PCSX2/pcsx2/wiki/06-Commenting-Etiquette)
|
||||
|
||||
* [Coding style](https://github.com/PCSX2/pcsx2/wiki/Code-Formatting-Guidelines)
|
||||
* [More comprehensive style-guide (Currently in Draft)](https://github.com/tadanokojin/pcsx2/blob/coding-guide/pcsx2/Docs/Coding_Guidelines.md)
|
||||
|
||||
## Tasks
|
||||
|
||||
* [Todo List](https://github.com/PCSX2/pcsx2/wiki/Contributing-\(TODO-List\))
|
||||
* [Issues](https://github.com/PCSX2/pcsx2/issues)
|
||||
* [A collection of ideas to improve GS OGL](https://github.com/PCSX2/pcsx2/wiki/Todo-List)
|
||||
|
||||
1
.github/workflows/cron_publish_flatpak.yml
vendored
1
.github/workflows/cron_publish_flatpak.yml
vendored
@@ -37,5 +37,6 @@ jobs:
|
||||
cmakeflags: ""
|
||||
publish: true
|
||||
branch: stable
|
||||
fetchTags: true
|
||||
secrets: inherit
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ jobs:
|
||||
name: "Update Base Translation"
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Update Base Translation
|
||||
run: ./.github/workflows/scripts/common/update_base_translation.sh
|
||||
|
||||
@@ -9,7 +9,7 @@ jobs:
|
||||
if: github.repository == 'PCSX2/pcsx2'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Get Latest DB and Prepare DB File
|
||||
run: |
|
||||
|
||||
2
.github/workflows/lint_gamedb.yml
vendored
2
.github/workflows/lint_gamedb.yml
vendored
@@ -18,7 +18,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Validate Contents
|
||||
run: |
|
||||
|
||||
8
.github/workflows/linux_build_flatpak.yml
vendored
8
.github/workflows/linux_build_flatpak.yml
vendored
@@ -45,7 +45,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
@@ -86,7 +86,7 @@ jobs:
|
||||
flatpak run org.freedesktop.appstream-glib validate .github/workflows/scripts/linux/flatpak/net.pcsx2.PCSX2.metainfo.xml
|
||||
|
||||
- name: Build Flatpak
|
||||
uses: flatpak/flatpak-github-actions/flatpak-builder@v6.1
|
||||
uses: flatpak/flatpak-github-actions/flatpak-builder@v6.2
|
||||
with:
|
||||
bundle: ${{ steps.artifact-metadata.outputs.artifact-name }}.flatpak
|
||||
manifest-path: .github/workflows/scripts/linux/flatpak/net.pcsx2.PCSX2.json
|
||||
@@ -105,7 +105,7 @@ jobs:
|
||||
|
||||
- name: Push to Flathub beta
|
||||
if: inputs.publish == true && inputs.branch == 'beta'
|
||||
uses: flatpak/flatpak-github-actions/flat-manager@v6.1
|
||||
uses: flatpak/flatpak-github-actions/flat-manager@v6.2
|
||||
with:
|
||||
flat-manager-url: https://hub.flathub.org/
|
||||
repository: beta
|
||||
@@ -113,7 +113,7 @@ jobs:
|
||||
|
||||
- name: Push to Flathub stable
|
||||
if: inputs.publish == true && inputs.branch == 'stable'
|
||||
uses: flatpak/flatpak-github-actions/flat-manager@v6.1
|
||||
uses: flatpak/flatpak-github-actions/flat-manager@v6.2
|
||||
with:
|
||||
flat-manager-url: https://hub.flathub.org/
|
||||
repository: stable
|
||||
|
||||
2
.github/workflows/linux_build_qt.yml
vendored
2
.github/workflows/linux_build_qt.yml
vendored
@@ -52,7 +52,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
|
||||
2
.github/workflows/macos_build.yml
vendored
2
.github/workflows/macos_build.yml
vendored
@@ -35,7 +35,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
|
||||
24
.github/workflows/release_announce.yml
vendored
24
.github/workflows/release_announce.yml
vendored
@@ -1,24 +0,0 @@
|
||||
name: 📢 Announce Release
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [published]
|
||||
|
||||
jobs:
|
||||
announce:
|
||||
if: github.repository == 'PCSX2/pcsx2'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 16
|
||||
|
||||
- name: Announce Release
|
||||
env:
|
||||
DISCORD_BUILD_WEBHOOK: ${{ secrets.DISCORD_BUILD_WEBHOOK }}
|
||||
run: |
|
||||
cd ./.github/workflows/scripts/releases/announce-release
|
||||
npm ci
|
||||
node index.js
|
||||
33
.github/workflows/release_cut_new.yml
vendored
33
.github/workflows/release_cut_new.yml
vendored
@@ -27,10 +27,12 @@ permissions:
|
||||
jobs:
|
||||
cut-release:
|
||||
if: github.repository == 'PCSX2/pcsx2'
|
||||
runs-on: ubuntu-latest
|
||||
name: "Create Tag and Release"
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
new_tag: ${{ steps.tag_version.outputs.new_tag }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
# Docs - https://github.com/mathieudutour/github-tag-action
|
||||
- name: Bump Version and Push Tag
|
||||
@@ -131,6 +133,7 @@ jobs:
|
||||
upload_artifacts:
|
||||
if: github.repository == 'PCSX2/pcsx2'
|
||||
needs:
|
||||
- cut-release
|
||||
- build_linux_flatpak
|
||||
- build_linux_qt
|
||||
- build_windows_qt
|
||||
@@ -138,11 +141,7 @@ jobs:
|
||||
name: "Upload Artifacts"
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
# actions/checkout elides tags, fetch them primarily for releases
|
||||
- name: Fetch Tags
|
||||
run: git fetch --tags --no-recurse-submodules
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Prepare Artifact Folder
|
||||
run: mkdir ./ci-artifacts/
|
||||
@@ -169,7 +168,7 @@ jobs:
|
||||
SCAN_DIR: ${{ github.WORKSPACE }}/ci-artifacts
|
||||
OUT_DIR: ${{ github.WORKSPACE }}/ci-artifacts/out
|
||||
run: |
|
||||
TAG_VAL=$(git tag --points-at HEAD)
|
||||
TAG_VAL=${{needs.cut-release.outputs.new_tag}}
|
||||
echo "TAG_VAL=${TAG_VAL}"
|
||||
gh release list --repo PCSX2/pcsx2
|
||||
mkdir -p ${{ github.WORKSPACE }}/ci-artifacts/out
|
||||
@@ -181,6 +180,22 @@ jobs:
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ github.token }}
|
||||
run: |
|
||||
TAG_VAL=$(git tag --points-at HEAD)
|
||||
TAG_VAL=${{needs.cut-release.outputs.new_tag}}
|
||||
echo "TAG_VAL=${TAG_VAL}"
|
||||
gh release edit ${TAG_VAL} --draft=false --repo PCSX2/pcsx2
|
||||
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 16
|
||||
|
||||
- name: Announce Release
|
||||
env:
|
||||
OWNER: PCSX2
|
||||
REPO: pcsx2
|
||||
DISCORD_BUILD_WEBHOOK: ${{ secrets.DISCORD_BUILD_WEBHOOK }}
|
||||
GITHUB_TOKEN: ${{ github.token }}
|
||||
run: |
|
||||
TAG_VAL=${{needs.cut-release.outputs.new_tag}}
|
||||
cd ./.github/workflows/scripts/releases/announce-release
|
||||
npm ci
|
||||
TAG_VAL=${TAG_VAL} node index.js
|
||||
|
||||
@@ -142,8 +142,7 @@ rm -fr "$DEPSDIR"
|
||||
mv "$DEPSDIR.bak" "$DEPSDIR"
|
||||
|
||||
# Fix up translations.
|
||||
rm -fr "$OUTDIR/usr/bin/translations"
|
||||
mv "$OUTDIR/usr/translations" "$OUTDIR/usr/bin"
|
||||
rm -fr "$OUTDIR/usr/bin/translations" "$OUTDIR/usr/translations"
|
||||
cp -a "$BUILDDIR/bin/translations" "$OUTDIR/usr/bin"
|
||||
|
||||
# Generate AppStream meta-info.
|
||||
|
||||
@@ -4,7 +4,7 @@ set -e
|
||||
|
||||
INSTALLDIR="$HOME/deps"
|
||||
NPROCS="$(getconf _NPROCESSORS_ONLN)"
|
||||
SDL=SDL2-2.28.1
|
||||
SDL=SDL2-2.28.2
|
||||
QT=6.5.2
|
||||
LIBBACKTRACE=ad106d5fdd5d960bd33fae1c48a351af567fd075
|
||||
|
||||
@@ -12,7 +12,7 @@ mkdir -p deps-build
|
||||
cd deps-build
|
||||
|
||||
cat > SHASUMS <<EOF
|
||||
4977ceba5c0054dbe6c2f114641aced43ce3bf2b41ea64b6a372d6ba129cb15d $SDL.tar.gz
|
||||
64b1102fa22093515b02ef33dd8739dee1ba57e9dbba6a092942b8bbed1a1c5e $SDL.tar.gz
|
||||
fd6f417fe9e3a071cf1424a5152d926a34c4a3c5070745470be6cf12a404ed79 $LIBBACKTRACE.zip
|
||||
3db4c729b4d80a9d8fda8dd77128406353baff4755ca619177eda4cddae71269 qtbase-everywhere-src-$QT.tar.xz
|
||||
aae0c08924c6a5e47f9d57e031673d611ffff7aab2bee2e1cc460471ecac6743 qtimageformats-everywhere-src-$QT.tar.xz
|
||||
|
||||
@@ -28,8 +28,8 @@
|
||||
"sources": [
|
||||
{
|
||||
"type": "archive",
|
||||
"url": "https://libsdl.org/release/SDL2-2.28.1.tar.gz",
|
||||
"sha256": "4977ceba5c0054dbe6c2f114641aced43ce3bf2b41ea64b6a372d6ba129cb15d"
|
||||
"url": "https://libsdl.org/release/SDL2-2.28.2.tar.gz",
|
||||
"sha256": "64b1102fa22093515b02ef33dd8739dee1ba57e9dbba6a092942b8bbed1a1c5e"
|
||||
}
|
||||
],
|
||||
"cleanup": [
|
||||
|
||||
@@ -6,10 +6,9 @@ export MACOSX_DEPLOYMENT_TARGET=10.14
|
||||
|
||||
INSTALLDIR="$HOME/deps"
|
||||
NPROCS="$(getconf _NPROCESSORS_ONLN)"
|
||||
SDL=SDL2-2.28.1
|
||||
SDL=SDL2-2.28.2
|
||||
PNG=1.6.37
|
||||
JPG=9e
|
||||
SOUNDTOUCH=soundtouch-2.3.1
|
||||
FFMPEG=6.0
|
||||
QT=6.4.3 # Currently stuck on Qt 6.4 due to 6.5 requiring macOS 11.0.
|
||||
|
||||
@@ -22,10 +21,9 @@ export CFLAGS="-I$INSTALLDIR/include -Os $CFLAGS"
|
||||
export CXXFLAGS="-I$INSTALLDIR/include -Os $CXXFLAGS"
|
||||
|
||||
cat > SHASUMS <<EOF
|
||||
4977ceba5c0054dbe6c2f114641aced43ce3bf2b41ea64b6a372d6ba129cb15d $SDL.tar.gz
|
||||
64b1102fa22093515b02ef33dd8739dee1ba57e9dbba6a092942b8bbed1a1c5e $SDL.tar.gz
|
||||
505e70834d35383537b6491e7ae8641f1a4bed1876dbfe361201fc80868d88ca libpng-$PNG.tar.xz
|
||||
4077d6a6a75aeb01884f708919d25934c93305e49f7e3f36db9129320e6f4f3d jpegsrc.v$JPG.tar.gz
|
||||
6900996607258496ce126924a19fe9d598af9d892cf3f33d1e4daaa9b42ae0b1 $SOUNDTOUCH.tar.gz
|
||||
57be87c22d9b49c112b6d24bc67d42508660e6b718b3db89c44e47e289137082 ffmpeg-$FFMPEG.tar.xz
|
||||
5087c9e5b0165e7bc3c1a4ab176b35d0cd8f52636aea903fa377bdba00891a60 qtbase-everywhere-src-$QT.tar.xz
|
||||
0aff58062e74b84617c5da8325d8cdad5368d8f4d2a11ceafcd58329fe99b798 qtimageformats-everywhere-src-$QT.tar.xz
|
||||
@@ -38,7 +36,6 @@ curl -L \
|
||||
-O "https://libsdl.org/release/$SDL.tar.gz" \
|
||||
-O "https://downloads.sourceforge.net/project/libpng/libpng16/$PNG/libpng-$PNG.tar.xz" \
|
||||
-O "https://www.ijg.org/files/jpegsrc.v$JPG.tar.gz" \
|
||||
-O "https://www.surina.net/soundtouch/$SOUNDTOUCH.tar.gz" \
|
||||
-O "https://ffmpeg.org/releases/ffmpeg-$FFMPEG.tar.xz" \
|
||||
-O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qtbase-everywhere-src-$QT.tar.xz" \
|
||||
-O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qtimageformats-everywhere-src-$QT.tar.xz" \
|
||||
@@ -51,9 +48,27 @@ shasum -a 256 --check SHASUMS
|
||||
echo "Installing SDL..."
|
||||
tar xf "$SDL.tar.gz"
|
||||
cd "$SDL"
|
||||
./configure --prefix "$INSTALLDIR" --without-x
|
||||
make "-j$NPROCS"
|
||||
make install
|
||||
|
||||
# MFI causes multiple joystick connection events, I'm guessing because both the HIDAPI and MFI interfaces
|
||||
# race each other, and sometimes both end up getting through. So, just force MFI off.
|
||||
patch -u CMakeLists.txt <<EOF
|
||||
--- CMakeLists.txt 2023-08-03 01:33:11
|
||||
+++ CMakeLists.txt 2023-08-26 12:58:53
|
||||
@@ -2105,7 +2105,7 @@
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <CoreHaptics/CoreHaptics.h>
|
||||
int main() { return 0; }" HAVE_FRAMEWORK_COREHAPTICS)
|
||||
- if(HAVE_FRAMEWORK_GAMECONTROLLER AND HAVE_FRAMEWORK_COREHAPTICS)
|
||||
+ if(HAVE_FRAMEWORK_GAMECONTROLLER AND HAVE_FRAMEWORK_COREHAPTICS AND FALSE)
|
||||
# Only enable MFI if we also have CoreHaptics to ensure rumble works
|
||||
set(SDL_JOYSTICK_MFI 1)
|
||||
set(SDL_FRAMEWORK_GAMECONTROLLER 1)
|
||||
|
||||
EOF
|
||||
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX="$INSTALLDIR" -DSDL_X11=OFF
|
||||
make -C build "-j$NPROCS"
|
||||
make -C build install
|
||||
cd ..
|
||||
|
||||
echo "Installing libpng..."
|
||||
@@ -72,14 +87,6 @@ make "-j$NPROCS"
|
||||
make install
|
||||
cd ..
|
||||
|
||||
echo "Installing soundtouch..."
|
||||
tar xf "$SOUNDTOUCH.tar.gz"
|
||||
cd "$SOUNDTOUCH"
|
||||
cmake -B build -DCMAKE_INSTALL_PREFIX="$INSTALLDIR" -DCMAKE_BUILD_TYPE=MinSizeRel
|
||||
make -C build "-j$NPROCS"
|
||||
make -C build install
|
||||
cd ..
|
||||
|
||||
echo "Installing FFmpeg..."
|
||||
tar xf "ffmpeg-$FFMPEG.tar.xz"
|
||||
cd "ffmpeg-$FFMPEG"
|
||||
|
||||
@@ -1,7 +1,58 @@
|
||||
import { MessageEmbed, WebhookClient } from "discord.js";
|
||||
import * as github from '@actions/github';
|
||||
import { Octokit } from "@octokit/rest";
|
||||
import { throttling } from "@octokit/plugin-throttling";
|
||||
import { retry } from "@octokit/plugin-retry";
|
||||
|
||||
const releaseInfo = github.context.payload.release;
|
||||
let owner = process.env.OWNER;
|
||||
let repo = process.env.REPO;
|
||||
|
||||
Octokit.plugin(throttling);
|
||||
Octokit.plugin(retry);
|
||||
const octokit = new Octokit({
|
||||
auth: process.env.GITHUB_TOKEN,
|
||||
userAgent: `${owner}/${repo}`,
|
||||
log: {
|
||||
debug: () => { },
|
||||
info: () => { },
|
||||
warn: console.warn,
|
||||
error: console.error
|
||||
},
|
||||
throttle: {
|
||||
onRateLimit: (retryAfter, options) => {
|
||||
octokit.log.warn(
|
||||
`Request quota exhausted for request ${options.method} ${options.url}`
|
||||
);
|
||||
|
||||
// Retry twice after hitting a rate limit error, then give up
|
||||
if (options.request.retryCount <= 2) {
|
||||
console.log(`Retrying after ${retryAfter} seconds!`);
|
||||
return true;
|
||||
}
|
||||
},
|
||||
onAbuseLimit: (retryAfter, options) => {
|
||||
// does not retry, only logs a warning
|
||||
octokit.log.warn(
|
||||
`Abuse detected for request ${options.method} ${options.url}`
|
||||
);
|
||||
},
|
||||
}
|
||||
});
|
||||
|
||||
if (process.env.TAG_VAL === undefined || process.env.TAG_VAL === "") {
|
||||
console.log(`Not announcing - TAG_VAL not defined`);
|
||||
process.exit(1);
|
||||
}
|
||||
|
||||
const { data: releaseInfo } = await octokit.rest.repos.getReleaseByTag({
|
||||
owner: owner,
|
||||
repo: repo,
|
||||
tag: process.env.TAG_VAL,
|
||||
});
|
||||
|
||||
if (releaseInfo === undefined) {
|
||||
console.log(`Not announcing - could not locate release with tag ${process.env.TAG_VAL}`);
|
||||
process.exit(1);
|
||||
}
|
||||
|
||||
if (!releaseInfo.prerelease) {
|
||||
console.log("Not announcing - release was not a pre-release (aka a Nightly)");
|
||||
@@ -18,6 +69,7 @@ const embed = new MessageEmbed()
|
||||
{ name: 'Installation Steps', value: '[See Here](https://github.com/PCSX2/pcsx2/wiki/Nightly-Build-Usage-Guide)', inline: true },
|
||||
{ name: 'Included Changes', value: releaseInfo.body, inline: false }
|
||||
);
|
||||
console.log(embed);
|
||||
|
||||
// Get all webhooks, simple comma-sep string
|
||||
const webhookUrls = process.env.DISCORD_BUILD_WEBHOOK.split(",");
|
||||
|
||||
141
.github/workflows/scripts/releases/announce-release/package-lock.json
generated
vendored
141
.github/workflows/scripts/releases/announce-release/package-lock.json
generated
vendored
@@ -5,32 +5,16 @@
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "announce-release",
|
||||
"version": "1.0.0",
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@actions/github": "^5.0.0",
|
||||
"@octokit/plugin-retry": "^3.0.9",
|
||||
"@octokit/plugin-throttling": "^3.5.2",
|
||||
"@octokit/rest": "^18.12.0",
|
||||
"discord.js": "^13.2.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@actions/github": {
|
||||
"version": "5.0.0",
|
||||
"resolved": "https://registry.npmjs.org/@actions/github/-/github-5.0.0.tgz",
|
||||
"integrity": "sha512-QvE9eAAfEsS+yOOk0cylLBIO/d6WyWIOvsxxzdrPFaud39G6BOkUwScXZn1iBzQzHyu9SBkkLSWlohDWdsasAQ==",
|
||||
"dependencies": {
|
||||
"@actions/http-client": "^1.0.11",
|
||||
"@octokit/core": "^3.4.0",
|
||||
"@octokit/plugin-paginate-rest": "^2.13.3",
|
||||
"@octokit/plugin-rest-endpoint-methods": "^5.1.1"
|
||||
}
|
||||
},
|
||||
"node_modules/@actions/http-client": {
|
||||
"version": "1.0.11",
|
||||
"resolved": "https://registry.npmjs.org/@actions/http-client/-/http-client-1.0.11.tgz",
|
||||
"integrity": "sha512-VRYHGQV1rqnROJqdMvGUbY/Kn8vriQe/F9HR2AlYHzmKuM/p3kjNuXhmdBfcVgsvRWTz5C5XW5xvndZrVBuAYg==",
|
||||
"dependencies": {
|
||||
"tunnel": "0.0.6"
|
||||
}
|
||||
},
|
||||
"node_modules/@discordjs/builders": {
|
||||
"version": "0.6.0",
|
||||
"resolved": "https://registry.npmjs.org/@discordjs/builders/-/builders-0.6.0.tgz",
|
||||
@@ -131,6 +115,14 @@
|
||||
"@octokit/types": "^6.33.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@octokit/plugin-request-log": {
|
||||
"version": "1.0.4",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/plugin-request-log/-/plugin-request-log-1.0.4.tgz",
|
||||
"integrity": "sha512-mLUsMkgP7K/cnFEw07kWqXGF5LKrOkD+lhCrKvPHXWDywAwuDUeDwWBpc69XK3pNX0uKiVt8g5z96PJ6z9xCFA==",
|
||||
"peerDependencies": {
|
||||
"@octokit/core": ">=3"
|
||||
}
|
||||
},
|
||||
"node_modules/@octokit/plugin-rest-endpoint-methods": {
|
||||
"version": "5.12.1",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/plugin-rest-endpoint-methods/-/plugin-rest-endpoint-methods-5.12.1.tgz",
|
||||
@@ -140,6 +132,27 @@
|
||||
"deprecation": "^2.3.1"
|
||||
}
|
||||
},
|
||||
"node_modules/@octokit/plugin-retry": {
|
||||
"version": "3.0.9",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/plugin-retry/-/plugin-retry-3.0.9.tgz",
|
||||
"integrity": "sha512-r+fArdP5+TG6l1Rv/C9hVoty6tldw6cE2pRHNGmFPdyfrc696R6JjrQ3d7HdVqGwuzfyrcaLAKD7K8TX8aehUQ==",
|
||||
"dependencies": {
|
||||
"@octokit/types": "^6.0.3",
|
||||
"bottleneck": "^2.15.3"
|
||||
}
|
||||
},
|
||||
"node_modules/@octokit/plugin-throttling": {
|
||||
"version": "3.7.0",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/plugin-throttling/-/plugin-throttling-3.7.0.tgz",
|
||||
"integrity": "sha512-qrKT1Yl/KuwGSC6/oHpLBot3ooC9rq0/ryDYBCpkRtoj+R8T47xTMDT6Tk2CxWopFota/8Pi/2SqArqwC0JPow==",
|
||||
"dependencies": {
|
||||
"@octokit/types": "^6.0.1",
|
||||
"bottleneck": "^2.15.3"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@octokit/core": "^3.5.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@octokit/request": {
|
||||
"version": "5.6.2",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/request/-/request-5.6.2.tgz",
|
||||
@@ -163,6 +176,17 @@
|
||||
"once": "^1.4.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@octokit/rest": {
|
||||
"version": "18.12.0",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/rest/-/rest-18.12.0.tgz",
|
||||
"integrity": "sha512-gDPiOHlyGavxr72y0guQEhLsemgVjwRePayJ+FcKc2SJqKUbxbkvf5kAZEWA/MKvsfYlQAMVzNJE3ezQcxMJ2Q==",
|
||||
"dependencies": {
|
||||
"@octokit/core": "^3.5.1",
|
||||
"@octokit/plugin-paginate-rest": "^2.16.8",
|
||||
"@octokit/plugin-request-log": "^1.0.4",
|
||||
"@octokit/plugin-rest-endpoint-methods": "^5.12.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@octokit/types": {
|
||||
"version": "6.33.0",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/types/-/types-6.33.0.tgz",
|
||||
@@ -214,6 +238,11 @@
|
||||
"resolved": "https://registry.npmjs.org/before-after-hook/-/before-after-hook-2.2.2.tgz",
|
||||
"integrity": "sha512-3pZEU3NT5BFUo/AD5ERPWOgQOCZITni6iavr5AUw5AUwQjMlI0kzu5btnyD39AF0gUEsDPwJT+oY1ORBJijPjQ=="
|
||||
},
|
||||
"node_modules/bottleneck": {
|
||||
"version": "2.19.5",
|
||||
"resolved": "https://registry.npmjs.org/bottleneck/-/bottleneck-2.19.5.tgz",
|
||||
"integrity": "sha512-VHiNCbI1lKdl44tGrhNfU3lup0Tj/ZBMJB5/2ZbNXRCPuRCO7ed2mgcK4r17y+KB2EfuYuRaVlwNbAeaWGSpbw=="
|
||||
},
|
||||
"node_modules/callsites": {
|
||||
"version": "3.1.0",
|
||||
"resolved": "https://registry.npmjs.org/callsites/-/callsites-3.1.0.tgz",
|
||||
@@ -388,14 +417,6 @@
|
||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.3.1.tgz",
|
||||
"integrity": "sha512-77EbyPPpMz+FRFRuAFlWMtmgUWGe9UOG2Z25NqCwiIjRhOf5iKGuzSe5P2w1laq+FkRy4p+PCuVkJSGkzTEKVw=="
|
||||
},
|
||||
"node_modules/tunnel": {
|
||||
"version": "0.0.6",
|
||||
"resolved": "https://registry.npmjs.org/tunnel/-/tunnel-0.0.6.tgz",
|
||||
"integrity": "sha512-1h/Lnq9yajKY2PEbBadPXj3VxsDDu844OnaAo52UVmIzIvwwtBPIuNvkjuzBlTWpfJyUbG3ez0KSBibQkj4ojg==",
|
||||
"engines": {
|
||||
"node": ">=0.6.11 <=0.7.0 || >=0.7.3"
|
||||
}
|
||||
},
|
||||
"node_modules/type-fest": {
|
||||
"version": "1.4.0",
|
||||
"resolved": "https://registry.npmjs.org/type-fest/-/type-fest-1.4.0.tgz",
|
||||
@@ -461,25 +482,6 @@
|
||||
}
|
||||
},
|
||||
"dependencies": {
|
||||
"@actions/github": {
|
||||
"version": "5.0.0",
|
||||
"resolved": "https://registry.npmjs.org/@actions/github/-/github-5.0.0.tgz",
|
||||
"integrity": "sha512-QvE9eAAfEsS+yOOk0cylLBIO/d6WyWIOvsxxzdrPFaud39G6BOkUwScXZn1iBzQzHyu9SBkkLSWlohDWdsasAQ==",
|
||||
"requires": {
|
||||
"@actions/http-client": "^1.0.11",
|
||||
"@octokit/core": "^3.4.0",
|
||||
"@octokit/plugin-paginate-rest": "^2.13.3",
|
||||
"@octokit/plugin-rest-endpoint-methods": "^5.1.1"
|
||||
}
|
||||
},
|
||||
"@actions/http-client": {
|
||||
"version": "1.0.11",
|
||||
"resolved": "https://registry.npmjs.org/@actions/http-client/-/http-client-1.0.11.tgz",
|
||||
"integrity": "sha512-VRYHGQV1rqnROJqdMvGUbY/Kn8vriQe/F9HR2AlYHzmKuM/p3kjNuXhmdBfcVgsvRWTz5C5XW5xvndZrVBuAYg==",
|
||||
"requires": {
|
||||
"tunnel": "0.0.6"
|
||||
}
|
||||
},
|
||||
"@discordjs/builders": {
|
||||
"version": "0.6.0",
|
||||
"resolved": "https://registry.npmjs.org/@discordjs/builders/-/builders-0.6.0.tgz",
|
||||
@@ -569,6 +571,12 @@
|
||||
"@octokit/types": "^6.33.0"
|
||||
}
|
||||
},
|
||||
"@octokit/plugin-request-log": {
|
||||
"version": "1.0.4",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/plugin-request-log/-/plugin-request-log-1.0.4.tgz",
|
||||
"integrity": "sha512-mLUsMkgP7K/cnFEw07kWqXGF5LKrOkD+lhCrKvPHXWDywAwuDUeDwWBpc69XK3pNX0uKiVt8g5z96PJ6z9xCFA==",
|
||||
"requires": {}
|
||||
},
|
||||
"@octokit/plugin-rest-endpoint-methods": {
|
||||
"version": "5.12.1",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/plugin-rest-endpoint-methods/-/plugin-rest-endpoint-methods-5.12.1.tgz",
|
||||
@@ -578,6 +586,24 @@
|
||||
"deprecation": "^2.3.1"
|
||||
}
|
||||
},
|
||||
"@octokit/plugin-retry": {
|
||||
"version": "3.0.9",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/plugin-retry/-/plugin-retry-3.0.9.tgz",
|
||||
"integrity": "sha512-r+fArdP5+TG6l1Rv/C9hVoty6tldw6cE2pRHNGmFPdyfrc696R6JjrQ3d7HdVqGwuzfyrcaLAKD7K8TX8aehUQ==",
|
||||
"requires": {
|
||||
"@octokit/types": "^6.0.3",
|
||||
"bottleneck": "^2.15.3"
|
||||
}
|
||||
},
|
||||
"@octokit/plugin-throttling": {
|
||||
"version": "3.7.0",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/plugin-throttling/-/plugin-throttling-3.7.0.tgz",
|
||||
"integrity": "sha512-qrKT1Yl/KuwGSC6/oHpLBot3ooC9rq0/ryDYBCpkRtoj+R8T47xTMDT6Tk2CxWopFota/8Pi/2SqArqwC0JPow==",
|
||||
"requires": {
|
||||
"@octokit/types": "^6.0.1",
|
||||
"bottleneck": "^2.15.3"
|
||||
}
|
||||
},
|
||||
"@octokit/request": {
|
||||
"version": "5.6.2",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/request/-/request-5.6.2.tgz",
|
||||
@@ -601,6 +627,17 @@
|
||||
"once": "^1.4.0"
|
||||
}
|
||||
},
|
||||
"@octokit/rest": {
|
||||
"version": "18.12.0",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/rest/-/rest-18.12.0.tgz",
|
||||
"integrity": "sha512-gDPiOHlyGavxr72y0guQEhLsemgVjwRePayJ+FcKc2SJqKUbxbkvf5kAZEWA/MKvsfYlQAMVzNJE3ezQcxMJ2Q==",
|
||||
"requires": {
|
||||
"@octokit/core": "^3.5.1",
|
||||
"@octokit/plugin-paginate-rest": "^2.16.8",
|
||||
"@octokit/plugin-request-log": "^1.0.4",
|
||||
"@octokit/plugin-rest-endpoint-methods": "^5.12.0"
|
||||
}
|
||||
},
|
||||
"@octokit/types": {
|
||||
"version": "6.33.0",
|
||||
"resolved": "https://registry.npmjs.org/@octokit/types/-/types-6.33.0.tgz",
|
||||
@@ -642,6 +679,11 @@
|
||||
"resolved": "https://registry.npmjs.org/before-after-hook/-/before-after-hook-2.2.2.tgz",
|
||||
"integrity": "sha512-3pZEU3NT5BFUo/AD5ERPWOgQOCZITni6iavr5AUw5AUwQjMlI0kzu5btnyD39AF0gUEsDPwJT+oY1ORBJijPjQ=="
|
||||
},
|
||||
"bottleneck": {
|
||||
"version": "2.19.5",
|
||||
"resolved": "https://registry.npmjs.org/bottleneck/-/bottleneck-2.19.5.tgz",
|
||||
"integrity": "sha512-VHiNCbI1lKdl44tGrhNfU3lup0Tj/ZBMJB5/2ZbNXRCPuRCO7ed2mgcK4r17y+KB2EfuYuRaVlwNbAeaWGSpbw=="
|
||||
},
|
||||
"callsites": {
|
||||
"version": "3.1.0",
|
||||
"resolved": "https://registry.npmjs.org/callsites/-/callsites-3.1.0.tgz",
|
||||
@@ -765,11 +807,6 @@
|
||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.3.1.tgz",
|
||||
"integrity": "sha512-77EbyPPpMz+FRFRuAFlWMtmgUWGe9UOG2Z25NqCwiIjRhOf5iKGuzSe5P2w1laq+FkRy4p+PCuVkJSGkzTEKVw=="
|
||||
},
|
||||
"tunnel": {
|
||||
"version": "0.0.6",
|
||||
"resolved": "https://registry.npmjs.org/tunnel/-/tunnel-0.0.6.tgz",
|
||||
"integrity": "sha512-1h/Lnq9yajKY2PEbBadPXj3VxsDDu844OnaAo52UVmIzIvwwtBPIuNvkjuzBlTWpfJyUbG3ez0KSBibQkj4ojg=="
|
||||
},
|
||||
"type-fest": {
|
||||
"version": "1.4.0",
|
||||
"resolved": "https://registry.npmjs.org/type-fest/-/type-fest-1.4.0.tgz",
|
||||
|
||||
@@ -10,7 +10,9 @@
|
||||
"author": "",
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@actions/github": "^5.0.0",
|
||||
"@octokit/plugin-retry": "^3.0.9",
|
||||
"@octokit/plugin-throttling": "^3.5.2",
|
||||
"@octokit/rest": "^18.12.0",
|
||||
"discord.js": "^13.2.0"
|
||||
}
|
||||
}
|
||||
|
||||
165
.github/workflows/scripts/windows/build-dependencies.bat
vendored
Normal file
165
.github/workflows/scripts/windows/build-dependencies.bat
vendored
Normal file
@@ -0,0 +1,165 @@
|
||||
@echo off
|
||||
setlocal enabledelayedexpansion
|
||||
|
||||
echo Setting environment...
|
||||
if exist "%ProgramFiles%\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvars64.bat" (
|
||||
call "%ProgramFiles%\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
) else if exist "%ProgramFiles%\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvars64.bat" (
|
||||
call "%ProgramFiles%\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvars64.bat"
|
||||
) else (
|
||||
echo Visual Studio 2022 not found.
|
||||
goto error
|
||||
)
|
||||
|
||||
set SEVENZIP="C:\Program Files\7-Zip\7z.exe"
|
||||
|
||||
if defined DEBUG (
|
||||
echo DEBUG=%DEBUG%
|
||||
) else (
|
||||
set DEBUG=1
|
||||
)
|
||||
|
||||
pushd %~dp0
|
||||
set "SCRIPTDIR=%CD%"
|
||||
cd ..\..\..\..
|
||||
mkdir deps-build
|
||||
cd deps-build || goto error
|
||||
set "BUILDDIR=%CD%"
|
||||
cd ..
|
||||
mkdir deps
|
||||
cd deps || goto error
|
||||
set "INSTALLDIR=%CD%"
|
||||
popd
|
||||
|
||||
echo SCRIPTDIR=%SCRIPTDIR%
|
||||
echo BUILDDIR=%BUILDDIR%
|
||||
echo INSTALLDIR=%INSTALLDIR%
|
||||
|
||||
cd "%BUILDDIR%"
|
||||
|
||||
set QT=6.5.2
|
||||
set QTMINOR=6.5
|
||||
set SDL=SDL2-2.28.2
|
||||
|
||||
call :downloadfile "%SDL%.zip" "https://libsdl.org/release/%SDL%.zip" 22383a6b242bac072f949d2b3854cf04c6856cae7a87eaa78c60dd733b71e41e || goto error
|
||||
call :downloadfile "qtbase-everywhere-src-%QT%.zip" "https://download.qt.io/official_releases/qt/%QTMINOR%/%QT%/submodules/qtbase-everywhere-src-%QT%.zip" f770a087e350d688441880d08ad2791465e5e3b9a0f8fc2cfbeb5dd305a11d50 || goto error
|
||||
call :downloadfile "qtimageformats-everywhere-src-%QT%.zip" "https://download.qt.io/official_releases/qt/%QTMINOR%/%QT%/submodules/qtimageformats-everywhere-src-%QT%.zip" 9757899b00eea4e6b65f81f922c0215c70969661567398d91da6639a50a788e7 || goto error
|
||||
call :downloadfile "qtsvg-everywhere-src-%QT%.zip" "https://download.qt.io/official_releases/qt/%QTMINOR%/%QT%/submodules/qtsvg-everywhere-src-%QT%.zip" 0546a6aa19f5e0188d1ba4a0e0a1423d22b7dc55ce8a614cc4aa65bfac506f74 || goto error
|
||||
call :downloadfile "qttools-everywhere-src-%QT%.zip" "https://download.qt.io/official_releases/qt/%QTMINOR%/%QT%/submodules/qttools-everywhere-src-%QT%.zip" 3148f4f263bf9930d89107eb44bc452481a5f8c6178459e26ecbf3c8dca3b5c7 || goto error
|
||||
call :downloadfile "qttranslations-everywhere-src-%QT%.zip" "https://download.qt.io/official_releases/qt/%QTMINOR%/%QT%/submodules/qttranslations-everywhere-src-%QT%.zip" 8b99046b54c40106d4e310be63b41331b717cfd8b42da4b4fc1c9169604be7fc || goto error
|
||||
|
||||
call :downloadfile "4b119f48f5cb5e1499f91a0791150231c47430d4.diff" "https://github.com/qt/qtbase/commit/4b119f48f5cb5e1499f91a0791150231c47430d4.diff" d86bd2bd4ee2aff5f5e97da027aa926178dca250d163427eb21503bb357730a5 || goto error
|
||||
|
||||
if %DEBUG%==1 (
|
||||
echo Building debug and release libraries...
|
||||
) else (
|
||||
echo Building release libraries...
|
||||
)
|
||||
|
||||
echo Building SDL...
|
||||
rmdir /S /Q "%SDL%"
|
||||
%SEVENZIP% x "%SDL%.zip" || goto error
|
||||
cd "%SDL%" || goto error
|
||||
if %DEBUG%==1 (
|
||||
cmake -B build-debug -DCMAKE_BUILD_TYPE=Debug -DCMAKE_INSTALL_PREFIX="%INSTALLDIR%" -DBUILD_SHARED_LIBS=ON -DSDL_SHARED=ON -DSDL_STATIC=OFF -G Ninja || goto error
|
||||
cmake --build build-debug --parallel || goto error
|
||||
ninja -C build-debug install || goto error
|
||||
)
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX="%INSTALLDIR%" -DBUILD_SHARED_LIBS=ON -DSDL_SHARED=ON -DSDL_STATIC=OFF -G Ninja || goto error
|
||||
cmake --build build --parallel || goto error
|
||||
ninja -C build install || goto error
|
||||
cd .. || goto error
|
||||
|
||||
if %DEBUG%==1 (
|
||||
set QTBUILDSPEC=-DCMAKE_CONFIGURATION_TYPES="Release;Debug" -G "Ninja Multi-Config"
|
||||
) else (
|
||||
set QTBUILDSPEC=-DCMAKE_BUILD_TYPE=Release -G Ninja
|
||||
)
|
||||
|
||||
echo Building Qt base...
|
||||
rmdir /S /Q "qtbase-everywhere-src-%QT%"
|
||||
%SEVENZIP% x "qtbase-everywhere-src-%QT%.zip" || goto error
|
||||
cd "qtbase-everywhere-src-%QT%" || goto error
|
||||
"C:\Program Files\Git\usr\bin\patch" -p1 < ../4b119f48f5cb5e1499f91a0791150231c47430d4.diff || goto error
|
||||
cmake -B build -DFEATURE_sql=OFF -DCMAKE_INSTALL_PREFIX="%INSTALLDIR%" -DINPUT_gui=yes -DINPUT_widgets=yes -DINPUT_ssl=yes -DINPUT_openssl=no -DINPUT_schannel=yes %QTBUILDSPEC% || goto error
|
||||
cmake --build build --parallel || goto error
|
||||
ninja -C build install || goto error
|
||||
cd .. || goto error
|
||||
|
||||
echo Building Qt SVG...
|
||||
rmdir /S /Q "qtsvg-everywhere-src-%QT%"
|
||||
%SEVENZIP% x "qtsvg-everywhere-src-%QT%.zip" || goto error
|
||||
cd "qtsvg-everywhere-src-%QT%" || goto error
|
||||
mkdir build || goto error
|
||||
cd build || goto error
|
||||
call "%INSTALLDIR%\bin\qt-configure-module.bat" .. || goto error
|
||||
cmake --build . --parallel || goto error
|
||||
ninja install || goto error
|
||||
cd ..\.. || goto error
|
||||
|
||||
echo Building Qt Image Formats...
|
||||
rmdir /S /Q "qtimageformats-everywhere-src-%QT%"
|
||||
%SEVENZIP% x "qtimageformats-everywhere-src-%QT%.zip" || goto error
|
||||
cd "qtimageformats-everywhere-src-%QT%" || goto error
|
||||
mkdir build || goto error
|
||||
cd build || goto error
|
||||
call "%INSTALLDIR%\bin\qt-configure-module.bat" .. || goto error
|
||||
cmake --build . --parallel || goto error
|
||||
ninja install || goto error
|
||||
cd ..\.. || goto error
|
||||
|
||||
echo Building Qt Tools...
|
||||
rmdir /S /Q "qtimageformats-everywhere-src-%QT%"
|
||||
%SEVENZIP% x "qttools-everywhere-src-%QT%.zip" || goto error
|
||||
cd "qttools-everywhere-src-%QT%" || goto error
|
||||
mkdir build || goto error
|
||||
cd build || goto error
|
||||
call "%INSTALLDIR%\bin\qt-configure-module.bat" .. -- -DFEATURE_assistant=OFF -DFEATURE_clang=OFF -DFEATURE_designer=OFF -DFEATURE_kmap2qmap=OFF -DFEATURE_pixeltool=OFF -DFEATURE_pkg_config=OFF -DFEATURE_qev=OFF -DFEATURE_qtattributionsscanner=OFF -DFEATURE_qtdiag=OFF -DFEATURE_qtplugininfo=OFF || goto error
|
||||
cmake --build . --parallel || goto error
|
||||
ninja install || goto error
|
||||
cd ..\.. || goto error
|
||||
|
||||
echo Building Qt Translations...
|
||||
rmdir /S /Q "qttranslations-everywhere-src-%QT%"
|
||||
%SEVENZIP% x "qttranslations-everywhere-src-%QT%.zip" || goto error
|
||||
cd "qttranslations-everywhere-src-%QT%" || goto error
|
||||
mkdir build || goto error
|
||||
cd build || goto error
|
||||
call "%INSTALLDIR%\bin\qt-configure-module.bat" .. || goto error
|
||||
cmake --build . --parallel || goto error
|
||||
ninja install || goto error
|
||||
cd ..\.. || goto error
|
||||
|
||||
echo Cleaning up...
|
||||
cd ..
|
||||
rd /S /Q deps-build
|
||||
|
||||
echo Exiting with success.
|
||||
exit 0
|
||||
|
||||
:error
|
||||
echo Failed with error #%errorlevel%.
|
||||
pause
|
||||
exit %errorlevel%
|
||||
|
||||
:downloadfile
|
||||
if not exist "%~1" (
|
||||
echo Downloading %~1 from %~2...
|
||||
curl -L -o "%~1" "%~2" || goto error
|
||||
)
|
||||
|
||||
rem based on https://gist.github.com/gsscoder/e22daefaff9b5d8ac16afb070f1a7971
|
||||
set idx=0
|
||||
for /f %%F in ('certutil -hashfile "%~1" SHA256') do (
|
||||
set "out!idx!=%%F"
|
||||
set /a idx += 1
|
||||
)
|
||||
set filechecksum=%out1%
|
||||
|
||||
if /i %~3==%filechecksum% (
|
||||
echo Validated %~1.
|
||||
exit /B 0
|
||||
) else (
|
||||
echo Expected %~3 got %filechecksum%.
|
||||
exit /B 1
|
||||
)
|
||||
2
.github/workflows/windows_build_matrix.yml
vendored
2
.github/workflows/windows_build_matrix.yml
vendored
@@ -16,7 +16,7 @@ jobs:
|
||||
runs-on: windows-2019
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Verify VS Project Files
|
||||
run: .github\workflows\scripts\windows\validate-vs-filters.ps1
|
||||
|
||||
|
||||
35
.github/workflows/windows_build_qt.yml
vendored
35
.github/workflows/windows_build_qt.yml
vendored
@@ -29,14 +29,6 @@ on:
|
||||
required: false
|
||||
type: string
|
||||
default: ""
|
||||
qt_binary_url:
|
||||
required: false
|
||||
type: string
|
||||
default: https://github.com/PCSX2/pcsx2-windows-dependencies/releases/download/2023-04-25/qt-6.5.0-x64.7z
|
||||
qt_dir:
|
||||
required: false
|
||||
type: string
|
||||
default: 3rdparty\qt\6.5.0\msvc2022_64
|
||||
patchesUrl:
|
||||
required: false
|
||||
type: string
|
||||
@@ -51,13 +43,13 @@ jobs:
|
||||
name: ${{ inputs.jobName }}
|
||||
runs-on: ${{ inputs.os }}
|
||||
# Set some sort of timeout in the event of run-away builds. We are limited on concurrent jobs so, get rid of them.
|
||||
timeout-minutes: 60
|
||||
timeout-minutes: 90
|
||||
env:
|
||||
POWERSHELL_TELEMETRY_OPTOUT: 1
|
||||
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
@@ -84,27 +76,32 @@ jobs:
|
||||
if: inputs.configuration != 'CMake'
|
||||
uses: microsoft/setup-msbuild@v1
|
||||
|
||||
- name: Download Qt build files
|
||||
shell: cmd
|
||||
run: |
|
||||
cd 3rdparty\qt
|
||||
aria2c ${{ inputs.qt_binary_url }}
|
||||
7z x qt-*-x64.7z
|
||||
del qt-*-x64.7z
|
||||
|
||||
- name: Download patches
|
||||
shell: cmd
|
||||
run: |
|
||||
cd bin/resources
|
||||
aria2c -Z "${{ inputs.patchesUrl }}/patches.zip"
|
||||
|
||||
- name: Cache Dependencies
|
||||
id: cache-deps
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
path: deps
|
||||
key: ${{ inputs.os }} ${{ inputs.platform }} deps ${{ hashFiles('.github/workflows/scripts/windows/build-dependencies.bat') }}
|
||||
|
||||
- name: Build Dependencies
|
||||
if: steps.cache-deps.outputs.cache-hit != 'true'
|
||||
env:
|
||||
DEBUG: 0
|
||||
run: .github/workflows/scripts/windows/build-dependencies.bat
|
||||
|
||||
- name: Generate CMake
|
||||
if: inputs.configuration == 'CMake'
|
||||
id: cmake
|
||||
shell: cmd
|
||||
run: |
|
||||
call "%ProgramFiles%\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
cmake . -B build ${{ inputs.cmakeFlags }} "-DCMAKE_PREFIX_PATH=%cd%\${{ inputs.qt_dir }}" -DQT_BUILD=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INTERPROCEDURAL_OPTIMIZATION=ON -DDISABLE_ADVANCE_SIMD=ON -G Ninja
|
||||
cmake . -B build ${{ inputs.cmakeFlags }} "-DCMAKE_PREFIX_PATH=%cd%\deps" -DQT_BUILD=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_INTERPROCEDURAL_OPTIMIZATION=ON -DDISABLE_ADVANCE_SIMD=ON -G Ninja
|
||||
|
||||
- name: Build PCSX2
|
||||
shell: cmd
|
||||
|
||||
8
.gitignore
vendored
8
.gitignore
vendored
@@ -23,13 +23,6 @@
|
||||
*.VC.db
|
||||
*.VC.VC.opendb
|
||||
|
||||
**/Win32/Release*
|
||||
**/Win32/Debug*
|
||||
**/Win32/Devel*
|
||||
**/x64/Release*
|
||||
**/x64/Debug*
|
||||
**/x64/Devel*
|
||||
|
||||
_ReSharper.*
|
||||
pcsx2.snapshot_*
|
||||
svnrev.h
|
||||
@@ -44,6 +37,7 @@ Thumbs.db
|
||||
Debug.txt
|
||||
install_log.txt
|
||||
bad_shader_*
|
||||
crash-*.txt
|
||||
|
||||
Debug
|
||||
Release
|
||||
|
||||
12
.gitmodules
vendored
12
.gitmodules
vendored
@@ -7,9 +7,6 @@
|
||||
[submodule "3rdparty/fmt/fmt"]
|
||||
path = 3rdparty/fmt/fmt
|
||||
url = https://github.com/fmtlib/fmt.git
|
||||
[submodule "3rdparty/libchdr/libchdr"]
|
||||
path = 3rdparty/libchdr/libchdr
|
||||
url = https://github.com/rtissera/libchdr.git
|
||||
[submodule "3rdparty/wil"]
|
||||
path = 3rdparty/wil
|
||||
url = https://github.com/microsoft/wil.git
|
||||
@@ -24,15 +21,12 @@
|
||||
[submodule "3rdparty/vulkan-headers"]
|
||||
path = 3rdparty/vulkan-headers
|
||||
url = https://github.com/KhronosGroup/Vulkan-Headers.git
|
||||
[submodule "3rdparty/sdl2/SDL"]
|
||||
path = 3rdparty/sdl2/SDL
|
||||
url = https://github.com/libsdl-org/SDL.git
|
||||
[submodule "3rdparty/libzip/libzip"]
|
||||
path = 3rdparty/libzip/libzip
|
||||
url = https://github.com/nih-at/libzip.git
|
||||
[submodule "3rdparty/zstd/zstd"]
|
||||
path = 3rdparty/zstd/zstd
|
||||
url = https://github.com/facebook/zstd.git
|
||||
[submodule "3rdparty/rcheevos/rcheevos"]
|
||||
path = 3rdparty/rcheevos/rcheevos
|
||||
url = https://github.com/RetroAchievements/rcheevos.git
|
||||
[submodule "3rdparty/libwebp/libwebp"]
|
||||
path = 3rdparty/libwebp/libwebp
|
||||
url = https://github.com/webmproject/libwebp
|
||||
|
||||
4
3rdparty/3rdparty.props
vendored
4
3rdparty/3rdparty.props
vendored
@@ -2,8 +2,8 @@
|
||||
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
|
||||
<PropertyGroup>
|
||||
<_ProjectFileVersion>10.0.30128.1</_ProjectFileVersion>
|
||||
<OutDir>$(SolutionDir)deps\$(PlatformName)\$(Configuration)\</OutDir>
|
||||
<IntDir>$(PlatformName)\$(Configuration)\</IntDir>
|
||||
<OutDir>$(SolutionDir)build\3rdparty\lib-$(PlatformName)-$(Configuration)\</OutDir>
|
||||
<IntDir>$(SolutionDir)build\3rdparty\obj-$(ProjectName)-$(PlatformName)-$(Configuration)\</IntDir>
|
||||
<ExtensionsToDeleteOnClean>*.bsc;*.idb;*.sbr;*.res;*.pch;*.pdb;*.obj;*.tlb;*.tli;*.tlh;*.tmp;*.rsp;*.pgc;*.pgd;*.meta;$(TargetPath);$(ExtensionsToDeleteOnClean)</ExtensionsToDeleteOnClean>
|
||||
</PropertyGroup>
|
||||
<ItemDefinitionGroup>
|
||||
|
||||
4
3rdparty/cpuinfo/src/cpuinfo/utils.h
vendored
4
3rdparty/cpuinfo/src/cpuinfo/utils.h
vendored
@@ -2,6 +2,10 @@
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <intrin.h> // _BitScanReverse
|
||||
#endif
|
||||
|
||||
|
||||
inline static uint32_t bit_length(uint32_t n) {
|
||||
const uint32_t n_minus_1 = n - 1;
|
||||
|
||||
2
3rdparty/d3d12memalloc/CMakeLists.txt
vendored
2
3rdparty/d3d12memalloc/CMakeLists.txt
vendored
@@ -4,4 +4,4 @@ add_library(D3D12MemAlloc
|
||||
)
|
||||
|
||||
target_include_directories(D3D12MemAlloc PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}/include")
|
||||
|
||||
disable_compiler_warnings_for_target(D3D12MemAlloc)
|
||||
|
||||
1
3rdparty/demangler/src/CMakeLists.txt
vendored
1
3rdparty/demangler/src/CMakeLists.txt
vendored
@@ -14,3 +14,4 @@ target_include_directories(demangler PUBLIC ${PROJECT_SOURCE_DIR}/include/)
|
||||
|
||||
set_property(TARGET demangler PROPERTY CXX_STANDARD 17)
|
||||
set_property(TARGET demangler PROPERTY CXX_STANDARD_REQUIRED ON)
|
||||
disable_compiler_warnings_for_target(demangler)
|
||||
|
||||
1
3rdparty/jpgd/CMakeLists.txt
vendored
1
3rdparty/jpgd/CMakeLists.txt
vendored
@@ -9,4 +9,5 @@ add_library(jpgd
|
||||
target_include_directories(jpgd PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}")
|
||||
set_property(TARGET jpgd PROPERTY CXX_STANDARD 17)
|
||||
set_property(TARGET jpgd PROPERTY CXX_STANDARD_REQUIRED ON)
|
||||
disable_compiler_warnings_for_target(jpgd)
|
||||
|
||||
|
||||
26
3rdparty/libchdr/CMakeLists.txt
vendored
26
3rdparty/libchdr/CMakeLists.txt
vendored
@@ -1,11 +1,19 @@
|
||||
add_library(chdr-static STATIC
|
||||
libchdr/src/libchdr_bitstream.c
|
||||
libchdr/src/libchdr_cdrom.c
|
||||
libchdr/src/libchdr_chd.c
|
||||
libchdr/src/libchdr_flac.c
|
||||
libchdr/src/libchdr_huffman.c
|
||||
add_library(libchdr
|
||||
include/dr_libs/dr_flac.h
|
||||
include/libchdr/bitstream.h
|
||||
include/libchdr/cdrom.h
|
||||
include/libchdr/chd.h
|
||||
include/libchdr/chdconfig.h
|
||||
include/libchdr/coretypes.h
|
||||
include/libchdr/flac.h
|
||||
include/libchdr/huffman.h
|
||||
src/libchdr_bitstream.c
|
||||
src/libchdr_cdrom.c
|
||||
src/libchdr_chd.c
|
||||
src/libchdr_flac.c
|
||||
src/libchdr_huffman.c
|
||||
)
|
||||
|
||||
target_include_directories(chdr-static PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}/libchdr/include")
|
||||
target_link_libraries(chdr-static PRIVATE ZLIB::ZLIB LZMA::LZMA)
|
||||
target_compile_options(chdr-static PRIVATE "-w")
|
||||
target_include_directories(libchdr PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}/include")
|
||||
target_link_libraries(libchdr PRIVATE ZLIB::ZLIB LZMA::LZMA)
|
||||
|
||||
|
||||
24
3rdparty/libchdr/LICENSE.txt
vendored
Normal file
24
3rdparty/libchdr/LICENSE.txt
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
Copyright Romain Tisserand
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
* Neither the name of the <organization> nor the
|
||||
names of its contributors may be used to endorse or promote products
|
||||
derived from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
|
||||
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
7
3rdparty/libchdr/README.md
vendored
Normal file
7
3rdparty/libchdr/README.md
vendored
Normal file
@@ -0,0 +1,7 @@
|
||||
# libchdr
|
||||
|
||||
libchdr is a standalone library for reading MAME's CHDv1-v5 formats.
|
||||
|
||||
The code is based off of MAME's old C codebase which read up to CHDv4 with OS-dependent features removed, and CHDv5 support backported from MAME's current C++ codebase.
|
||||
|
||||
libchdr is licensed under the BSD 3-Clause (see [LICENSE.txt](LICENSE.txt)) and uses third party libraries that are each distributed under their own terms (see each library's license in [deps/](deps/)).
|
||||
12507
3rdparty/libchdr/include/dr_libs/dr_flac.h
vendored
Normal file
12507
3rdparty/libchdr/include/dr_libs/dr_flac.h
vendored
Normal file
File diff suppressed because it is too large
Load Diff
43
3rdparty/libchdr/include/libchdr/bitstream.h
vendored
Normal file
43
3rdparty/libchdr/include/libchdr/bitstream.h
vendored
Normal file
@@ -0,0 +1,43 @@
|
||||
/* license:BSD-3-Clause
|
||||
* copyright-holders:Aaron Giles
|
||||
***************************************************************************
|
||||
|
||||
bitstream.h
|
||||
|
||||
Helper classes for reading/writing at the bit level.
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef __BITSTREAM_H__
|
||||
#define __BITSTREAM_H__
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/***************************************************************************
|
||||
* TYPE DEFINITIONS
|
||||
***************************************************************************
|
||||
*/
|
||||
|
||||
/* helper class for reading from a bit buffer */
|
||||
struct bitstream
|
||||
{
|
||||
uint32_t buffer; /* current bit accumulator */
|
||||
int bits; /* number of bits in the accumulator */
|
||||
const uint8_t * read; /* read pointer */
|
||||
uint32_t doffset; /* byte offset within the data */
|
||||
uint32_t dlength; /* length of the data */
|
||||
};
|
||||
|
||||
struct bitstream* create_bitstream(const void *src, uint32_t srclength);
|
||||
int bitstream_overflow(struct bitstream* bitstream);
|
||||
uint32_t bitstream_read_offset(struct bitstream* bitstream);
|
||||
|
||||
uint32_t bitstream_read(struct bitstream* bitstream, int numbits);
|
||||
uint32_t bitstream_peek(struct bitstream* bitstream, int numbits);
|
||||
void bitstream_remove(struct bitstream* bitstream, int numbits);
|
||||
uint32_t bitstream_flush(struct bitstream* bitstream);
|
||||
|
||||
|
||||
#endif
|
||||
110
3rdparty/libchdr/include/libchdr/cdrom.h
vendored
Normal file
110
3rdparty/libchdr/include/libchdr/cdrom.h
vendored
Normal file
@@ -0,0 +1,110 @@
|
||||
/* license:BSD-3-Clause
|
||||
* copyright-holders:Aaron Giles
|
||||
***************************************************************************
|
||||
|
||||
cdrom.h
|
||||
|
||||
Generic MAME cd-rom implementation
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef __CDROM_H__
|
||||
#define __CDROM_H__
|
||||
|
||||
#include <stdint.h>
|
||||
#include <libchdr/chdconfig.h>
|
||||
|
||||
/***************************************************************************
|
||||
CONSTANTS
|
||||
***************************************************************************/
|
||||
|
||||
/* tracks are padded to a multiple of this many frames */
|
||||
#define CD_TRACK_PADDING (4)
|
||||
#define CD_MAX_TRACKS (99) /* AFAIK the theoretical limit */
|
||||
#define CD_MAX_SECTOR_DATA (2352)
|
||||
#define CD_MAX_SUBCODE_DATA (96)
|
||||
|
||||
#define CD_FRAME_SIZE (CD_MAX_SECTOR_DATA + CD_MAX_SUBCODE_DATA)
|
||||
#define CD_FRAMES_PER_HUNK (8)
|
||||
|
||||
#define CD_METADATA_WORDS (1+(CD_MAX_TRACKS * 6))
|
||||
|
||||
enum
|
||||
{
|
||||
CD_TRACK_MODE1 = 0, /* mode 1 2048 bytes/sector */
|
||||
CD_TRACK_MODE1_RAW, /* mode 1 2352 bytes/sector */
|
||||
CD_TRACK_MODE2, /* mode 2 2336 bytes/sector */
|
||||
CD_TRACK_MODE2_FORM1, /* mode 2 2048 bytes/sector */
|
||||
CD_TRACK_MODE2_FORM2, /* mode 2 2324 bytes/sector */
|
||||
CD_TRACK_MODE2_FORM_MIX, /* mode 2 2336 bytes/sector */
|
||||
CD_TRACK_MODE2_RAW, /* mode 2 2352 bytes / sector */
|
||||
CD_TRACK_AUDIO, /* redbook audio track 2352 bytes/sector (588 samples) */
|
||||
|
||||
CD_TRACK_RAW_DONTCARE /* special flag for cdrom_read_data: just return me whatever is there */
|
||||
};
|
||||
|
||||
enum
|
||||
{
|
||||
CD_SUB_NORMAL = 0, /* "cooked" 96 bytes per sector */
|
||||
CD_SUB_RAW, /* raw uninterleaved 96 bytes per sector */
|
||||
CD_SUB_NONE /* no subcode data stored */
|
||||
};
|
||||
|
||||
#define CD_FLAG_GDROM 0x00000001 /* disc is a GD-ROM, all tracks should be stored with GD-ROM metadata */
|
||||
#define CD_FLAG_GDROMLE 0x00000002 /* legacy GD-ROM, with little-endian CDDA data */
|
||||
|
||||
/***************************************************************************
|
||||
FUNCTION PROTOTYPES
|
||||
***************************************************************************/
|
||||
|
||||
#ifdef WANT_RAW_DATA_SECTOR
|
||||
/* ECC utilities */
|
||||
int ecc_verify(const uint8_t *sector);
|
||||
void ecc_generate(uint8_t *sector);
|
||||
void ecc_clear(uint8_t *sector);
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
INLINE FUNCTIONS
|
||||
***************************************************************************/
|
||||
|
||||
static inline uint32_t msf_to_lba(uint32_t msf)
|
||||
{
|
||||
return ( ((msf&0x00ff0000)>>16) * 60 * 75) + (((msf&0x0000ff00)>>8) * 75) + ((msf&0x000000ff)>>0);
|
||||
}
|
||||
|
||||
static inline uint32_t lba_to_msf(uint32_t lba)
|
||||
{
|
||||
uint8_t m, s, f;
|
||||
|
||||
m = lba / (60 * 75);
|
||||
lba -= m * (60 * 75);
|
||||
s = lba / 75;
|
||||
f = lba % 75;
|
||||
|
||||
return ((m / 10) << 20) | ((m % 10) << 16) |
|
||||
((s / 10) << 12) | ((s % 10) << 8) |
|
||||
((f / 10) << 4) | ((f % 10) << 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* segacd needs it like this.. investigate
|
||||
* Angelo also says PCE tracks often start playing at the
|
||||
* wrong address.. related?
|
||||
**/
|
||||
static inline uint32_t lba_to_msf_alt(int lba)
|
||||
{
|
||||
uint32_t ret = 0;
|
||||
|
||||
ret |= ((lba / (60 * 75))&0xff)<<16;
|
||||
ret |= (((lba / 75) % 60)&0xff)<<8;
|
||||
ret |= ((lba % 75)&0xff)<<0;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* __CDROM_H__ */
|
||||
437
3rdparty/libchdr/include/libchdr/chd.h
vendored
Normal file
437
3rdparty/libchdr/include/libchdr/chd.h
vendored
Normal file
@@ -0,0 +1,437 @@
|
||||
/***************************************************************************
|
||||
|
||||
chd.h
|
||||
|
||||
MAME Compressed Hunks of Data file format
|
||||
|
||||
****************************************************************************
|
||||
|
||||
Copyright Aaron Giles
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name 'MAME' nor the names of its contributors may be
|
||||
used to endorse or promote products derived from this software
|
||||
without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY AARON GILES ''AS IS'' AND ANY EXPRESS OR
|
||||
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL AARON GILES BE LIABLE FOR ANY DIRECT,
|
||||
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
||||
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef __CHD_H__
|
||||
#define __CHD_H__
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <libchdr/coretypes.h>
|
||||
#include <libchdr/chdconfig.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
/***************************************************************************
|
||||
|
||||
Compressed Hunks of Data header format. All numbers are stored in
|
||||
Motorola (big-endian) byte ordering. The header is 76 (V1) or 80 (V2)
|
||||
bytes long.
|
||||
|
||||
V1 header:
|
||||
|
||||
[ 0] char tag[8]; // 'MComprHD'
|
||||
[ 8] UINT32 length; // length of header (including tag and length fields)
|
||||
[ 12] UINT32 version; // drive format version
|
||||
[ 16] UINT32 flags; // flags (see below)
|
||||
[ 20] UINT32 compression; // compression type
|
||||
[ 24] UINT32 hunksize; // 512-byte sectors per hunk
|
||||
[ 28] UINT32 totalhunks; // total # of hunks represented
|
||||
[ 32] UINT32 cylinders; // number of cylinders on hard disk
|
||||
[ 36] UINT32 heads; // number of heads on hard disk
|
||||
[ 40] UINT32 sectors; // number of sectors on hard disk
|
||||
[ 44] UINT8 md5[16]; // MD5 checksum of raw data
|
||||
[ 60] UINT8 parentmd5[16]; // MD5 checksum of parent file
|
||||
[ 76] (V1 header length)
|
||||
|
||||
V2 header:
|
||||
|
||||
[ 0] char tag[8]; // 'MComprHD'
|
||||
[ 8] UINT32 length; // length of header (including tag and length fields)
|
||||
[ 12] UINT32 version; // drive format version
|
||||
[ 16] UINT32 flags; // flags (see below)
|
||||
[ 20] UINT32 compression; // compression type
|
||||
[ 24] UINT32 hunksize; // seclen-byte sectors per hunk
|
||||
[ 28] UINT32 totalhunks; // total # of hunks represented
|
||||
[ 32] UINT32 cylinders; // number of cylinders on hard disk
|
||||
[ 36] UINT32 heads; // number of heads on hard disk
|
||||
[ 40] UINT32 sectors; // number of sectors on hard disk
|
||||
[ 44] UINT8 md5[16]; // MD5 checksum of raw data
|
||||
[ 60] UINT8 parentmd5[16]; // MD5 checksum of parent file
|
||||
[ 76] UINT32 seclen; // number of bytes per sector
|
||||
[ 80] (V2 header length)
|
||||
|
||||
V3 header:
|
||||
|
||||
[ 0] char tag[8]; // 'MComprHD'
|
||||
[ 8] UINT32 length; // length of header (including tag and length fields)
|
||||
[ 12] UINT32 version; // drive format version
|
||||
[ 16] UINT32 flags; // flags (see below)
|
||||
[ 20] UINT32 compression; // compression type
|
||||
[ 24] UINT32 totalhunks; // total # of hunks represented
|
||||
[ 28] UINT64 logicalbytes; // logical size of the data (in bytes)
|
||||
[ 36] UINT64 metaoffset; // offset to the first blob of metadata
|
||||
[ 44] UINT8 md5[16]; // MD5 checksum of raw data
|
||||
[ 60] UINT8 parentmd5[16]; // MD5 checksum of parent file
|
||||
[ 76] UINT32 hunkbytes; // number of bytes per hunk
|
||||
[ 80] UINT8 sha1[20]; // SHA1 checksum of raw data
|
||||
[100] UINT8 parentsha1[20];// SHA1 checksum of parent file
|
||||
[120] (V3 header length)
|
||||
|
||||
V4 header:
|
||||
|
||||
[ 0] char tag[8]; // 'MComprHD'
|
||||
[ 8] UINT32 length; // length of header (including tag and length fields)
|
||||
[ 12] UINT32 version; // drive format version
|
||||
[ 16] UINT32 flags; // flags (see below)
|
||||
[ 20] UINT32 compression; // compression type
|
||||
[ 24] UINT32 totalhunks; // total # of hunks represented
|
||||
[ 28] UINT64 logicalbytes; // logical size of the data (in bytes)
|
||||
[ 36] UINT64 metaoffset; // offset to the first blob of metadata
|
||||
[ 44] UINT32 hunkbytes; // number of bytes per hunk
|
||||
[ 48] UINT8 sha1[20]; // combined raw+meta SHA1
|
||||
[ 68] UINT8 parentsha1[20];// combined raw+meta SHA1 of parent
|
||||
[ 88] UINT8 rawsha1[20]; // raw data SHA1
|
||||
[108] (V4 header length)
|
||||
|
||||
Flags:
|
||||
0x00000001 - set if this drive has a parent
|
||||
0x00000002 - set if this drive allows writes
|
||||
|
||||
=========================================================================
|
||||
|
||||
V5 header:
|
||||
|
||||
[ 0] char tag[8]; // 'MComprHD'
|
||||
[ 8] uint32_t length; // length of header (including tag and length fields)
|
||||
[ 12] uint32_t version; // drive format version
|
||||
[ 16] uint32_t compressors[4];// which custom compressors are used?
|
||||
[ 32] uint64_t logicalbytes; // logical size of the data (in bytes)
|
||||
[ 40] uint64_t mapoffset; // offset to the map
|
||||
[ 48] uint64_t metaoffset; // offset to the first blob of metadata
|
||||
[ 56] uint32_t hunkbytes; // number of bytes per hunk (512k maximum)
|
||||
[ 60] uint32_t unitbytes; // number of bytes per unit within each hunk
|
||||
[ 64] uint8_t rawsha1[20]; // raw data SHA1
|
||||
[ 84] uint8_t sha1[20]; // combined raw+meta SHA1
|
||||
[104] uint8_t parentsha1[20];// combined raw+meta SHA1 of parent
|
||||
[124] (V5 header length)
|
||||
|
||||
If parentsha1 != 0, we have a parent (no need for flags)
|
||||
If compressors[0] == 0, we are uncompressed (including maps)
|
||||
|
||||
V5 uncompressed map format:
|
||||
|
||||
[ 0] uint32_t offset; // starting offset / hunk size
|
||||
|
||||
V5 compressed map format header:
|
||||
|
||||
[ 0] uint32_t length; // length of compressed map
|
||||
[ 4] UINT48 datastart; // offset of first block
|
||||
[ 10] uint16_t crc; // crc-16 of the map
|
||||
[ 12] uint8_t lengthbits; // bits used to encode complength
|
||||
[ 13] uint8_t hunkbits; // bits used to encode self-refs
|
||||
[ 14] uint8_t parentunitbits; // bits used to encode parent unit refs
|
||||
[ 15] uint8_t reserved; // future use
|
||||
[ 16] (compressed header length)
|
||||
|
||||
Each compressed map entry, once expanded, looks like:
|
||||
|
||||
[ 0] uint8_t compression; // compression type
|
||||
[ 1] UINT24 complength; // compressed length
|
||||
[ 4] UINT48 offset; // offset
|
||||
[ 10] uint16_t crc; // crc-16 of the data
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
CONSTANTS
|
||||
***************************************************************************/
|
||||
|
||||
/* header information */
|
||||
#define CHD_HEADER_VERSION 5
|
||||
#define CHD_V1_HEADER_SIZE 76
|
||||
#define CHD_V2_HEADER_SIZE 80
|
||||
#define CHD_V3_HEADER_SIZE 120
|
||||
#define CHD_V4_HEADER_SIZE 108
|
||||
#define CHD_V5_HEADER_SIZE 124
|
||||
|
||||
#define CHD_MAX_HEADER_SIZE CHD_V5_HEADER_SIZE
|
||||
|
||||
/* checksumming information */
|
||||
#define CHD_MD5_BYTES 16
|
||||
#define CHD_SHA1_BYTES 20
|
||||
|
||||
/* CHD global flags */
|
||||
#define CHDFLAGS_HAS_PARENT 0x00000001
|
||||
#define CHDFLAGS_IS_WRITEABLE 0x00000002
|
||||
#define CHDFLAGS_UNDEFINED 0xfffffffc
|
||||
|
||||
#define CHD_MAKE_TAG(a,b,c,d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
|
||||
|
||||
/* compression types */
|
||||
#define CHDCOMPRESSION_NONE 0
|
||||
#define CHDCOMPRESSION_ZLIB 1
|
||||
#define CHDCOMPRESSION_ZLIB_PLUS 2
|
||||
#define CHDCOMPRESSION_AV 3
|
||||
|
||||
#define CHD_CODEC_NONE 0
|
||||
#define CHD_CODEC_ZLIB CHD_MAKE_TAG('z','l','i','b')
|
||||
#define CHD_CODEC_LZMA CHD_MAKE_TAG('l','z','m','a')
|
||||
#define CHD_CODEC_HUFFMAN CHD_MAKE_TAG('h','u','f','f')
|
||||
#define CHD_CODEC_FLAC CHD_MAKE_TAG('f','l','a','c')
|
||||
/* general codecs with CD frontend */
|
||||
#define CHD_CODEC_CD_ZLIB CHD_MAKE_TAG('c','d','z','l')
|
||||
#define CHD_CODEC_CD_LZMA CHD_MAKE_TAG('c','d','l','z')
|
||||
#define CHD_CODEC_CD_FLAC CHD_MAKE_TAG('c','d','f','l')
|
||||
|
||||
/* A/V codec configuration parameters */
|
||||
#define AV_CODEC_COMPRESS_CONFIG 1
|
||||
#define AV_CODEC_DECOMPRESS_CONFIG 2
|
||||
|
||||
/* metadata parameters */
|
||||
#define CHDMETATAG_WILDCARD 0
|
||||
#define CHD_METAINDEX_APPEND ((UINT32)-1)
|
||||
|
||||
/* metadata flags */
|
||||
#define CHD_MDFLAGS_CHECKSUM 0x01 /* indicates data is checksummed */
|
||||
|
||||
/* standard hard disk metadata */
|
||||
#define HARD_DISK_METADATA_TAG CHD_MAKE_TAG('G','D','D','D')
|
||||
#define HARD_DISK_METADATA_FORMAT "CYLS:%d,HEADS:%d,SECS:%d,BPS:%d"
|
||||
|
||||
/* hard disk identify information */
|
||||
#define HARD_DISK_IDENT_METADATA_TAG CHD_MAKE_TAG('I','D','N','T')
|
||||
|
||||
/* hard disk key information */
|
||||
#define HARD_DISK_KEY_METADATA_TAG CHD_MAKE_TAG('K','E','Y',' ')
|
||||
|
||||
/* pcmcia CIS information */
|
||||
#define PCMCIA_CIS_METADATA_TAG CHD_MAKE_TAG('C','I','S',' ')
|
||||
|
||||
/* standard CD-ROM metadata */
|
||||
#define CDROM_OLD_METADATA_TAG CHD_MAKE_TAG('C','H','C','D')
|
||||
#define CDROM_TRACK_METADATA_TAG CHD_MAKE_TAG('C','H','T','R')
|
||||
#define CDROM_TRACK_METADATA_FORMAT "TRACK:%d TYPE:%s SUBTYPE:%s FRAMES:%d"
|
||||
#define CDROM_TRACK_METADATA2_TAG CHD_MAKE_TAG('C','H','T','2')
|
||||
#define CDROM_TRACK_METADATA2_FORMAT "TRACK:%d TYPE:%s SUBTYPE:%s FRAMES:%d PREGAP:%d PGTYPE:%s PGSUB:%s POSTGAP:%d"
|
||||
#define GDROM_OLD_METADATA_TAG CHD_MAKE_TAG('C','H','G','T')
|
||||
#define GDROM_TRACK_METADATA_TAG CHD_MAKE_TAG('C', 'H', 'G', 'D')
|
||||
#define GDROM_TRACK_METADATA_FORMAT "TRACK:%d TYPE:%s SUBTYPE:%s FRAMES:%d PAD:%d PREGAP:%d PGTYPE:%s PGSUB:%s POSTGAP:%d"
|
||||
|
||||
/* standard A/V metadata */
|
||||
#define AV_METADATA_TAG CHD_MAKE_TAG('A','V','A','V')
|
||||
#define AV_METADATA_FORMAT "FPS:%d.%06d WIDTH:%d HEIGHT:%d INTERLACED:%d CHANNELS:%d SAMPLERATE:%d"
|
||||
|
||||
/* A/V laserdisc frame metadata */
|
||||
#define AV_LD_METADATA_TAG CHD_MAKE_TAG('A','V','L','D')
|
||||
|
||||
/* CHD open values */
|
||||
#define CHD_OPEN_READ 1
|
||||
#define CHD_OPEN_READWRITE 2
|
||||
#define CHD_OPEN_TRANSFER_FILE 4 /* Freeing of the FILE* is now libchdr's responsibility if open was successful */
|
||||
|
||||
/* error types */
|
||||
enum _chd_error
|
||||
{
|
||||
CHDERR_NONE,
|
||||
CHDERR_NO_INTERFACE,
|
||||
CHDERR_OUT_OF_MEMORY,
|
||||
CHDERR_INVALID_FILE,
|
||||
CHDERR_INVALID_PARAMETER,
|
||||
CHDERR_INVALID_DATA,
|
||||
CHDERR_FILE_NOT_FOUND,
|
||||
CHDERR_REQUIRES_PARENT,
|
||||
CHDERR_FILE_NOT_WRITEABLE,
|
||||
CHDERR_READ_ERROR,
|
||||
CHDERR_WRITE_ERROR,
|
||||
CHDERR_CODEC_ERROR,
|
||||
CHDERR_INVALID_PARENT,
|
||||
CHDERR_HUNK_OUT_OF_RANGE,
|
||||
CHDERR_DECOMPRESSION_ERROR,
|
||||
CHDERR_COMPRESSION_ERROR,
|
||||
CHDERR_CANT_CREATE_FILE,
|
||||
CHDERR_CANT_VERIFY,
|
||||
CHDERR_NOT_SUPPORTED,
|
||||
CHDERR_METADATA_NOT_FOUND,
|
||||
CHDERR_INVALID_METADATA_SIZE,
|
||||
CHDERR_UNSUPPORTED_VERSION,
|
||||
CHDERR_VERIFY_INCOMPLETE,
|
||||
CHDERR_INVALID_METADATA,
|
||||
CHDERR_INVALID_STATE,
|
||||
CHDERR_OPERATION_PENDING,
|
||||
CHDERR_NO_ASYNC_OPERATION,
|
||||
CHDERR_UNSUPPORTED_FORMAT
|
||||
};
|
||||
typedef enum _chd_error chd_error;
|
||||
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
TYPE DEFINITIONS
|
||||
***************************************************************************/
|
||||
|
||||
/* opaque types */
|
||||
typedef struct _chd_file chd_file;
|
||||
|
||||
|
||||
/* extract header structure (NOT the on-disk header structure) */
|
||||
typedef struct _chd_header chd_header;
|
||||
struct _chd_header
|
||||
{
|
||||
UINT32 length; /* length of header data */
|
||||
UINT32 version; /* drive format version */
|
||||
UINT32 flags; /* flags field */
|
||||
UINT32 compression[4]; /* compression type */
|
||||
UINT32 hunkbytes; /* number of bytes per hunk */
|
||||
UINT32 totalhunks; /* total # of hunks represented */
|
||||
UINT64 logicalbytes; /* logical size of the data */
|
||||
UINT64 metaoffset; /* offset in file of first metadata */
|
||||
UINT64 mapoffset; /* TOOD V5 */
|
||||
UINT8 md5[CHD_MD5_BYTES]; /* overall MD5 checksum */
|
||||
UINT8 parentmd5[CHD_MD5_BYTES]; /* overall MD5 checksum of parent */
|
||||
UINT8 sha1[CHD_SHA1_BYTES]; /* overall SHA1 checksum */
|
||||
UINT8 rawsha1[CHD_SHA1_BYTES]; /* SHA1 checksum of raw data */
|
||||
UINT8 parentsha1[CHD_SHA1_BYTES]; /* overall SHA1 checksum of parent */
|
||||
UINT32 unitbytes; /* TODO V5 */
|
||||
UINT64 unitcount; /* TODO V5 */
|
||||
UINT32 hunkcount; /* TODO V5 */
|
||||
|
||||
/* map information */
|
||||
UINT32 mapentrybytes; /* length of each entry in a map (V5) */
|
||||
UINT8* rawmap; /* raw map data */
|
||||
|
||||
UINT32 obsolete_cylinders; /* obsolete field -- do not use! */
|
||||
UINT32 obsolete_sectors; /* obsolete field -- do not use! */
|
||||
UINT32 obsolete_heads; /* obsolete field -- do not use! */
|
||||
UINT32 obsolete_hunksize; /* obsolete field -- do not use! */
|
||||
};
|
||||
|
||||
|
||||
/* structure for returning information about a verification pass */
|
||||
typedef struct _chd_verify_result chd_verify_result;
|
||||
struct _chd_verify_result
|
||||
{
|
||||
UINT8 md5[CHD_MD5_BYTES]; /* overall MD5 checksum */
|
||||
UINT8 sha1[CHD_SHA1_BYTES]; /* overall SHA1 checksum */
|
||||
UINT8 rawsha1[CHD_SHA1_BYTES]; /* SHA1 checksum of raw data */
|
||||
UINT8 metasha1[CHD_SHA1_BYTES]; /* SHA1 checksum of metadata */
|
||||
};
|
||||
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
FUNCTION PROTOTYPES
|
||||
***************************************************************************/
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#ifdef CHD_DLL
|
||||
#ifdef CHD_DLL_EXPORTS
|
||||
#define CHD_EXPORT __declspec(dllexport)
|
||||
#else
|
||||
#define CHD_EXPORT __declspec(dllimport)
|
||||
#endif
|
||||
#else
|
||||
#define CHD_EXPORT
|
||||
#endif
|
||||
#else
|
||||
#define CHD_EXPORT __attribute__ ((visibility("default")))
|
||||
#endif
|
||||
|
||||
/* ----- CHD file management ----- */
|
||||
|
||||
/* create a new CHD file fitting the given description */
|
||||
/* chd_error chd_create(const char *filename, UINT64 logicalbytes, UINT32 hunkbytes, UINT32 compression, chd_file *parent); */
|
||||
|
||||
/* same as chd_create(), but accepts an already-opened core_file object */
|
||||
/* chd_error chd_create_file(core_file *file, UINT64 logicalbytes, UINT32 hunkbytes, UINT32 compression, chd_file *parent); */
|
||||
|
||||
/* open an existing CHD file */
|
||||
CHD_EXPORT chd_error chd_open_core_file(core_file *file, int mode, chd_file *parent, chd_file **chd);
|
||||
CHD_EXPORT chd_error chd_open_file(FILE *file, int mode, chd_file *parent, chd_file **chd);
|
||||
CHD_EXPORT chd_error chd_open(const char *filename, int mode, chd_file *parent, chd_file **chd);
|
||||
|
||||
/* precache underlying file */
|
||||
CHD_EXPORT chd_error chd_precache(chd_file *chd);
|
||||
CHD_EXPORT chd_error chd_precache_progress(chd_file* chd, void(*progress)(size_t pos, size_t total, void* param), void* param);
|
||||
|
||||
/* close a CHD file */
|
||||
CHD_EXPORT void chd_close(chd_file *chd);
|
||||
|
||||
/* return the associated core_file */
|
||||
CHD_EXPORT core_file *chd_core_file(chd_file *chd);
|
||||
|
||||
/* return an error string for the given CHD error */
|
||||
CHD_EXPORT const char *chd_error_string(chd_error err);
|
||||
|
||||
|
||||
|
||||
/* ----- CHD header management ----- */
|
||||
|
||||
/* return a pointer to the extracted CHD header data */
|
||||
CHD_EXPORT const chd_header *chd_get_header(chd_file *chd);
|
||||
|
||||
/* read CHD header data from file into the pointed struct */
|
||||
CHD_EXPORT chd_error chd_read_header_core_file(core_file *file, chd_header *header);
|
||||
CHD_EXPORT chd_error chd_read_header_file(FILE *file, chd_header *header);
|
||||
CHD_EXPORT chd_error chd_read_header(const char *filename, chd_header *header);
|
||||
CHD_EXPORT bool chd_is_matching_parent(const chd_header* header, const chd_header* parent_header);
|
||||
|
||||
|
||||
|
||||
/* ----- core data read/write ----- */
|
||||
|
||||
/* read one hunk from the CHD file */
|
||||
CHD_EXPORT chd_error chd_read(chd_file *chd, UINT32 hunknum, void *buffer);
|
||||
|
||||
|
||||
|
||||
/* ----- metadata management ----- */
|
||||
|
||||
/* get indexed metadata of a particular sort */
|
||||
CHD_EXPORT chd_error chd_get_metadata(chd_file *chd, UINT32 searchtag, UINT32 searchindex, void *output, UINT32 outputlen, UINT32 *resultlen, UINT32 *resulttag, UINT8 *resultflags);
|
||||
|
||||
|
||||
|
||||
|
||||
/* ----- codec interfaces ----- */
|
||||
|
||||
/* set internal codec parameters */
|
||||
CHD_EXPORT chd_error chd_codec_config(chd_file *chd, int param, void *config);
|
||||
|
||||
/* return a string description of a codec */
|
||||
CHD_EXPORT const char *chd_get_codec_name(UINT32 codec);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* __CHD_H__ */
|
||||
10
3rdparty/libchdr/include/libchdr/chdconfig.h
vendored
Normal file
10
3rdparty/libchdr/include/libchdr/chdconfig.h
vendored
Normal file
@@ -0,0 +1,10 @@
|
||||
#ifndef __CHDCONFIG_H__
|
||||
#define __CHDCONFIG_H__
|
||||
|
||||
/* Configure CHDR features here */
|
||||
#define WANT_RAW_DATA_SECTOR 1
|
||||
#define WANT_SUBCODE 1
|
||||
#define NEED_CACHE_HUNK 1
|
||||
#define VERIFY_BLOCK_CRC 1
|
||||
|
||||
#endif
|
||||
78
3rdparty/libchdr/include/libchdr/coretypes.h
vendored
Normal file
78
3rdparty/libchdr/include/libchdr/coretypes.h
vendored
Normal file
@@ -0,0 +1,78 @@
|
||||
#ifndef __CORETYPES_H__
|
||||
#define __CORETYPES_H__
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#ifdef USE_LIBRETRO_VFS
|
||||
#include <streams/file_stream_transforms.h>
|
||||
#endif
|
||||
|
||||
#define ARRAY_LENGTH(x) (sizeof(x)/sizeof(x[0]))
|
||||
|
||||
#if defined(__PS3__) || defined(__PSL1GHT__)
|
||||
#undef UINT32
|
||||
#undef UINT16
|
||||
#undef UINT8
|
||||
#undef INT32
|
||||
#undef INT16
|
||||
#undef INT8
|
||||
#endif
|
||||
|
||||
typedef uint64_t UINT64;
|
||||
typedef uint32_t UINT32;
|
||||
typedef uint16_t UINT16;
|
||||
typedef uint8_t UINT8;
|
||||
|
||||
typedef int64_t INT64;
|
||||
typedef int32_t INT32;
|
||||
typedef int16_t INT16;
|
||||
typedef int8_t INT8;
|
||||
|
||||
typedef struct chd_core_file {
|
||||
/*
|
||||
* arbitrary pointer to data the implementation uses to implement the below functions
|
||||
*/
|
||||
void *argp;
|
||||
|
||||
/*
|
||||
* return the size of a given file as a 64-bit unsigned integer.
|
||||
* the position of the file pointer after calling this function is
|
||||
* undefined because many implementations will seek to the end of the
|
||||
* file and call ftell.
|
||||
*
|
||||
* on error, (UINT64)-1 is returned.
|
||||
*/
|
||||
UINT64(*fsize)(struct chd_core_file*);
|
||||
|
||||
/*
|
||||
* should match the behavior of fread, except the FILE* argument at the end
|
||||
* will be replaced with a struct chd_core_file*.
|
||||
*/
|
||||
size_t(*fread)(void*,size_t,size_t,struct chd_core_file*);
|
||||
|
||||
// closes the given file.
|
||||
int (*fclose)(struct chd_core_file*);
|
||||
|
||||
// fseek clone
|
||||
int (*fseek)(struct chd_core_file*, INT64, int);
|
||||
} core_file;
|
||||
|
||||
static inline int core_fclose(core_file *fp) {
|
||||
return fp->fclose(fp);
|
||||
}
|
||||
|
||||
static inline size_t core_fread(core_file *fp, void *ptr, size_t len) {
|
||||
return fp->fread(ptr, 1, len, fp);
|
||||
}
|
||||
|
||||
static inline int core_fseek(core_file* fp, INT64 offset, int whence) {
|
||||
return fp->fseek(fp, offset, whence);
|
||||
}
|
||||
|
||||
static inline UINT64 core_fsize(core_file *fp)
|
||||
{
|
||||
return fp->fsize(fp);
|
||||
}
|
||||
|
||||
#endif
|
||||
50
3rdparty/libchdr/include/libchdr/flac.h
vendored
Normal file
50
3rdparty/libchdr/include/libchdr/flac.h
vendored
Normal file
@@ -0,0 +1,50 @@
|
||||
/* license:BSD-3-Clause
|
||||
* copyright-holders:Aaron Giles
|
||||
***************************************************************************
|
||||
|
||||
flac.h
|
||||
|
||||
FLAC compression wrappers
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef __FLAC_H__
|
||||
#define __FLAC_H__
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/***************************************************************************
|
||||
* TYPE DEFINITIONS
|
||||
***************************************************************************
|
||||
*/
|
||||
|
||||
typedef struct _flac_decoder flac_decoder;
|
||||
struct _flac_decoder {
|
||||
/* output state */
|
||||
void * decoder; /* actual encoder */
|
||||
uint32_t sample_rate; /* decoded sample rate */
|
||||
uint8_t channels; /* decoded number of channels */
|
||||
uint8_t bits_per_sample; /* decoded bits per sample */
|
||||
uint32_t compressed_offset; /* current offset in compressed data */
|
||||
const uint8_t * compressed_start; /* start of compressed data */
|
||||
uint32_t compressed_length; /* length of compressed data */
|
||||
const uint8_t * compressed2_start; /* start of compressed data */
|
||||
uint32_t compressed2_length; /* length of compressed data */
|
||||
int16_t * uncompressed_start[8]; /* pointer to start of uncompressed data (up to 8 streams) */
|
||||
uint32_t uncompressed_offset; /* current position in uncompressed data */
|
||||
uint32_t uncompressed_length; /* length of uncompressed data */
|
||||
int uncompressed_swap; /* swap uncompressed sample data */
|
||||
uint8_t custom_header[0x2a]; /* custom header */
|
||||
};
|
||||
|
||||
/* ======================> flac_decoder */
|
||||
|
||||
int flac_decoder_init(flac_decoder* decoder);
|
||||
void flac_decoder_free(flac_decoder* decoder);
|
||||
int flac_decoder_reset(flac_decoder* decoder, uint32_t sample_rate, uint8_t num_channels, uint32_t block_size, const void *buffer, uint32_t length);
|
||||
int flac_decoder_decode_interleaved(flac_decoder* decoder, int16_t *samples, uint32_t num_samples, int swap_endian);
|
||||
uint32_t flac_decoder_finish(flac_decoder* decoder);
|
||||
|
||||
#endif /* __FLAC_H__ */
|
||||
90
3rdparty/libchdr/include/libchdr/huffman.h
vendored
Normal file
90
3rdparty/libchdr/include/libchdr/huffman.h
vendored
Normal file
@@ -0,0 +1,90 @@
|
||||
/* license:BSD-3-Clause
|
||||
* copyright-holders:Aaron Giles
|
||||
***************************************************************************
|
||||
|
||||
huffman.h
|
||||
|
||||
Static Huffman compression and decompression helpers.
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifndef __HUFFMAN_H__
|
||||
#define __HUFFMAN_H__
|
||||
|
||||
#include <libchdr/bitstream.h>
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
* CONSTANTS
|
||||
***************************************************************************
|
||||
*/
|
||||
|
||||
enum huffman_error
|
||||
{
|
||||
HUFFERR_NONE = 0,
|
||||
HUFFERR_TOO_MANY_BITS,
|
||||
HUFFERR_INVALID_DATA,
|
||||
HUFFERR_INPUT_BUFFER_TOO_SMALL,
|
||||
HUFFERR_OUTPUT_BUFFER_TOO_SMALL,
|
||||
HUFFERR_INTERNAL_INCONSISTENCY,
|
||||
HUFFERR_TOO_MANY_CONTEXTS
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* TYPE DEFINITIONS
|
||||
***************************************************************************
|
||||
*/
|
||||
|
||||
typedef uint16_t lookup_value;
|
||||
|
||||
/* a node in the huffman tree */
|
||||
struct node_t
|
||||
{
|
||||
struct node_t* parent; /* pointer to parent node */
|
||||
uint32_t count; /* number of hits on this node */
|
||||
uint32_t weight; /* assigned weight of this node */
|
||||
uint32_t bits; /* bits used to encode the node */
|
||||
uint8_t numbits; /* number of bits needed for this node */
|
||||
};
|
||||
|
||||
/* ======================> huffman_context_base */
|
||||
|
||||
/* context class for decoding */
|
||||
struct huffman_decoder
|
||||
{
|
||||
/* internal state */
|
||||
uint32_t numcodes; /* number of total codes being processed */
|
||||
uint8_t maxbits; /* maximum bits per code */
|
||||
uint8_t prevdata; /* value of the previous data (for delta-RLE encoding) */
|
||||
int rleremaining; /* number of RLE bytes remaining (for delta-RLE encoding) */
|
||||
lookup_value * lookup; /* pointer to the lookup table */
|
||||
struct node_t * huffnode; /* array of nodes */
|
||||
uint32_t * datahisto; /* histogram of data values */
|
||||
|
||||
/* array versions of the info we need */
|
||||
#if 0
|
||||
node_t* huffnode_array; /* [_NumCodes]; */
|
||||
lookup_value* lookup_array; /* [1 << _MaxBits]; */
|
||||
#endif
|
||||
};
|
||||
|
||||
/* ======================> huffman_decoder */
|
||||
|
||||
struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits);
|
||||
void delete_huffman_decoder(struct huffman_decoder* decoder);
|
||||
|
||||
/* single item operations */
|
||||
uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf);
|
||||
|
||||
enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf);
|
||||
enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf);
|
||||
|
||||
int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight);
|
||||
enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder);
|
||||
enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder);
|
||||
|
||||
void huffman_build_lookup_table(struct huffman_decoder* decoder);
|
||||
|
||||
#endif
|
||||
1
3rdparty/libchdr/libchdr
vendored
1
3rdparty/libchdr/libchdr
vendored
Submodule 3rdparty/libchdr/libchdr deleted from fec8ab9421
12
3rdparty/libchdr/libchdr.vcxproj
vendored
12
3rdparty/libchdr/libchdr.vcxproj
vendored
@@ -34,16 +34,16 @@
|
||||
<ClCompile>
|
||||
<PreprocessorDefinitions>%(PreprocessorDefinitions);_7ZIP_ST</PreprocessorDefinitions>
|
||||
<WarningLevel>TurnOffAllWarnings</WarningLevel>
|
||||
<AdditionalIncludeDirectories>$(ProjectDir)libchdr\include;$(ProjectDir)\libchdr\src;$(SolutionDir)3rdparty\lzma\include;$(SolutionDir)3rdparty\zlib;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
|
||||
<AdditionalIncludeDirectories>$(ProjectDir)include;$(ProjectDir)src;$(SolutionDir)3rdparty\lzma\include;$(SolutionDir)3rdparty\zlib;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
|
||||
<LanguageStandard>stdcpp17</LanguageStandard>
|
||||
</ClCompile>
|
||||
</ItemDefinitionGroup>
|
||||
<ItemGroup>
|
||||
<ClCompile Include="libchdr\src\libchdr_bitstream.c" />
|
||||
<ClCompile Include="libchdr\src\libchdr_cdrom.c" />
|
||||
<ClCompile Include="libchdr\src\libchdr_chd.c" />
|
||||
<ClCompile Include="libchdr\src\libchdr_flac.c" />
|
||||
<ClCompile Include="libchdr\src\libchdr_huffman.c" />
|
||||
<ClCompile Include="src\libchdr_bitstream.c" />
|
||||
<ClCompile Include="src\libchdr_cdrom.c" />
|
||||
<ClCompile Include="src\libchdr_chd.c" />
|
||||
<ClCompile Include="src\libchdr_flac.c" />
|
||||
<ClCompile Include="src\libchdr_huffman.c" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ProjectReference Include="..\lzma\lzma.vcxproj">
|
||||
|
||||
125
3rdparty/libchdr/src/libchdr_bitstream.c
vendored
Normal file
125
3rdparty/libchdr/src/libchdr_bitstream.c
vendored
Normal file
@@ -0,0 +1,125 @@
|
||||
/* license:BSD-3-Clause
|
||||
* copyright-holders:Aaron Giles
|
||||
***************************************************************************
|
||||
|
||||
bitstream.c
|
||||
|
||||
Helper classes for reading/writing at the bit level.
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <libchdr/bitstream.h>
|
||||
|
||||
/***************************************************************************
|
||||
* INLINE FUNCTIONS
|
||||
***************************************************************************
|
||||
*/
|
||||
|
||||
int bitstream_overflow(struct bitstream* bitstream) { return ((bitstream->doffset - bitstream->bits / 8) > bitstream->dlength); }
|
||||
|
||||
/*-------------------------------------------------
|
||||
* create_bitstream - constructor
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
struct bitstream* create_bitstream(const void *src, uint32_t srclength)
|
||||
{
|
||||
struct bitstream* bitstream = (struct bitstream*)malloc(sizeof(struct bitstream));
|
||||
bitstream->buffer = 0;
|
||||
bitstream->bits = 0;
|
||||
bitstream->read = (const uint8_t*)src;
|
||||
bitstream->doffset = 0;
|
||||
bitstream->dlength = srclength;
|
||||
return bitstream;
|
||||
}
|
||||
|
||||
|
||||
/*-----------------------------------------------------
|
||||
* bitstream_peek - fetch the requested number of bits
|
||||
* but don't advance the input pointer
|
||||
*-----------------------------------------------------
|
||||
*/
|
||||
|
||||
uint32_t bitstream_peek(struct bitstream* bitstream, int numbits)
|
||||
{
|
||||
if (numbits == 0)
|
||||
return 0;
|
||||
|
||||
/* fetch data if we need more */
|
||||
if (numbits > bitstream->bits)
|
||||
{
|
||||
while (bitstream->bits <= 24)
|
||||
{
|
||||
if (bitstream->doffset < bitstream->dlength)
|
||||
bitstream->buffer |= bitstream->read[bitstream->doffset] << (24 - bitstream->bits);
|
||||
bitstream->doffset++;
|
||||
bitstream->bits += 8;
|
||||
}
|
||||
}
|
||||
|
||||
/* return the data */
|
||||
return bitstream->buffer >> (32 - numbits);
|
||||
}
|
||||
|
||||
|
||||
/*-----------------------------------------------------
|
||||
* bitstream_remove - advance the input pointer by the
|
||||
* specified number of bits
|
||||
*-----------------------------------------------------
|
||||
*/
|
||||
|
||||
void bitstream_remove(struct bitstream* bitstream, int numbits)
|
||||
{
|
||||
bitstream->buffer <<= numbits;
|
||||
bitstream->bits -= numbits;
|
||||
}
|
||||
|
||||
|
||||
/*-----------------------------------------------------
|
||||
* bitstream_read - fetch the requested number of bits
|
||||
*-----------------------------------------------------
|
||||
*/
|
||||
|
||||
uint32_t bitstream_read(struct bitstream* bitstream, int numbits)
|
||||
{
|
||||
uint32_t result = bitstream_peek(bitstream, numbits);
|
||||
bitstream_remove(bitstream, numbits);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/*-------------------------------------------------
|
||||
* read_offset - return the current read offset
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
uint32_t bitstream_read_offset(struct bitstream* bitstream)
|
||||
{
|
||||
uint32_t result = bitstream->doffset;
|
||||
int bits = bitstream->bits;
|
||||
while (bits >= 8)
|
||||
{
|
||||
result--;
|
||||
bits -= 8;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/*-------------------------------------------------
|
||||
* flush - flush to the nearest byte
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
uint32_t bitstream_flush(struct bitstream* bitstream)
|
||||
{
|
||||
while (bitstream->bits >= 8)
|
||||
{
|
||||
bitstream->doffset--;
|
||||
bitstream->bits -= 8;
|
||||
}
|
||||
bitstream->bits = bitstream->buffer = 0;
|
||||
return bitstream->doffset;
|
||||
}
|
||||
|
||||
415
3rdparty/libchdr/src/libchdr_cdrom.c
vendored
Normal file
415
3rdparty/libchdr/src/libchdr_cdrom.c
vendored
Normal file
@@ -0,0 +1,415 @@
|
||||
/* license:BSD-3-Clause
|
||||
* copyright-holders:Aaron Giles
|
||||
***************************************************************************
|
||||
|
||||
cdrom.c
|
||||
|
||||
Generic MAME CD-ROM utilties - build IDE and SCSI CD-ROMs on top of this
|
||||
|
||||
****************************************************************************
|
||||
|
||||
IMPORTANT:
|
||||
"physical" block addresses are the actual addresses on the emulated CD.
|
||||
"chd" block addresses are the block addresses in the CHD file.
|
||||
Because we pad each track to a 4-frame boundary, these addressing
|
||||
schemes will differ after track 1!
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include <libchdr/cdrom.h>
|
||||
|
||||
#ifdef WANT_RAW_DATA_SECTOR
|
||||
|
||||
/***************************************************************************
|
||||
DEBUGGING
|
||||
***************************************************************************/
|
||||
|
||||
/** @brief The verbose. */
|
||||
#define VERBOSE (0)
|
||||
#if VERBOSE
|
||||
|
||||
/**
|
||||
* @def LOG(x) do
|
||||
*
|
||||
* @brief A macro that defines log.
|
||||
*
|
||||
* @param x The void to process.
|
||||
*/
|
||||
|
||||
#define LOG(x) do { if (VERBOSE) logerror x; } while (0)
|
||||
|
||||
/**
|
||||
* @fn void CLIB_DECL logerror(const char *text, ...) ATTR_PRINTF(1,2);
|
||||
*
|
||||
* @brief Logerrors the given text.
|
||||
*
|
||||
* @param text The text.
|
||||
*
|
||||
* @return A CLIB_DECL.
|
||||
*/
|
||||
|
||||
void CLIB_DECL logerror(const char *text, ...) ATTR_PRINTF(1,2);
|
||||
#else
|
||||
|
||||
/**
|
||||
* @def LOG(x);
|
||||
*
|
||||
* @brief A macro that defines log.
|
||||
*
|
||||
* @param x The void to process.
|
||||
*/
|
||||
|
||||
#define LOG(x)
|
||||
#endif
|
||||
|
||||
/***************************************************************************
|
||||
CONSTANTS
|
||||
***************************************************************************/
|
||||
|
||||
/** @brief offset within sector. */
|
||||
#define SYNC_OFFSET 0x000
|
||||
/** @brief 12 bytes. */
|
||||
#define SYNC_NUM_BYTES 12
|
||||
|
||||
/** @brief offset within sector. */
|
||||
#define MODE_OFFSET 0x00f
|
||||
|
||||
/** @brief offset within sector. */
|
||||
#define ECC_P_OFFSET 0x81c
|
||||
/** @brief 2 lots of 86. */
|
||||
#define ECC_P_NUM_BYTES 86
|
||||
/** @brief 24 bytes each. */
|
||||
#define ECC_P_COMP 24
|
||||
|
||||
/** @brief The ECC q offset. */
|
||||
#define ECC_Q_OFFSET (ECC_P_OFFSET + 2 * ECC_P_NUM_BYTES)
|
||||
/** @brief 2 lots of 52. */
|
||||
#define ECC_Q_NUM_BYTES 52
|
||||
/** @brief 43 bytes each. */
|
||||
#define ECC_Q_COMP 43
|
||||
|
||||
/**
|
||||
* @brief -------------------------------------------------
|
||||
* ECC lookup tables pre-calculated tables for ECC data calcs
|
||||
* -------------------------------------------------.
|
||||
*/
|
||||
|
||||
static const uint8_t ecclow[256] =
|
||||
{
|
||||
0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
|
||||
0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
|
||||
0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
|
||||
0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
|
||||
0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
|
||||
0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
|
||||
0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
|
||||
0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
|
||||
0x1d, 0x1f, 0x19, 0x1b, 0x15, 0x17, 0x11, 0x13, 0x0d, 0x0f, 0x09, 0x0b, 0x05, 0x07, 0x01, 0x03,
|
||||
0x3d, 0x3f, 0x39, 0x3b, 0x35, 0x37, 0x31, 0x33, 0x2d, 0x2f, 0x29, 0x2b, 0x25, 0x27, 0x21, 0x23,
|
||||
0x5d, 0x5f, 0x59, 0x5b, 0x55, 0x57, 0x51, 0x53, 0x4d, 0x4f, 0x49, 0x4b, 0x45, 0x47, 0x41, 0x43,
|
||||
0x7d, 0x7f, 0x79, 0x7b, 0x75, 0x77, 0x71, 0x73, 0x6d, 0x6f, 0x69, 0x6b, 0x65, 0x67, 0x61, 0x63,
|
||||
0x9d, 0x9f, 0x99, 0x9b, 0x95, 0x97, 0x91, 0x93, 0x8d, 0x8f, 0x89, 0x8b, 0x85, 0x87, 0x81, 0x83,
|
||||
0xbd, 0xbf, 0xb9, 0xbb, 0xb5, 0xb7, 0xb1, 0xb3, 0xad, 0xaf, 0xa9, 0xab, 0xa5, 0xa7, 0xa1, 0xa3,
|
||||
0xdd, 0xdf, 0xd9, 0xdb, 0xd5, 0xd7, 0xd1, 0xd3, 0xcd, 0xcf, 0xc9, 0xcb, 0xc5, 0xc7, 0xc1, 0xc3,
|
||||
0xfd, 0xff, 0xf9, 0xfb, 0xf5, 0xf7, 0xf1, 0xf3, 0xed, 0xef, 0xe9, 0xeb, 0xe5, 0xe7, 0xe1, 0xe3
|
||||
};
|
||||
|
||||
/** @brief The ecchigh[ 256]. */
|
||||
static const uint8_t ecchigh[256] =
|
||||
{
|
||||
0x00, 0xf4, 0xf5, 0x01, 0xf7, 0x03, 0x02, 0xf6, 0xf3, 0x07, 0x06, 0xf2, 0x04, 0xf0, 0xf1, 0x05,
|
||||
0xfb, 0x0f, 0x0e, 0xfa, 0x0c, 0xf8, 0xf9, 0x0d, 0x08, 0xfc, 0xfd, 0x09, 0xff, 0x0b, 0x0a, 0xfe,
|
||||
0xeb, 0x1f, 0x1e, 0xea, 0x1c, 0xe8, 0xe9, 0x1d, 0x18, 0xec, 0xed, 0x19, 0xef, 0x1b, 0x1a, 0xee,
|
||||
0x10, 0xe4, 0xe5, 0x11, 0xe7, 0x13, 0x12, 0xe6, 0xe3, 0x17, 0x16, 0xe2, 0x14, 0xe0, 0xe1, 0x15,
|
||||
0xcb, 0x3f, 0x3e, 0xca, 0x3c, 0xc8, 0xc9, 0x3d, 0x38, 0xcc, 0xcd, 0x39, 0xcf, 0x3b, 0x3a, 0xce,
|
||||
0x30, 0xc4, 0xc5, 0x31, 0xc7, 0x33, 0x32, 0xc6, 0xc3, 0x37, 0x36, 0xc2, 0x34, 0xc0, 0xc1, 0x35,
|
||||
0x20, 0xd4, 0xd5, 0x21, 0xd7, 0x23, 0x22, 0xd6, 0xd3, 0x27, 0x26, 0xd2, 0x24, 0xd0, 0xd1, 0x25,
|
||||
0xdb, 0x2f, 0x2e, 0xda, 0x2c, 0xd8, 0xd9, 0x2d, 0x28, 0xdc, 0xdd, 0x29, 0xdf, 0x2b, 0x2a, 0xde,
|
||||
0x8b, 0x7f, 0x7e, 0x8a, 0x7c, 0x88, 0x89, 0x7d, 0x78, 0x8c, 0x8d, 0x79, 0x8f, 0x7b, 0x7a, 0x8e,
|
||||
0x70, 0x84, 0x85, 0x71, 0x87, 0x73, 0x72, 0x86, 0x83, 0x77, 0x76, 0x82, 0x74, 0x80, 0x81, 0x75,
|
||||
0x60, 0x94, 0x95, 0x61, 0x97, 0x63, 0x62, 0x96, 0x93, 0x67, 0x66, 0x92, 0x64, 0x90, 0x91, 0x65,
|
||||
0x9b, 0x6f, 0x6e, 0x9a, 0x6c, 0x98, 0x99, 0x6d, 0x68, 0x9c, 0x9d, 0x69, 0x9f, 0x6b, 0x6a, 0x9e,
|
||||
0x40, 0xb4, 0xb5, 0x41, 0xb7, 0x43, 0x42, 0xb6, 0xb3, 0x47, 0x46, 0xb2, 0x44, 0xb0, 0xb1, 0x45,
|
||||
0xbb, 0x4f, 0x4e, 0xba, 0x4c, 0xb8, 0xb9, 0x4d, 0x48, 0xbc, 0xbd, 0x49, 0xbf, 0x4b, 0x4a, 0xbe,
|
||||
0xab, 0x5f, 0x5e, 0xaa, 0x5c, 0xa8, 0xa9, 0x5d, 0x58, 0xac, 0xad, 0x59, 0xaf, 0x5b, 0x5a, 0xae,
|
||||
0x50, 0xa4, 0xa5, 0x51, 0xa7, 0x53, 0x52, 0xa6, 0xa3, 0x57, 0x56, 0xa2, 0x54, 0xa0, 0xa1, 0x55
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief -------------------------------------------------
|
||||
* poffsets - each row represents the addresses used to calculate a byte of the ECC P
|
||||
* data 86 (*2) ECC P bytes, 24 values represented by each
|
||||
* -------------------------------------------------.
|
||||
*/
|
||||
|
||||
static const uint16_t poffsets[ECC_P_NUM_BYTES][ECC_P_COMP] =
|
||||
{
|
||||
{ 0x000,0x056,0x0ac,0x102,0x158,0x1ae,0x204,0x25a,0x2b0,0x306,0x35c,0x3b2,0x408,0x45e,0x4b4,0x50a,0x560,0x5b6,0x60c,0x662,0x6b8,0x70e,0x764,0x7ba },
|
||||
{ 0x001,0x057,0x0ad,0x103,0x159,0x1af,0x205,0x25b,0x2b1,0x307,0x35d,0x3b3,0x409,0x45f,0x4b5,0x50b,0x561,0x5b7,0x60d,0x663,0x6b9,0x70f,0x765,0x7bb },
|
||||
{ 0x002,0x058,0x0ae,0x104,0x15a,0x1b0,0x206,0x25c,0x2b2,0x308,0x35e,0x3b4,0x40a,0x460,0x4b6,0x50c,0x562,0x5b8,0x60e,0x664,0x6ba,0x710,0x766,0x7bc },
|
||||
{ 0x003,0x059,0x0af,0x105,0x15b,0x1b1,0x207,0x25d,0x2b3,0x309,0x35f,0x3b5,0x40b,0x461,0x4b7,0x50d,0x563,0x5b9,0x60f,0x665,0x6bb,0x711,0x767,0x7bd },
|
||||
{ 0x004,0x05a,0x0b0,0x106,0x15c,0x1b2,0x208,0x25e,0x2b4,0x30a,0x360,0x3b6,0x40c,0x462,0x4b8,0x50e,0x564,0x5ba,0x610,0x666,0x6bc,0x712,0x768,0x7be },
|
||||
{ 0x005,0x05b,0x0b1,0x107,0x15d,0x1b3,0x209,0x25f,0x2b5,0x30b,0x361,0x3b7,0x40d,0x463,0x4b9,0x50f,0x565,0x5bb,0x611,0x667,0x6bd,0x713,0x769,0x7bf },
|
||||
{ 0x006,0x05c,0x0b2,0x108,0x15e,0x1b4,0x20a,0x260,0x2b6,0x30c,0x362,0x3b8,0x40e,0x464,0x4ba,0x510,0x566,0x5bc,0x612,0x668,0x6be,0x714,0x76a,0x7c0 },
|
||||
{ 0x007,0x05d,0x0b3,0x109,0x15f,0x1b5,0x20b,0x261,0x2b7,0x30d,0x363,0x3b9,0x40f,0x465,0x4bb,0x511,0x567,0x5bd,0x613,0x669,0x6bf,0x715,0x76b,0x7c1 },
|
||||
{ 0x008,0x05e,0x0b4,0x10a,0x160,0x1b6,0x20c,0x262,0x2b8,0x30e,0x364,0x3ba,0x410,0x466,0x4bc,0x512,0x568,0x5be,0x614,0x66a,0x6c0,0x716,0x76c,0x7c2 },
|
||||
{ 0x009,0x05f,0x0b5,0x10b,0x161,0x1b7,0x20d,0x263,0x2b9,0x30f,0x365,0x3bb,0x411,0x467,0x4bd,0x513,0x569,0x5bf,0x615,0x66b,0x6c1,0x717,0x76d,0x7c3 },
|
||||
{ 0x00a,0x060,0x0b6,0x10c,0x162,0x1b8,0x20e,0x264,0x2ba,0x310,0x366,0x3bc,0x412,0x468,0x4be,0x514,0x56a,0x5c0,0x616,0x66c,0x6c2,0x718,0x76e,0x7c4 },
|
||||
{ 0x00b,0x061,0x0b7,0x10d,0x163,0x1b9,0x20f,0x265,0x2bb,0x311,0x367,0x3bd,0x413,0x469,0x4bf,0x515,0x56b,0x5c1,0x617,0x66d,0x6c3,0x719,0x76f,0x7c5 },
|
||||
{ 0x00c,0x062,0x0b8,0x10e,0x164,0x1ba,0x210,0x266,0x2bc,0x312,0x368,0x3be,0x414,0x46a,0x4c0,0x516,0x56c,0x5c2,0x618,0x66e,0x6c4,0x71a,0x770,0x7c6 },
|
||||
{ 0x00d,0x063,0x0b9,0x10f,0x165,0x1bb,0x211,0x267,0x2bd,0x313,0x369,0x3bf,0x415,0x46b,0x4c1,0x517,0x56d,0x5c3,0x619,0x66f,0x6c5,0x71b,0x771,0x7c7 },
|
||||
{ 0x00e,0x064,0x0ba,0x110,0x166,0x1bc,0x212,0x268,0x2be,0x314,0x36a,0x3c0,0x416,0x46c,0x4c2,0x518,0x56e,0x5c4,0x61a,0x670,0x6c6,0x71c,0x772,0x7c8 },
|
||||
{ 0x00f,0x065,0x0bb,0x111,0x167,0x1bd,0x213,0x269,0x2bf,0x315,0x36b,0x3c1,0x417,0x46d,0x4c3,0x519,0x56f,0x5c5,0x61b,0x671,0x6c7,0x71d,0x773,0x7c9 },
|
||||
{ 0x010,0x066,0x0bc,0x112,0x168,0x1be,0x214,0x26a,0x2c0,0x316,0x36c,0x3c2,0x418,0x46e,0x4c4,0x51a,0x570,0x5c6,0x61c,0x672,0x6c8,0x71e,0x774,0x7ca },
|
||||
{ 0x011,0x067,0x0bd,0x113,0x169,0x1bf,0x215,0x26b,0x2c1,0x317,0x36d,0x3c3,0x419,0x46f,0x4c5,0x51b,0x571,0x5c7,0x61d,0x673,0x6c9,0x71f,0x775,0x7cb },
|
||||
{ 0x012,0x068,0x0be,0x114,0x16a,0x1c0,0x216,0x26c,0x2c2,0x318,0x36e,0x3c4,0x41a,0x470,0x4c6,0x51c,0x572,0x5c8,0x61e,0x674,0x6ca,0x720,0x776,0x7cc },
|
||||
{ 0x013,0x069,0x0bf,0x115,0x16b,0x1c1,0x217,0x26d,0x2c3,0x319,0x36f,0x3c5,0x41b,0x471,0x4c7,0x51d,0x573,0x5c9,0x61f,0x675,0x6cb,0x721,0x777,0x7cd },
|
||||
{ 0x014,0x06a,0x0c0,0x116,0x16c,0x1c2,0x218,0x26e,0x2c4,0x31a,0x370,0x3c6,0x41c,0x472,0x4c8,0x51e,0x574,0x5ca,0x620,0x676,0x6cc,0x722,0x778,0x7ce },
|
||||
{ 0x015,0x06b,0x0c1,0x117,0x16d,0x1c3,0x219,0x26f,0x2c5,0x31b,0x371,0x3c7,0x41d,0x473,0x4c9,0x51f,0x575,0x5cb,0x621,0x677,0x6cd,0x723,0x779,0x7cf },
|
||||
{ 0x016,0x06c,0x0c2,0x118,0x16e,0x1c4,0x21a,0x270,0x2c6,0x31c,0x372,0x3c8,0x41e,0x474,0x4ca,0x520,0x576,0x5cc,0x622,0x678,0x6ce,0x724,0x77a,0x7d0 },
|
||||
{ 0x017,0x06d,0x0c3,0x119,0x16f,0x1c5,0x21b,0x271,0x2c7,0x31d,0x373,0x3c9,0x41f,0x475,0x4cb,0x521,0x577,0x5cd,0x623,0x679,0x6cf,0x725,0x77b,0x7d1 },
|
||||
{ 0x018,0x06e,0x0c4,0x11a,0x170,0x1c6,0x21c,0x272,0x2c8,0x31e,0x374,0x3ca,0x420,0x476,0x4cc,0x522,0x578,0x5ce,0x624,0x67a,0x6d0,0x726,0x77c,0x7d2 },
|
||||
{ 0x019,0x06f,0x0c5,0x11b,0x171,0x1c7,0x21d,0x273,0x2c9,0x31f,0x375,0x3cb,0x421,0x477,0x4cd,0x523,0x579,0x5cf,0x625,0x67b,0x6d1,0x727,0x77d,0x7d3 },
|
||||
{ 0x01a,0x070,0x0c6,0x11c,0x172,0x1c8,0x21e,0x274,0x2ca,0x320,0x376,0x3cc,0x422,0x478,0x4ce,0x524,0x57a,0x5d0,0x626,0x67c,0x6d2,0x728,0x77e,0x7d4 },
|
||||
{ 0x01b,0x071,0x0c7,0x11d,0x173,0x1c9,0x21f,0x275,0x2cb,0x321,0x377,0x3cd,0x423,0x479,0x4cf,0x525,0x57b,0x5d1,0x627,0x67d,0x6d3,0x729,0x77f,0x7d5 },
|
||||
{ 0x01c,0x072,0x0c8,0x11e,0x174,0x1ca,0x220,0x276,0x2cc,0x322,0x378,0x3ce,0x424,0x47a,0x4d0,0x526,0x57c,0x5d2,0x628,0x67e,0x6d4,0x72a,0x780,0x7d6 },
|
||||
{ 0x01d,0x073,0x0c9,0x11f,0x175,0x1cb,0x221,0x277,0x2cd,0x323,0x379,0x3cf,0x425,0x47b,0x4d1,0x527,0x57d,0x5d3,0x629,0x67f,0x6d5,0x72b,0x781,0x7d7 },
|
||||
{ 0x01e,0x074,0x0ca,0x120,0x176,0x1cc,0x222,0x278,0x2ce,0x324,0x37a,0x3d0,0x426,0x47c,0x4d2,0x528,0x57e,0x5d4,0x62a,0x680,0x6d6,0x72c,0x782,0x7d8 },
|
||||
{ 0x01f,0x075,0x0cb,0x121,0x177,0x1cd,0x223,0x279,0x2cf,0x325,0x37b,0x3d1,0x427,0x47d,0x4d3,0x529,0x57f,0x5d5,0x62b,0x681,0x6d7,0x72d,0x783,0x7d9 },
|
||||
{ 0x020,0x076,0x0cc,0x122,0x178,0x1ce,0x224,0x27a,0x2d0,0x326,0x37c,0x3d2,0x428,0x47e,0x4d4,0x52a,0x580,0x5d6,0x62c,0x682,0x6d8,0x72e,0x784,0x7da },
|
||||
{ 0x021,0x077,0x0cd,0x123,0x179,0x1cf,0x225,0x27b,0x2d1,0x327,0x37d,0x3d3,0x429,0x47f,0x4d5,0x52b,0x581,0x5d7,0x62d,0x683,0x6d9,0x72f,0x785,0x7db },
|
||||
{ 0x022,0x078,0x0ce,0x124,0x17a,0x1d0,0x226,0x27c,0x2d2,0x328,0x37e,0x3d4,0x42a,0x480,0x4d6,0x52c,0x582,0x5d8,0x62e,0x684,0x6da,0x730,0x786,0x7dc },
|
||||
{ 0x023,0x079,0x0cf,0x125,0x17b,0x1d1,0x227,0x27d,0x2d3,0x329,0x37f,0x3d5,0x42b,0x481,0x4d7,0x52d,0x583,0x5d9,0x62f,0x685,0x6db,0x731,0x787,0x7dd },
|
||||
{ 0x024,0x07a,0x0d0,0x126,0x17c,0x1d2,0x228,0x27e,0x2d4,0x32a,0x380,0x3d6,0x42c,0x482,0x4d8,0x52e,0x584,0x5da,0x630,0x686,0x6dc,0x732,0x788,0x7de },
|
||||
{ 0x025,0x07b,0x0d1,0x127,0x17d,0x1d3,0x229,0x27f,0x2d5,0x32b,0x381,0x3d7,0x42d,0x483,0x4d9,0x52f,0x585,0x5db,0x631,0x687,0x6dd,0x733,0x789,0x7df },
|
||||
{ 0x026,0x07c,0x0d2,0x128,0x17e,0x1d4,0x22a,0x280,0x2d6,0x32c,0x382,0x3d8,0x42e,0x484,0x4da,0x530,0x586,0x5dc,0x632,0x688,0x6de,0x734,0x78a,0x7e0 },
|
||||
{ 0x027,0x07d,0x0d3,0x129,0x17f,0x1d5,0x22b,0x281,0x2d7,0x32d,0x383,0x3d9,0x42f,0x485,0x4db,0x531,0x587,0x5dd,0x633,0x689,0x6df,0x735,0x78b,0x7e1 },
|
||||
{ 0x028,0x07e,0x0d4,0x12a,0x180,0x1d6,0x22c,0x282,0x2d8,0x32e,0x384,0x3da,0x430,0x486,0x4dc,0x532,0x588,0x5de,0x634,0x68a,0x6e0,0x736,0x78c,0x7e2 },
|
||||
{ 0x029,0x07f,0x0d5,0x12b,0x181,0x1d7,0x22d,0x283,0x2d9,0x32f,0x385,0x3db,0x431,0x487,0x4dd,0x533,0x589,0x5df,0x635,0x68b,0x6e1,0x737,0x78d,0x7e3 },
|
||||
{ 0x02a,0x080,0x0d6,0x12c,0x182,0x1d8,0x22e,0x284,0x2da,0x330,0x386,0x3dc,0x432,0x488,0x4de,0x534,0x58a,0x5e0,0x636,0x68c,0x6e2,0x738,0x78e,0x7e4 },
|
||||
{ 0x02b,0x081,0x0d7,0x12d,0x183,0x1d9,0x22f,0x285,0x2db,0x331,0x387,0x3dd,0x433,0x489,0x4df,0x535,0x58b,0x5e1,0x637,0x68d,0x6e3,0x739,0x78f,0x7e5 },
|
||||
{ 0x02c,0x082,0x0d8,0x12e,0x184,0x1da,0x230,0x286,0x2dc,0x332,0x388,0x3de,0x434,0x48a,0x4e0,0x536,0x58c,0x5e2,0x638,0x68e,0x6e4,0x73a,0x790,0x7e6 },
|
||||
{ 0x02d,0x083,0x0d9,0x12f,0x185,0x1db,0x231,0x287,0x2dd,0x333,0x389,0x3df,0x435,0x48b,0x4e1,0x537,0x58d,0x5e3,0x639,0x68f,0x6e5,0x73b,0x791,0x7e7 },
|
||||
{ 0x02e,0x084,0x0da,0x130,0x186,0x1dc,0x232,0x288,0x2de,0x334,0x38a,0x3e0,0x436,0x48c,0x4e2,0x538,0x58e,0x5e4,0x63a,0x690,0x6e6,0x73c,0x792,0x7e8 },
|
||||
{ 0x02f,0x085,0x0db,0x131,0x187,0x1dd,0x233,0x289,0x2df,0x335,0x38b,0x3e1,0x437,0x48d,0x4e3,0x539,0x58f,0x5e5,0x63b,0x691,0x6e7,0x73d,0x793,0x7e9 },
|
||||
{ 0x030,0x086,0x0dc,0x132,0x188,0x1de,0x234,0x28a,0x2e0,0x336,0x38c,0x3e2,0x438,0x48e,0x4e4,0x53a,0x590,0x5e6,0x63c,0x692,0x6e8,0x73e,0x794,0x7ea },
|
||||
{ 0x031,0x087,0x0dd,0x133,0x189,0x1df,0x235,0x28b,0x2e1,0x337,0x38d,0x3e3,0x439,0x48f,0x4e5,0x53b,0x591,0x5e7,0x63d,0x693,0x6e9,0x73f,0x795,0x7eb },
|
||||
{ 0x032,0x088,0x0de,0x134,0x18a,0x1e0,0x236,0x28c,0x2e2,0x338,0x38e,0x3e4,0x43a,0x490,0x4e6,0x53c,0x592,0x5e8,0x63e,0x694,0x6ea,0x740,0x796,0x7ec },
|
||||
{ 0x033,0x089,0x0df,0x135,0x18b,0x1e1,0x237,0x28d,0x2e3,0x339,0x38f,0x3e5,0x43b,0x491,0x4e7,0x53d,0x593,0x5e9,0x63f,0x695,0x6eb,0x741,0x797,0x7ed },
|
||||
{ 0x034,0x08a,0x0e0,0x136,0x18c,0x1e2,0x238,0x28e,0x2e4,0x33a,0x390,0x3e6,0x43c,0x492,0x4e8,0x53e,0x594,0x5ea,0x640,0x696,0x6ec,0x742,0x798,0x7ee },
|
||||
{ 0x035,0x08b,0x0e1,0x137,0x18d,0x1e3,0x239,0x28f,0x2e5,0x33b,0x391,0x3e7,0x43d,0x493,0x4e9,0x53f,0x595,0x5eb,0x641,0x697,0x6ed,0x743,0x799,0x7ef },
|
||||
{ 0x036,0x08c,0x0e2,0x138,0x18e,0x1e4,0x23a,0x290,0x2e6,0x33c,0x392,0x3e8,0x43e,0x494,0x4ea,0x540,0x596,0x5ec,0x642,0x698,0x6ee,0x744,0x79a,0x7f0 },
|
||||
{ 0x037,0x08d,0x0e3,0x139,0x18f,0x1e5,0x23b,0x291,0x2e7,0x33d,0x393,0x3e9,0x43f,0x495,0x4eb,0x541,0x597,0x5ed,0x643,0x699,0x6ef,0x745,0x79b,0x7f1 },
|
||||
{ 0x038,0x08e,0x0e4,0x13a,0x190,0x1e6,0x23c,0x292,0x2e8,0x33e,0x394,0x3ea,0x440,0x496,0x4ec,0x542,0x598,0x5ee,0x644,0x69a,0x6f0,0x746,0x79c,0x7f2 },
|
||||
{ 0x039,0x08f,0x0e5,0x13b,0x191,0x1e7,0x23d,0x293,0x2e9,0x33f,0x395,0x3eb,0x441,0x497,0x4ed,0x543,0x599,0x5ef,0x645,0x69b,0x6f1,0x747,0x79d,0x7f3 },
|
||||
{ 0x03a,0x090,0x0e6,0x13c,0x192,0x1e8,0x23e,0x294,0x2ea,0x340,0x396,0x3ec,0x442,0x498,0x4ee,0x544,0x59a,0x5f0,0x646,0x69c,0x6f2,0x748,0x79e,0x7f4 },
|
||||
{ 0x03b,0x091,0x0e7,0x13d,0x193,0x1e9,0x23f,0x295,0x2eb,0x341,0x397,0x3ed,0x443,0x499,0x4ef,0x545,0x59b,0x5f1,0x647,0x69d,0x6f3,0x749,0x79f,0x7f5 },
|
||||
{ 0x03c,0x092,0x0e8,0x13e,0x194,0x1ea,0x240,0x296,0x2ec,0x342,0x398,0x3ee,0x444,0x49a,0x4f0,0x546,0x59c,0x5f2,0x648,0x69e,0x6f4,0x74a,0x7a0,0x7f6 },
|
||||
{ 0x03d,0x093,0x0e9,0x13f,0x195,0x1eb,0x241,0x297,0x2ed,0x343,0x399,0x3ef,0x445,0x49b,0x4f1,0x547,0x59d,0x5f3,0x649,0x69f,0x6f5,0x74b,0x7a1,0x7f7 },
|
||||
{ 0x03e,0x094,0x0ea,0x140,0x196,0x1ec,0x242,0x298,0x2ee,0x344,0x39a,0x3f0,0x446,0x49c,0x4f2,0x548,0x59e,0x5f4,0x64a,0x6a0,0x6f6,0x74c,0x7a2,0x7f8 },
|
||||
{ 0x03f,0x095,0x0eb,0x141,0x197,0x1ed,0x243,0x299,0x2ef,0x345,0x39b,0x3f1,0x447,0x49d,0x4f3,0x549,0x59f,0x5f5,0x64b,0x6a1,0x6f7,0x74d,0x7a3,0x7f9 },
|
||||
{ 0x040,0x096,0x0ec,0x142,0x198,0x1ee,0x244,0x29a,0x2f0,0x346,0x39c,0x3f2,0x448,0x49e,0x4f4,0x54a,0x5a0,0x5f6,0x64c,0x6a2,0x6f8,0x74e,0x7a4,0x7fa },
|
||||
{ 0x041,0x097,0x0ed,0x143,0x199,0x1ef,0x245,0x29b,0x2f1,0x347,0x39d,0x3f3,0x449,0x49f,0x4f5,0x54b,0x5a1,0x5f7,0x64d,0x6a3,0x6f9,0x74f,0x7a5,0x7fb },
|
||||
{ 0x042,0x098,0x0ee,0x144,0x19a,0x1f0,0x246,0x29c,0x2f2,0x348,0x39e,0x3f4,0x44a,0x4a0,0x4f6,0x54c,0x5a2,0x5f8,0x64e,0x6a4,0x6fa,0x750,0x7a6,0x7fc },
|
||||
{ 0x043,0x099,0x0ef,0x145,0x19b,0x1f1,0x247,0x29d,0x2f3,0x349,0x39f,0x3f5,0x44b,0x4a1,0x4f7,0x54d,0x5a3,0x5f9,0x64f,0x6a5,0x6fb,0x751,0x7a7,0x7fd },
|
||||
{ 0x044,0x09a,0x0f0,0x146,0x19c,0x1f2,0x248,0x29e,0x2f4,0x34a,0x3a0,0x3f6,0x44c,0x4a2,0x4f8,0x54e,0x5a4,0x5fa,0x650,0x6a6,0x6fc,0x752,0x7a8,0x7fe },
|
||||
{ 0x045,0x09b,0x0f1,0x147,0x19d,0x1f3,0x249,0x29f,0x2f5,0x34b,0x3a1,0x3f7,0x44d,0x4a3,0x4f9,0x54f,0x5a5,0x5fb,0x651,0x6a7,0x6fd,0x753,0x7a9,0x7ff },
|
||||
{ 0x046,0x09c,0x0f2,0x148,0x19e,0x1f4,0x24a,0x2a0,0x2f6,0x34c,0x3a2,0x3f8,0x44e,0x4a4,0x4fa,0x550,0x5a6,0x5fc,0x652,0x6a8,0x6fe,0x754,0x7aa,0x800 },
|
||||
{ 0x047,0x09d,0x0f3,0x149,0x19f,0x1f5,0x24b,0x2a1,0x2f7,0x34d,0x3a3,0x3f9,0x44f,0x4a5,0x4fb,0x551,0x5a7,0x5fd,0x653,0x6a9,0x6ff,0x755,0x7ab,0x801 },
|
||||
{ 0x048,0x09e,0x0f4,0x14a,0x1a0,0x1f6,0x24c,0x2a2,0x2f8,0x34e,0x3a4,0x3fa,0x450,0x4a6,0x4fc,0x552,0x5a8,0x5fe,0x654,0x6aa,0x700,0x756,0x7ac,0x802 },
|
||||
{ 0x049,0x09f,0x0f5,0x14b,0x1a1,0x1f7,0x24d,0x2a3,0x2f9,0x34f,0x3a5,0x3fb,0x451,0x4a7,0x4fd,0x553,0x5a9,0x5ff,0x655,0x6ab,0x701,0x757,0x7ad,0x803 },
|
||||
{ 0x04a,0x0a0,0x0f6,0x14c,0x1a2,0x1f8,0x24e,0x2a4,0x2fa,0x350,0x3a6,0x3fc,0x452,0x4a8,0x4fe,0x554,0x5aa,0x600,0x656,0x6ac,0x702,0x758,0x7ae,0x804 },
|
||||
{ 0x04b,0x0a1,0x0f7,0x14d,0x1a3,0x1f9,0x24f,0x2a5,0x2fb,0x351,0x3a7,0x3fd,0x453,0x4a9,0x4ff,0x555,0x5ab,0x601,0x657,0x6ad,0x703,0x759,0x7af,0x805 },
|
||||
{ 0x04c,0x0a2,0x0f8,0x14e,0x1a4,0x1fa,0x250,0x2a6,0x2fc,0x352,0x3a8,0x3fe,0x454,0x4aa,0x500,0x556,0x5ac,0x602,0x658,0x6ae,0x704,0x75a,0x7b0,0x806 },
|
||||
{ 0x04d,0x0a3,0x0f9,0x14f,0x1a5,0x1fb,0x251,0x2a7,0x2fd,0x353,0x3a9,0x3ff,0x455,0x4ab,0x501,0x557,0x5ad,0x603,0x659,0x6af,0x705,0x75b,0x7b1,0x807 },
|
||||
{ 0x04e,0x0a4,0x0fa,0x150,0x1a6,0x1fc,0x252,0x2a8,0x2fe,0x354,0x3aa,0x400,0x456,0x4ac,0x502,0x558,0x5ae,0x604,0x65a,0x6b0,0x706,0x75c,0x7b2,0x808 },
|
||||
{ 0x04f,0x0a5,0x0fb,0x151,0x1a7,0x1fd,0x253,0x2a9,0x2ff,0x355,0x3ab,0x401,0x457,0x4ad,0x503,0x559,0x5af,0x605,0x65b,0x6b1,0x707,0x75d,0x7b3,0x809 },
|
||||
{ 0x050,0x0a6,0x0fc,0x152,0x1a8,0x1fe,0x254,0x2aa,0x300,0x356,0x3ac,0x402,0x458,0x4ae,0x504,0x55a,0x5b0,0x606,0x65c,0x6b2,0x708,0x75e,0x7b4,0x80a },
|
||||
{ 0x051,0x0a7,0x0fd,0x153,0x1a9,0x1ff,0x255,0x2ab,0x301,0x357,0x3ad,0x403,0x459,0x4af,0x505,0x55b,0x5b1,0x607,0x65d,0x6b3,0x709,0x75f,0x7b5,0x80b },
|
||||
{ 0x052,0x0a8,0x0fe,0x154,0x1aa,0x200,0x256,0x2ac,0x302,0x358,0x3ae,0x404,0x45a,0x4b0,0x506,0x55c,0x5b2,0x608,0x65e,0x6b4,0x70a,0x760,0x7b6,0x80c },
|
||||
{ 0x053,0x0a9,0x0ff,0x155,0x1ab,0x201,0x257,0x2ad,0x303,0x359,0x3af,0x405,0x45b,0x4b1,0x507,0x55d,0x5b3,0x609,0x65f,0x6b5,0x70b,0x761,0x7b7,0x80d },
|
||||
{ 0x054,0x0aa,0x100,0x156,0x1ac,0x202,0x258,0x2ae,0x304,0x35a,0x3b0,0x406,0x45c,0x4b2,0x508,0x55e,0x5b4,0x60a,0x660,0x6b6,0x70c,0x762,0x7b8,0x80e },
|
||||
{ 0x055,0x0ab,0x101,0x157,0x1ad,0x203,0x259,0x2af,0x305,0x35b,0x3b1,0x407,0x45d,0x4b3,0x509,0x55f,0x5b5,0x60b,0x661,0x6b7,0x70d,0x763,0x7b9,0x80f }
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief -------------------------------------------------
|
||||
* qoffsets - each row represents the addresses used to calculate a byte of the ECC Q
|
||||
* data 52 (*2) ECC Q bytes, 43 values represented by each
|
||||
* -------------------------------------------------.
|
||||
*/
|
||||
|
||||
static const uint16_t qoffsets[ECC_Q_NUM_BYTES][ECC_Q_COMP] =
|
||||
{
|
||||
{ 0x000,0x058,0x0b0,0x108,0x160,0x1b8,0x210,0x268,0x2c0,0x318,0x370,0x3c8,0x420,0x478,0x4d0,0x528,0x580,0x5d8,0x630,0x688,0x6e0,0x738,0x790,0x7e8,0x840,0x898,0x034,0x08c,0x0e4,0x13c,0x194,0x1ec,0x244,0x29c,0x2f4,0x34c,0x3a4,0x3fc,0x454,0x4ac,0x504,0x55c,0x5b4 },
|
||||
{ 0x001,0x059,0x0b1,0x109,0x161,0x1b9,0x211,0x269,0x2c1,0x319,0x371,0x3c9,0x421,0x479,0x4d1,0x529,0x581,0x5d9,0x631,0x689,0x6e1,0x739,0x791,0x7e9,0x841,0x899,0x035,0x08d,0x0e5,0x13d,0x195,0x1ed,0x245,0x29d,0x2f5,0x34d,0x3a5,0x3fd,0x455,0x4ad,0x505,0x55d,0x5b5 },
|
||||
{ 0x056,0x0ae,0x106,0x15e,0x1b6,0x20e,0x266,0x2be,0x316,0x36e,0x3c6,0x41e,0x476,0x4ce,0x526,0x57e,0x5d6,0x62e,0x686,0x6de,0x736,0x78e,0x7e6,0x83e,0x896,0x032,0x08a,0x0e2,0x13a,0x192,0x1ea,0x242,0x29a,0x2f2,0x34a,0x3a2,0x3fa,0x452,0x4aa,0x502,0x55a,0x5b2,0x60a },
|
||||
{ 0x057,0x0af,0x107,0x15f,0x1b7,0x20f,0x267,0x2bf,0x317,0x36f,0x3c7,0x41f,0x477,0x4cf,0x527,0x57f,0x5d7,0x62f,0x687,0x6df,0x737,0x78f,0x7e7,0x83f,0x897,0x033,0x08b,0x0e3,0x13b,0x193,0x1eb,0x243,0x29b,0x2f3,0x34b,0x3a3,0x3fb,0x453,0x4ab,0x503,0x55b,0x5b3,0x60b },
|
||||
{ 0x0ac,0x104,0x15c,0x1b4,0x20c,0x264,0x2bc,0x314,0x36c,0x3c4,0x41c,0x474,0x4cc,0x524,0x57c,0x5d4,0x62c,0x684,0x6dc,0x734,0x78c,0x7e4,0x83c,0x894,0x030,0x088,0x0e0,0x138,0x190,0x1e8,0x240,0x298,0x2f0,0x348,0x3a0,0x3f8,0x450,0x4a8,0x500,0x558,0x5b0,0x608,0x660 },
|
||||
{ 0x0ad,0x105,0x15d,0x1b5,0x20d,0x265,0x2bd,0x315,0x36d,0x3c5,0x41d,0x475,0x4cd,0x525,0x57d,0x5d5,0x62d,0x685,0x6dd,0x735,0x78d,0x7e5,0x83d,0x895,0x031,0x089,0x0e1,0x139,0x191,0x1e9,0x241,0x299,0x2f1,0x349,0x3a1,0x3f9,0x451,0x4a9,0x501,0x559,0x5b1,0x609,0x661 },
|
||||
{ 0x102,0x15a,0x1b2,0x20a,0x262,0x2ba,0x312,0x36a,0x3c2,0x41a,0x472,0x4ca,0x522,0x57a,0x5d2,0x62a,0x682,0x6da,0x732,0x78a,0x7e2,0x83a,0x892,0x02e,0x086,0x0de,0x136,0x18e,0x1e6,0x23e,0x296,0x2ee,0x346,0x39e,0x3f6,0x44e,0x4a6,0x4fe,0x556,0x5ae,0x606,0x65e,0x6b6 },
|
||||
{ 0x103,0x15b,0x1b3,0x20b,0x263,0x2bb,0x313,0x36b,0x3c3,0x41b,0x473,0x4cb,0x523,0x57b,0x5d3,0x62b,0x683,0x6db,0x733,0x78b,0x7e3,0x83b,0x893,0x02f,0x087,0x0df,0x137,0x18f,0x1e7,0x23f,0x297,0x2ef,0x347,0x39f,0x3f7,0x44f,0x4a7,0x4ff,0x557,0x5af,0x607,0x65f,0x6b7 },
|
||||
{ 0x158,0x1b0,0x208,0x260,0x2b8,0x310,0x368,0x3c0,0x418,0x470,0x4c8,0x520,0x578,0x5d0,0x628,0x680,0x6d8,0x730,0x788,0x7e0,0x838,0x890,0x02c,0x084,0x0dc,0x134,0x18c,0x1e4,0x23c,0x294,0x2ec,0x344,0x39c,0x3f4,0x44c,0x4a4,0x4fc,0x554,0x5ac,0x604,0x65c,0x6b4,0x70c },
|
||||
{ 0x159,0x1b1,0x209,0x261,0x2b9,0x311,0x369,0x3c1,0x419,0x471,0x4c9,0x521,0x579,0x5d1,0x629,0x681,0x6d9,0x731,0x789,0x7e1,0x839,0x891,0x02d,0x085,0x0dd,0x135,0x18d,0x1e5,0x23d,0x295,0x2ed,0x345,0x39d,0x3f5,0x44d,0x4a5,0x4fd,0x555,0x5ad,0x605,0x65d,0x6b5,0x70d },
|
||||
{ 0x1ae,0x206,0x25e,0x2b6,0x30e,0x366,0x3be,0x416,0x46e,0x4c6,0x51e,0x576,0x5ce,0x626,0x67e,0x6d6,0x72e,0x786,0x7de,0x836,0x88e,0x02a,0x082,0x0da,0x132,0x18a,0x1e2,0x23a,0x292,0x2ea,0x342,0x39a,0x3f2,0x44a,0x4a2,0x4fa,0x552,0x5aa,0x602,0x65a,0x6b2,0x70a,0x762 },
|
||||
{ 0x1af,0x207,0x25f,0x2b7,0x30f,0x367,0x3bf,0x417,0x46f,0x4c7,0x51f,0x577,0x5cf,0x627,0x67f,0x6d7,0x72f,0x787,0x7df,0x837,0x88f,0x02b,0x083,0x0db,0x133,0x18b,0x1e3,0x23b,0x293,0x2eb,0x343,0x39b,0x3f3,0x44b,0x4a3,0x4fb,0x553,0x5ab,0x603,0x65b,0x6b3,0x70b,0x763 },
|
||||
{ 0x204,0x25c,0x2b4,0x30c,0x364,0x3bc,0x414,0x46c,0x4c4,0x51c,0x574,0x5cc,0x624,0x67c,0x6d4,0x72c,0x784,0x7dc,0x834,0x88c,0x028,0x080,0x0d8,0x130,0x188,0x1e0,0x238,0x290,0x2e8,0x340,0x398,0x3f0,0x448,0x4a0,0x4f8,0x550,0x5a8,0x600,0x658,0x6b0,0x708,0x760,0x7b8 },
|
||||
{ 0x205,0x25d,0x2b5,0x30d,0x365,0x3bd,0x415,0x46d,0x4c5,0x51d,0x575,0x5cd,0x625,0x67d,0x6d5,0x72d,0x785,0x7dd,0x835,0x88d,0x029,0x081,0x0d9,0x131,0x189,0x1e1,0x239,0x291,0x2e9,0x341,0x399,0x3f1,0x449,0x4a1,0x4f9,0x551,0x5a9,0x601,0x659,0x6b1,0x709,0x761,0x7b9 },
|
||||
{ 0x25a,0x2b2,0x30a,0x362,0x3ba,0x412,0x46a,0x4c2,0x51a,0x572,0x5ca,0x622,0x67a,0x6d2,0x72a,0x782,0x7da,0x832,0x88a,0x026,0x07e,0x0d6,0x12e,0x186,0x1de,0x236,0x28e,0x2e6,0x33e,0x396,0x3ee,0x446,0x49e,0x4f6,0x54e,0x5a6,0x5fe,0x656,0x6ae,0x706,0x75e,0x7b6,0x80e },
|
||||
{ 0x25b,0x2b3,0x30b,0x363,0x3bb,0x413,0x46b,0x4c3,0x51b,0x573,0x5cb,0x623,0x67b,0x6d3,0x72b,0x783,0x7db,0x833,0x88b,0x027,0x07f,0x0d7,0x12f,0x187,0x1df,0x237,0x28f,0x2e7,0x33f,0x397,0x3ef,0x447,0x49f,0x4f7,0x54f,0x5a7,0x5ff,0x657,0x6af,0x707,0x75f,0x7b7,0x80f },
|
||||
{ 0x2b0,0x308,0x360,0x3b8,0x410,0x468,0x4c0,0x518,0x570,0x5c8,0x620,0x678,0x6d0,0x728,0x780,0x7d8,0x830,0x888,0x024,0x07c,0x0d4,0x12c,0x184,0x1dc,0x234,0x28c,0x2e4,0x33c,0x394,0x3ec,0x444,0x49c,0x4f4,0x54c,0x5a4,0x5fc,0x654,0x6ac,0x704,0x75c,0x7b4,0x80c,0x864 },
|
||||
{ 0x2b1,0x309,0x361,0x3b9,0x411,0x469,0x4c1,0x519,0x571,0x5c9,0x621,0x679,0x6d1,0x729,0x781,0x7d9,0x831,0x889,0x025,0x07d,0x0d5,0x12d,0x185,0x1dd,0x235,0x28d,0x2e5,0x33d,0x395,0x3ed,0x445,0x49d,0x4f5,0x54d,0x5a5,0x5fd,0x655,0x6ad,0x705,0x75d,0x7b5,0x80d,0x865 },
|
||||
{ 0x306,0x35e,0x3b6,0x40e,0x466,0x4be,0x516,0x56e,0x5c6,0x61e,0x676,0x6ce,0x726,0x77e,0x7d6,0x82e,0x886,0x022,0x07a,0x0d2,0x12a,0x182,0x1da,0x232,0x28a,0x2e2,0x33a,0x392,0x3ea,0x442,0x49a,0x4f2,0x54a,0x5a2,0x5fa,0x652,0x6aa,0x702,0x75a,0x7b2,0x80a,0x862,0x8ba },
|
||||
{ 0x307,0x35f,0x3b7,0x40f,0x467,0x4bf,0x517,0x56f,0x5c7,0x61f,0x677,0x6cf,0x727,0x77f,0x7d7,0x82f,0x887,0x023,0x07b,0x0d3,0x12b,0x183,0x1db,0x233,0x28b,0x2e3,0x33b,0x393,0x3eb,0x443,0x49b,0x4f3,0x54b,0x5a3,0x5fb,0x653,0x6ab,0x703,0x75b,0x7b3,0x80b,0x863,0x8bb },
|
||||
{ 0x35c,0x3b4,0x40c,0x464,0x4bc,0x514,0x56c,0x5c4,0x61c,0x674,0x6cc,0x724,0x77c,0x7d4,0x82c,0x884,0x020,0x078,0x0d0,0x128,0x180,0x1d8,0x230,0x288,0x2e0,0x338,0x390,0x3e8,0x440,0x498,0x4f0,0x548,0x5a0,0x5f8,0x650,0x6a8,0x700,0x758,0x7b0,0x808,0x860,0x8b8,0x054 },
|
||||
{ 0x35d,0x3b5,0x40d,0x465,0x4bd,0x515,0x56d,0x5c5,0x61d,0x675,0x6cd,0x725,0x77d,0x7d5,0x82d,0x885,0x021,0x079,0x0d1,0x129,0x181,0x1d9,0x231,0x289,0x2e1,0x339,0x391,0x3e9,0x441,0x499,0x4f1,0x549,0x5a1,0x5f9,0x651,0x6a9,0x701,0x759,0x7b1,0x809,0x861,0x8b9,0x055 },
|
||||
{ 0x3b2,0x40a,0x462,0x4ba,0x512,0x56a,0x5c2,0x61a,0x672,0x6ca,0x722,0x77a,0x7d2,0x82a,0x882,0x01e,0x076,0x0ce,0x126,0x17e,0x1d6,0x22e,0x286,0x2de,0x336,0x38e,0x3e6,0x43e,0x496,0x4ee,0x546,0x59e,0x5f6,0x64e,0x6a6,0x6fe,0x756,0x7ae,0x806,0x85e,0x8b6,0x052,0x0aa },
|
||||
{ 0x3b3,0x40b,0x463,0x4bb,0x513,0x56b,0x5c3,0x61b,0x673,0x6cb,0x723,0x77b,0x7d3,0x82b,0x883,0x01f,0x077,0x0cf,0x127,0x17f,0x1d7,0x22f,0x287,0x2df,0x337,0x38f,0x3e7,0x43f,0x497,0x4ef,0x547,0x59f,0x5f7,0x64f,0x6a7,0x6ff,0x757,0x7af,0x807,0x85f,0x8b7,0x053,0x0ab },
|
||||
{ 0x408,0x460,0x4b8,0x510,0x568,0x5c0,0x618,0x670,0x6c8,0x720,0x778,0x7d0,0x828,0x880,0x01c,0x074,0x0cc,0x124,0x17c,0x1d4,0x22c,0x284,0x2dc,0x334,0x38c,0x3e4,0x43c,0x494,0x4ec,0x544,0x59c,0x5f4,0x64c,0x6a4,0x6fc,0x754,0x7ac,0x804,0x85c,0x8b4,0x050,0x0a8,0x100 },
|
||||
{ 0x409,0x461,0x4b9,0x511,0x569,0x5c1,0x619,0x671,0x6c9,0x721,0x779,0x7d1,0x829,0x881,0x01d,0x075,0x0cd,0x125,0x17d,0x1d5,0x22d,0x285,0x2dd,0x335,0x38d,0x3e5,0x43d,0x495,0x4ed,0x545,0x59d,0x5f5,0x64d,0x6a5,0x6fd,0x755,0x7ad,0x805,0x85d,0x8b5,0x051,0x0a9,0x101 },
|
||||
{ 0x45e,0x4b6,0x50e,0x566,0x5be,0x616,0x66e,0x6c6,0x71e,0x776,0x7ce,0x826,0x87e,0x01a,0x072,0x0ca,0x122,0x17a,0x1d2,0x22a,0x282,0x2da,0x332,0x38a,0x3e2,0x43a,0x492,0x4ea,0x542,0x59a,0x5f2,0x64a,0x6a2,0x6fa,0x752,0x7aa,0x802,0x85a,0x8b2,0x04e,0x0a6,0x0fe,0x156 },
|
||||
{ 0x45f,0x4b7,0x50f,0x567,0x5bf,0x617,0x66f,0x6c7,0x71f,0x777,0x7cf,0x827,0x87f,0x01b,0x073,0x0cb,0x123,0x17b,0x1d3,0x22b,0x283,0x2db,0x333,0x38b,0x3e3,0x43b,0x493,0x4eb,0x543,0x59b,0x5f3,0x64b,0x6a3,0x6fb,0x753,0x7ab,0x803,0x85b,0x8b3,0x04f,0x0a7,0x0ff,0x157 },
|
||||
{ 0x4b4,0x50c,0x564,0x5bc,0x614,0x66c,0x6c4,0x71c,0x774,0x7cc,0x824,0x87c,0x018,0x070,0x0c8,0x120,0x178,0x1d0,0x228,0x280,0x2d8,0x330,0x388,0x3e0,0x438,0x490,0x4e8,0x540,0x598,0x5f0,0x648,0x6a0,0x6f8,0x750,0x7a8,0x800,0x858,0x8b0,0x04c,0x0a4,0x0fc,0x154,0x1ac },
|
||||
{ 0x4b5,0x50d,0x565,0x5bd,0x615,0x66d,0x6c5,0x71d,0x775,0x7cd,0x825,0x87d,0x019,0x071,0x0c9,0x121,0x179,0x1d1,0x229,0x281,0x2d9,0x331,0x389,0x3e1,0x439,0x491,0x4e9,0x541,0x599,0x5f1,0x649,0x6a1,0x6f9,0x751,0x7a9,0x801,0x859,0x8b1,0x04d,0x0a5,0x0fd,0x155,0x1ad },
|
||||
{ 0x50a,0x562,0x5ba,0x612,0x66a,0x6c2,0x71a,0x772,0x7ca,0x822,0x87a,0x016,0x06e,0x0c6,0x11e,0x176,0x1ce,0x226,0x27e,0x2d6,0x32e,0x386,0x3de,0x436,0x48e,0x4e6,0x53e,0x596,0x5ee,0x646,0x69e,0x6f6,0x74e,0x7a6,0x7fe,0x856,0x8ae,0x04a,0x0a2,0x0fa,0x152,0x1aa,0x202 },
|
||||
{ 0x50b,0x563,0x5bb,0x613,0x66b,0x6c3,0x71b,0x773,0x7cb,0x823,0x87b,0x017,0x06f,0x0c7,0x11f,0x177,0x1cf,0x227,0x27f,0x2d7,0x32f,0x387,0x3df,0x437,0x48f,0x4e7,0x53f,0x597,0x5ef,0x647,0x69f,0x6f7,0x74f,0x7a7,0x7ff,0x857,0x8af,0x04b,0x0a3,0x0fb,0x153,0x1ab,0x203 },
|
||||
{ 0x560,0x5b8,0x610,0x668,0x6c0,0x718,0x770,0x7c8,0x820,0x878,0x014,0x06c,0x0c4,0x11c,0x174,0x1cc,0x224,0x27c,0x2d4,0x32c,0x384,0x3dc,0x434,0x48c,0x4e4,0x53c,0x594,0x5ec,0x644,0x69c,0x6f4,0x74c,0x7a4,0x7fc,0x854,0x8ac,0x048,0x0a0,0x0f8,0x150,0x1a8,0x200,0x258 },
|
||||
{ 0x561,0x5b9,0x611,0x669,0x6c1,0x719,0x771,0x7c9,0x821,0x879,0x015,0x06d,0x0c5,0x11d,0x175,0x1cd,0x225,0x27d,0x2d5,0x32d,0x385,0x3dd,0x435,0x48d,0x4e5,0x53d,0x595,0x5ed,0x645,0x69d,0x6f5,0x74d,0x7a5,0x7fd,0x855,0x8ad,0x049,0x0a1,0x0f9,0x151,0x1a9,0x201,0x259 },
|
||||
{ 0x5b6,0x60e,0x666,0x6be,0x716,0x76e,0x7c6,0x81e,0x876,0x012,0x06a,0x0c2,0x11a,0x172,0x1ca,0x222,0x27a,0x2d2,0x32a,0x382,0x3da,0x432,0x48a,0x4e2,0x53a,0x592,0x5ea,0x642,0x69a,0x6f2,0x74a,0x7a2,0x7fa,0x852,0x8aa,0x046,0x09e,0x0f6,0x14e,0x1a6,0x1fe,0x256,0x2ae },
|
||||
{ 0x5b7,0x60f,0x667,0x6bf,0x717,0x76f,0x7c7,0x81f,0x877,0x013,0x06b,0x0c3,0x11b,0x173,0x1cb,0x223,0x27b,0x2d3,0x32b,0x383,0x3db,0x433,0x48b,0x4e3,0x53b,0x593,0x5eb,0x643,0x69b,0x6f3,0x74b,0x7a3,0x7fb,0x853,0x8ab,0x047,0x09f,0x0f7,0x14f,0x1a7,0x1ff,0x257,0x2af },
|
||||
{ 0x60c,0x664,0x6bc,0x714,0x76c,0x7c4,0x81c,0x874,0x010,0x068,0x0c0,0x118,0x170,0x1c8,0x220,0x278,0x2d0,0x328,0x380,0x3d8,0x430,0x488,0x4e0,0x538,0x590,0x5e8,0x640,0x698,0x6f0,0x748,0x7a0,0x7f8,0x850,0x8a8,0x044,0x09c,0x0f4,0x14c,0x1a4,0x1fc,0x254,0x2ac,0x304 },
|
||||
{ 0x60d,0x665,0x6bd,0x715,0x76d,0x7c5,0x81d,0x875,0x011,0x069,0x0c1,0x119,0x171,0x1c9,0x221,0x279,0x2d1,0x329,0x381,0x3d9,0x431,0x489,0x4e1,0x539,0x591,0x5e9,0x641,0x699,0x6f1,0x749,0x7a1,0x7f9,0x851,0x8a9,0x045,0x09d,0x0f5,0x14d,0x1a5,0x1fd,0x255,0x2ad,0x305 },
|
||||
{ 0x662,0x6ba,0x712,0x76a,0x7c2,0x81a,0x872,0x00e,0x066,0x0be,0x116,0x16e,0x1c6,0x21e,0x276,0x2ce,0x326,0x37e,0x3d6,0x42e,0x486,0x4de,0x536,0x58e,0x5e6,0x63e,0x696,0x6ee,0x746,0x79e,0x7f6,0x84e,0x8a6,0x042,0x09a,0x0f2,0x14a,0x1a2,0x1fa,0x252,0x2aa,0x302,0x35a },
|
||||
{ 0x663,0x6bb,0x713,0x76b,0x7c3,0x81b,0x873,0x00f,0x067,0x0bf,0x117,0x16f,0x1c7,0x21f,0x277,0x2cf,0x327,0x37f,0x3d7,0x42f,0x487,0x4df,0x537,0x58f,0x5e7,0x63f,0x697,0x6ef,0x747,0x79f,0x7f7,0x84f,0x8a7,0x043,0x09b,0x0f3,0x14b,0x1a3,0x1fb,0x253,0x2ab,0x303,0x35b },
|
||||
{ 0x6b8,0x710,0x768,0x7c0,0x818,0x870,0x00c,0x064,0x0bc,0x114,0x16c,0x1c4,0x21c,0x274,0x2cc,0x324,0x37c,0x3d4,0x42c,0x484,0x4dc,0x534,0x58c,0x5e4,0x63c,0x694,0x6ec,0x744,0x79c,0x7f4,0x84c,0x8a4,0x040,0x098,0x0f0,0x148,0x1a0,0x1f8,0x250,0x2a8,0x300,0x358,0x3b0 },
|
||||
{ 0x6b9,0x711,0x769,0x7c1,0x819,0x871,0x00d,0x065,0x0bd,0x115,0x16d,0x1c5,0x21d,0x275,0x2cd,0x325,0x37d,0x3d5,0x42d,0x485,0x4dd,0x535,0x58d,0x5e5,0x63d,0x695,0x6ed,0x745,0x79d,0x7f5,0x84d,0x8a5,0x041,0x099,0x0f1,0x149,0x1a1,0x1f9,0x251,0x2a9,0x301,0x359,0x3b1 },
|
||||
{ 0x70e,0x766,0x7be,0x816,0x86e,0x00a,0x062,0x0ba,0x112,0x16a,0x1c2,0x21a,0x272,0x2ca,0x322,0x37a,0x3d2,0x42a,0x482,0x4da,0x532,0x58a,0x5e2,0x63a,0x692,0x6ea,0x742,0x79a,0x7f2,0x84a,0x8a2,0x03e,0x096,0x0ee,0x146,0x19e,0x1f6,0x24e,0x2a6,0x2fe,0x356,0x3ae,0x406 },
|
||||
{ 0x70f,0x767,0x7bf,0x817,0x86f,0x00b,0x063,0x0bb,0x113,0x16b,0x1c3,0x21b,0x273,0x2cb,0x323,0x37b,0x3d3,0x42b,0x483,0x4db,0x533,0x58b,0x5e3,0x63b,0x693,0x6eb,0x743,0x79b,0x7f3,0x84b,0x8a3,0x03f,0x097,0x0ef,0x147,0x19f,0x1f7,0x24f,0x2a7,0x2ff,0x357,0x3af,0x407 },
|
||||
{ 0x764,0x7bc,0x814,0x86c,0x008,0x060,0x0b8,0x110,0x168,0x1c0,0x218,0x270,0x2c8,0x320,0x378,0x3d0,0x428,0x480,0x4d8,0x530,0x588,0x5e0,0x638,0x690,0x6e8,0x740,0x798,0x7f0,0x848,0x8a0,0x03c,0x094,0x0ec,0x144,0x19c,0x1f4,0x24c,0x2a4,0x2fc,0x354,0x3ac,0x404,0x45c },
|
||||
{ 0x765,0x7bd,0x815,0x86d,0x009,0x061,0x0b9,0x111,0x169,0x1c1,0x219,0x271,0x2c9,0x321,0x379,0x3d1,0x429,0x481,0x4d9,0x531,0x589,0x5e1,0x639,0x691,0x6e9,0x741,0x799,0x7f1,0x849,0x8a1,0x03d,0x095,0x0ed,0x145,0x19d,0x1f5,0x24d,0x2a5,0x2fd,0x355,0x3ad,0x405,0x45d },
|
||||
{ 0x7ba,0x812,0x86a,0x006,0x05e,0x0b6,0x10e,0x166,0x1be,0x216,0x26e,0x2c6,0x31e,0x376,0x3ce,0x426,0x47e,0x4d6,0x52e,0x586,0x5de,0x636,0x68e,0x6e6,0x73e,0x796,0x7ee,0x846,0x89e,0x03a,0x092,0x0ea,0x142,0x19a,0x1f2,0x24a,0x2a2,0x2fa,0x352,0x3aa,0x402,0x45a,0x4b2 },
|
||||
{ 0x7bb,0x813,0x86b,0x007,0x05f,0x0b7,0x10f,0x167,0x1bf,0x217,0x26f,0x2c7,0x31f,0x377,0x3cf,0x427,0x47f,0x4d7,0x52f,0x587,0x5df,0x637,0x68f,0x6e7,0x73f,0x797,0x7ef,0x847,0x89f,0x03b,0x093,0x0eb,0x143,0x19b,0x1f3,0x24b,0x2a3,0x2fb,0x353,0x3ab,0x403,0x45b,0x4b3 },
|
||||
{ 0x810,0x868,0x004,0x05c,0x0b4,0x10c,0x164,0x1bc,0x214,0x26c,0x2c4,0x31c,0x374,0x3cc,0x424,0x47c,0x4d4,0x52c,0x584,0x5dc,0x634,0x68c,0x6e4,0x73c,0x794,0x7ec,0x844,0x89c,0x038,0x090,0x0e8,0x140,0x198,0x1f0,0x248,0x2a0,0x2f8,0x350,0x3a8,0x400,0x458,0x4b0,0x508 },
|
||||
{ 0x811,0x869,0x005,0x05d,0x0b5,0x10d,0x165,0x1bd,0x215,0x26d,0x2c5,0x31d,0x375,0x3cd,0x425,0x47d,0x4d5,0x52d,0x585,0x5dd,0x635,0x68d,0x6e5,0x73d,0x795,0x7ed,0x845,0x89d,0x039,0x091,0x0e9,0x141,0x199,0x1f1,0x249,0x2a1,0x2f9,0x351,0x3a9,0x401,0x459,0x4b1,0x509 },
|
||||
{ 0x866,0x002,0x05a,0x0b2,0x10a,0x162,0x1ba,0x212,0x26a,0x2c2,0x31a,0x372,0x3ca,0x422,0x47a,0x4d2,0x52a,0x582,0x5da,0x632,0x68a,0x6e2,0x73a,0x792,0x7ea,0x842,0x89a,0x036,0x08e,0x0e6,0x13e,0x196,0x1ee,0x246,0x29e,0x2f6,0x34e,0x3a6,0x3fe,0x456,0x4ae,0x506,0x55e },
|
||||
{ 0x867,0x003,0x05b,0x0b3,0x10b,0x163,0x1bb,0x213,0x26b,0x2c3,0x31b,0x373,0x3cb,0x423,0x47b,0x4d3,0x52b,0x583,0x5db,0x633,0x68b,0x6e3,0x73b,0x793,0x7eb,0x843,0x89b,0x037,0x08f,0x0e7,0x13f,0x197,0x1ef,0x247,0x29f,0x2f7,0x34f,0x3a7,0x3ff,0x457,0x4af,0x507,0x55f }
|
||||
};
|
||||
|
||||
/*-------------------------------------------------
|
||||
* ecc_source_byte - return data from the sector
|
||||
* at the given offset, masking anything
|
||||
* particular to a mode
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
static inline uint8_t ecc_source_byte(const uint8_t *sector, uint32_t offset)
|
||||
{
|
||||
/* in mode 2 always treat these as 0 bytes */
|
||||
return (sector[MODE_OFFSET] == 2 && offset < 4) ? 0x00 : sector[SYNC_OFFSET + SYNC_NUM_BYTES + offset];
|
||||
}
|
||||
|
||||
/**
|
||||
* @fn void ecc_compute_bytes(const uint8_t *sector, const uint16_t *row, int rowlen, uint8_t &val1, uint8_t &val2)
|
||||
*
|
||||
* @brief -------------------------------------------------
|
||||
* ecc_compute_bytes - calculate an ECC value (P or Q)
|
||||
* -------------------------------------------------.
|
||||
*
|
||||
* @param sector The sector.
|
||||
* @param row The row.
|
||||
* @param rowlen The rowlen.
|
||||
* @param [in,out] val1 The first value.
|
||||
* @param [in,out] val2 The second value.
|
||||
*/
|
||||
|
||||
void ecc_compute_bytes(const uint8_t *sector, const uint16_t *row, int rowlen, uint8_t *val1, uint8_t *val2)
|
||||
{
|
||||
int component;
|
||||
*val1 = *val2 = 0;
|
||||
for (component = 0; component < rowlen; component++)
|
||||
{
|
||||
*val1 ^= ecc_source_byte(sector, row[component]);
|
||||
*val2 ^= ecc_source_byte(sector, row[component]);
|
||||
*val1 = ecclow[*val1];
|
||||
}
|
||||
*val1 = ecchigh[ecclow[*val1] ^ *val2];
|
||||
*val2 ^= *val1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @fn int ecc_verify(const uint8_t *sector)
|
||||
*
|
||||
* @brief -------------------------------------------------
|
||||
* ecc_verify - verify the P and Q ECC codes in a sector
|
||||
* -------------------------------------------------.
|
||||
*
|
||||
* @param sector The sector.
|
||||
*
|
||||
* @return true if it succeeds, false if it fails.
|
||||
*/
|
||||
|
||||
int ecc_verify(const uint8_t *sector)
|
||||
{
|
||||
int byte;
|
||||
/* first verify P bytes */
|
||||
for (byte = 0; byte < ECC_P_NUM_BYTES; byte++)
|
||||
{
|
||||
uint8_t val1, val2;
|
||||
ecc_compute_bytes(sector, poffsets[byte], ECC_P_COMP, &val1, &val2);
|
||||
if (sector[ECC_P_OFFSET + byte] != val1 || sector[ECC_P_OFFSET + ECC_P_NUM_BYTES + byte] != val2)
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* then verify Q bytes */
|
||||
for (byte = 0; byte < ECC_Q_NUM_BYTES; byte++)
|
||||
{
|
||||
uint8_t val1, val2;
|
||||
ecc_compute_bytes(sector, qoffsets[byte], ECC_Q_COMP, &val1, &val2);
|
||||
if (sector[ECC_Q_OFFSET + byte] != val1 || sector[ECC_Q_OFFSET + ECC_Q_NUM_BYTES + byte] != val2)
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @fn void ecc_generate(uint8_t *sector)
|
||||
*
|
||||
* @brief -------------------------------------------------
|
||||
* ecc_generate - generate the P and Q ECC codes for a sector, overwriting any
|
||||
* existing codes
|
||||
* -------------------------------------------------.
|
||||
*
|
||||
* @param [in,out] sector If non-null, the sector.
|
||||
*/
|
||||
|
||||
void ecc_generate(uint8_t *sector)
|
||||
{
|
||||
int byte;
|
||||
/* first verify P bytes */
|
||||
for (byte = 0; byte < ECC_P_NUM_BYTES; byte++)
|
||||
ecc_compute_bytes(sector, poffsets[byte], ECC_P_COMP, §or[ECC_P_OFFSET + byte], §or[ECC_P_OFFSET + ECC_P_NUM_BYTES + byte]);
|
||||
|
||||
/* then verify Q bytes */
|
||||
for (byte = 0; byte < ECC_Q_NUM_BYTES; byte++)
|
||||
ecc_compute_bytes(sector, qoffsets[byte], ECC_Q_COMP, §or[ECC_Q_OFFSET + byte], §or[ECC_Q_OFFSET + ECC_Q_NUM_BYTES + byte]);
|
||||
}
|
||||
|
||||
/**
|
||||
* @fn void ecc_clear(uint8_t *sector)
|
||||
*
|
||||
* @brief -------------------------------------------------
|
||||
* ecc_clear - erase the ECC P and Q cods to 0 within a sector
|
||||
* -------------------------------------------------.
|
||||
*
|
||||
* @param [in,out] sector If non-null, the sector.
|
||||
*/
|
||||
|
||||
void ecc_clear(uint8_t *sector)
|
||||
{
|
||||
memset(§or[ECC_P_OFFSET], 0, 2 * ECC_P_NUM_BYTES);
|
||||
memset(§or[ECC_Q_OFFSET], 0, 2 * ECC_Q_NUM_BYTES);
|
||||
}
|
||||
|
||||
#endif /* WANT_RAW_DATA_SECTOR */
|
||||
3120
3rdparty/libchdr/src/libchdr_chd.c
vendored
Normal file
3120
3rdparty/libchdr/src/libchdr_chd.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
303
3rdparty/libchdr/src/libchdr_flac.c
vendored
Normal file
303
3rdparty/libchdr/src/libchdr_flac.c
vendored
Normal file
@@ -0,0 +1,303 @@
|
||||
/* license:BSD-3-Clause
|
||||
* copyright-holders:Aaron Giles
|
||||
***************************************************************************
|
||||
|
||||
flac.c
|
||||
|
||||
FLAC compression wrappers
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include <libchdr/flac.h>
|
||||
#define DR_FLAC_IMPLEMENTATION
|
||||
#define DR_FLAC_NO_STDIO
|
||||
#include <dr_libs/dr_flac.h>
|
||||
|
||||
/***************************************************************************
|
||||
* FLAC DECODER
|
||||
***************************************************************************
|
||||
*/
|
||||
|
||||
static size_t flac_decoder_read_callback(void *userdata, void *buffer, size_t bytes);
|
||||
static drflac_bool32 flac_decoder_seek_callback(void *userdata, int offset, drflac_seek_origin origin);
|
||||
static void flac_decoder_metadata_callback(void *userdata, drflac_metadata *metadata);
|
||||
static void flac_decoder_write_callback(void *userdata, void *buffer, size_t bytes);
|
||||
|
||||
|
||||
/* getters (valid after reset) */
|
||||
static uint32_t sample_rate(flac_decoder *decoder) { return decoder->sample_rate; }
|
||||
static uint8_t channels(flac_decoder *decoder) { return decoder->channels; }
|
||||
static uint8_t bits_per_sample(flac_decoder *decoder) { return decoder->bits_per_sample; }
|
||||
|
||||
/*-------------------------------------------------
|
||||
* flac_decoder - constructor
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
int flac_decoder_init(flac_decoder *decoder)
|
||||
{
|
||||
decoder->decoder = NULL;
|
||||
decoder->sample_rate = 0;
|
||||
decoder->channels = 0;
|
||||
decoder->bits_per_sample = 0;
|
||||
decoder->compressed_offset = 0;
|
||||
decoder->compressed_start = NULL;
|
||||
decoder->compressed_length = 0;
|
||||
decoder->compressed2_start = NULL;
|
||||
decoder->compressed2_length = 0;
|
||||
decoder->uncompressed_offset = 0;
|
||||
decoder->uncompressed_length = 0;
|
||||
decoder->uncompressed_swap = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* flac_decoder - destructor
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
void flac_decoder_free(flac_decoder* decoder)
|
||||
{
|
||||
if ((decoder != NULL) && (decoder->decoder != NULL)) {
|
||||
drflac_close(decoder->decoder);
|
||||
decoder->decoder = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* reset - reset state with the original
|
||||
* parameters
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
static int flac_decoder_internal_reset(flac_decoder* decoder)
|
||||
{
|
||||
decoder->compressed_offset = 0;
|
||||
flac_decoder_free(decoder);
|
||||
decoder->decoder = drflac_open_with_metadata(
|
||||
flac_decoder_read_callback, flac_decoder_seek_callback,
|
||||
flac_decoder_metadata_callback, decoder, NULL);
|
||||
return (decoder->decoder != NULL);
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* reset - reset state with new memory parameters
|
||||
* and a custom-generated header
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
int flac_decoder_reset(flac_decoder* decoder, uint32_t sample_rate, uint8_t num_channels, uint32_t block_size, const void *buffer, uint32_t length)
|
||||
{
|
||||
/* modify the template header with our parameters */
|
||||
static const uint8_t s_header_template[0x2a] =
|
||||
{
|
||||
0x66, 0x4C, 0x61, 0x43, /* +00: 'fLaC' stream header */
|
||||
0x80, /* +04: metadata block type 0 (STREAMINFO), */
|
||||
/* flagged as last block */
|
||||
0x00, 0x00, 0x22, /* +05: metadata block length = 0x22 */
|
||||
0x00, 0x00, /* +08: minimum block size */
|
||||
0x00, 0x00, /* +0A: maximum block size */
|
||||
0x00, 0x00, 0x00, /* +0C: minimum frame size (0 == unknown) */
|
||||
0x00, 0x00, 0x00, /* +0F: maximum frame size (0 == unknown) */
|
||||
0x0A, 0xC4, 0x42, 0xF0, 0x00, 0x00, 0x00, 0x00, /* +12: sample rate (0x0ac44 == 44100), */
|
||||
/* numchannels (2), sample bits (16), */
|
||||
/* samples in stream (0 == unknown) */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* +1A: MD5 signature (0 == none) */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /* +2A: start of stream data */
|
||||
};
|
||||
memcpy(decoder->custom_header, s_header_template, sizeof(s_header_template));
|
||||
decoder->custom_header[0x08] = decoder->custom_header[0x0a] = (block_size*num_channels) >> 8;
|
||||
decoder->custom_header[0x09] = decoder->custom_header[0x0b] = (block_size*num_channels) & 0xff;
|
||||
decoder->custom_header[0x12] = sample_rate >> 12;
|
||||
decoder->custom_header[0x13] = sample_rate >> 4;
|
||||
decoder->custom_header[0x14] = (sample_rate << 4) | ((num_channels - 1) << 1);
|
||||
|
||||
/* configure the header ahead of the provided buffer */
|
||||
decoder->compressed_start = (const uint8_t *)(decoder->custom_header);
|
||||
decoder->compressed_length = sizeof(decoder->custom_header);
|
||||
decoder->compressed2_start = (const uint8_t *)(buffer);
|
||||
decoder->compressed2_length = length;
|
||||
return flac_decoder_internal_reset(decoder);
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* decode_interleaved - decode to an interleaved
|
||||
* sound stream
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
int flac_decoder_decode_interleaved(flac_decoder* decoder, int16_t *samples, uint32_t num_samples, int swap_endian)
|
||||
{
|
||||
/* configure the uncompressed buffer */
|
||||
memset(decoder->uncompressed_start, 0, sizeof(decoder->uncompressed_start));
|
||||
decoder->uncompressed_start[0] = samples;
|
||||
decoder->uncompressed_offset = 0;
|
||||
decoder->uncompressed_length = num_samples;
|
||||
decoder->uncompressed_swap = swap_endian;
|
||||
|
||||
#define BUFFER 2352 /* bytes per CD audio sector */
|
||||
int16_t buffer[BUFFER];
|
||||
uint32_t buf_samples = BUFFER / channels(decoder);
|
||||
/* loop until we get everything we want */
|
||||
while (decoder->uncompressed_offset < decoder->uncompressed_length) {
|
||||
uint32_t frames = (num_samples < buf_samples ? num_samples : buf_samples);
|
||||
if (!drflac_read_pcm_frames_s16(decoder->decoder, frames, buffer))
|
||||
return 0;
|
||||
flac_decoder_write_callback(decoder, buffer, frames*sizeof(*buffer)*channels(decoder));
|
||||
num_samples -= frames;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* finish - finish up the decode
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
uint32_t flac_decoder_finish(flac_decoder* decoder)
|
||||
{
|
||||
/* get the final decoding position and move forward */
|
||||
drflac *flac = decoder->decoder;
|
||||
uint64_t position = decoder->compressed_offset;
|
||||
|
||||
/* ugh... there's no function to obtain bytes used in drflac :-/ */
|
||||
position -= DRFLAC_CACHE_L2_LINES_REMAINING(&flac->bs) * sizeof(drflac_cache_t);
|
||||
position -= DRFLAC_CACHE_L1_BITS_REMAINING(&flac->bs) / 8;
|
||||
position -= flac->bs.unalignedByteCount;
|
||||
|
||||
/* adjust position if we provided the header */
|
||||
if (position == 0)
|
||||
return 0;
|
||||
if (decoder->compressed_start == (const uint8_t *)(decoder->custom_header))
|
||||
position -= decoder->compressed_length;
|
||||
|
||||
flac_decoder_free(decoder);
|
||||
return position;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* read_callback - handle reads from the input
|
||||
* stream
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
#define MIN(x, y) ((x) < (y) ? (x) : (y))
|
||||
|
||||
static size_t flac_decoder_read_callback(void *userdata, void *buffer, size_t bytes)
|
||||
{
|
||||
flac_decoder* decoder = (flac_decoder*)userdata;
|
||||
uint8_t *dst = buffer;
|
||||
|
||||
/* copy from primary buffer first */
|
||||
uint32_t outputpos = 0;
|
||||
if (outputpos < bytes && decoder->compressed_offset < decoder->compressed_length)
|
||||
{
|
||||
uint32_t bytes_to_copy = MIN(bytes - outputpos, decoder->compressed_length - decoder->compressed_offset);
|
||||
memcpy(&dst[outputpos], decoder->compressed_start + decoder->compressed_offset, bytes_to_copy);
|
||||
outputpos += bytes_to_copy;
|
||||
decoder->compressed_offset += bytes_to_copy;
|
||||
}
|
||||
|
||||
/* once we're out of that, copy from the secondary buffer */
|
||||
if (outputpos < bytes && decoder->compressed_offset < decoder->compressed_length + decoder->compressed2_length)
|
||||
{
|
||||
uint32_t bytes_to_copy = MIN(bytes - outputpos, decoder->compressed2_length - (decoder->compressed_offset - decoder->compressed_length));
|
||||
memcpy(&dst[outputpos], decoder->compressed2_start + decoder->compressed_offset - decoder->compressed_length, bytes_to_copy);
|
||||
outputpos += bytes_to_copy;
|
||||
decoder->compressed_offset += bytes_to_copy;
|
||||
}
|
||||
|
||||
return outputpos;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* metadata_callback - handle STREAMINFO metadata
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
static void flac_decoder_metadata_callback(void *userdata, drflac_metadata *metadata)
|
||||
{
|
||||
flac_decoder *decoder = userdata;
|
||||
|
||||
/* ignore all but STREAMINFO metadata */
|
||||
if (metadata->type != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO)
|
||||
return;
|
||||
|
||||
/* parse out the data we care about */
|
||||
decoder->sample_rate = metadata->data.streaminfo.sampleRate;
|
||||
decoder->bits_per_sample = metadata->data.streaminfo.bitsPerSample;
|
||||
decoder->channels = metadata->data.streaminfo.channels;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* write_callback - handle writes to the output
|
||||
* stream
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
static void flac_decoder_write_callback(void *userdata, void *buffer, size_t bytes)
|
||||
{
|
||||
int sampnum, chan;
|
||||
int shift, blocksize;
|
||||
flac_decoder * decoder = (flac_decoder *)userdata;
|
||||
int16_t *sampbuf = (int16_t *)buffer;
|
||||
int sampch = channels(decoder);
|
||||
uint32_t offset = decoder->uncompressed_offset;
|
||||
uint16_t usample;
|
||||
|
||||
/* interleaved case */
|
||||
shift = decoder->uncompressed_swap ? 8 : 0;
|
||||
blocksize = bytes / (sampch * sizeof(sampbuf[0]));
|
||||
if (decoder->uncompressed_start[1] == NULL)
|
||||
{
|
||||
int16_t *dest = decoder->uncompressed_start[0] + offset * sampch;
|
||||
for (sampnum = 0; sampnum < blocksize && offset < decoder->uncompressed_length; sampnum++, offset++)
|
||||
for (chan = 0; chan < sampch; chan++) {
|
||||
usample = (uint16_t)*sampbuf++;
|
||||
*dest++ = (int16_t)((usample << shift) | (usample >> shift));
|
||||
}
|
||||
}
|
||||
|
||||
/* non-interleaved case */
|
||||
else
|
||||
{
|
||||
for (sampnum = 0; sampnum < blocksize && offset < decoder->uncompressed_length; sampnum++, offset++)
|
||||
for (chan = 0; chan < sampch; chan++) {
|
||||
usample = (uint16_t)*sampbuf++;
|
||||
if (decoder->uncompressed_start[chan] != NULL)
|
||||
decoder->uncompressed_start[chan][offset] = (int16_t) ((usample << shift) | (usample >> shift));
|
||||
}
|
||||
}
|
||||
decoder->uncompressed_offset = offset;
|
||||
}
|
||||
|
||||
|
||||
/*-------------------------------------------------
|
||||
* seek_callback - handle seeks on the output
|
||||
* stream
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
static drflac_bool32 flac_decoder_seek_callback(void *userdata, int offset, drflac_seek_origin origin)
|
||||
{
|
||||
flac_decoder * decoder = (flac_decoder *)userdata;
|
||||
uint32_t length = decoder->compressed_length + decoder->compressed2_length;
|
||||
|
||||
if (origin == drflac_seek_origin_start) {
|
||||
uint32_t pos = offset;
|
||||
if (pos <= length) {
|
||||
decoder->compressed_offset = pos;
|
||||
return 1;
|
||||
}
|
||||
} else if (origin == drflac_seek_origin_current) {
|
||||
uint32_t pos = decoder->compressed_offset + offset;
|
||||
if (pos <= length) {
|
||||
decoder->compressed_offset = pos;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
547
3rdparty/libchdr/src/libchdr_huffman.c
vendored
Normal file
547
3rdparty/libchdr/src/libchdr_huffman.c
vendored
Normal file
@@ -0,0 +1,547 @@
|
||||
/* license:BSD-3-Clause
|
||||
* copyright-holders:Aaron Giles
|
||||
****************************************************************************
|
||||
|
||||
huffman.c
|
||||
|
||||
Static Huffman compression and decompression helpers.
|
||||
|
||||
****************************************************************************
|
||||
|
||||
Maximum codelength is officially (alphabetsize - 1). This would be 255 bits
|
||||
(since we use 1 byte values). However, it is also dependent upon the number
|
||||
of samples used, as follows:
|
||||
|
||||
2 bits -> 3..4 samples
|
||||
3 bits -> 5..7 samples
|
||||
4 bits -> 8..12 samples
|
||||
5 bits -> 13..20 samples
|
||||
6 bits -> 21..33 samples
|
||||
7 bits -> 34..54 samples
|
||||
8 bits -> 55..88 samples
|
||||
9 bits -> 89..143 samples
|
||||
10 bits -> 144..232 samples
|
||||
11 bits -> 233..376 samples
|
||||
12 bits -> 377..609 samples
|
||||
13 bits -> 610..986 samples
|
||||
14 bits -> 987..1596 samples
|
||||
15 bits -> 1597..2583 samples
|
||||
16 bits -> 2584..4180 samples -> note that a 4k data size guarantees codelength <= 16 bits
|
||||
17 bits -> 4181..6764 samples
|
||||
18 bits -> 6765..10945 samples
|
||||
19 bits -> 10946..17710 samples
|
||||
20 bits -> 17711..28656 samples
|
||||
21 bits -> 28657..46367 samples
|
||||
22 bits -> 46368..75024 samples
|
||||
23 bits -> 75025..121392 samples
|
||||
24 bits -> 121393..196417 samples
|
||||
25 bits -> 196418..317810 samples
|
||||
26 bits -> 317811..514228 samples
|
||||
27 bits -> 514229..832039 samples
|
||||
28 bits -> 832040..1346268 samples
|
||||
29 bits -> 1346269..2178308 samples
|
||||
30 bits -> 2178309..3524577 samples
|
||||
31 bits -> 3524578..5702886 samples
|
||||
32 bits -> 5702887..9227464 samples
|
||||
|
||||
Looking at it differently, here is where powers of 2 fall into these buckets:
|
||||
|
||||
256 samples -> 11 bits max
|
||||
512 samples -> 12 bits max
|
||||
1k samples -> 14 bits max
|
||||
2k samples -> 15 bits max
|
||||
4k samples -> 16 bits max
|
||||
8k samples -> 18 bits max
|
||||
16k samples -> 19 bits max
|
||||
32k samples -> 21 bits max
|
||||
64k samples -> 22 bits max
|
||||
128k samples -> 24 bits max
|
||||
256k samples -> 25 bits max
|
||||
512k samples -> 27 bits max
|
||||
1M samples -> 28 bits max
|
||||
2M samples -> 29 bits max
|
||||
4M samples -> 31 bits max
|
||||
8M samples -> 32 bits max
|
||||
|
||||
****************************************************************************
|
||||
|
||||
Delta-RLE encoding works as follows:
|
||||
|
||||
Starting value is assumed to be 0. All data is encoded as a delta
|
||||
from the previous value, such that final[i] = final[i - 1] + delta.
|
||||
Long runs of 0s are RLE-encoded as follows:
|
||||
|
||||
0x100 = repeat count of 8
|
||||
0x101 = repeat count of 9
|
||||
0x102 = repeat count of 10
|
||||
0x103 = repeat count of 11
|
||||
0x104 = repeat count of 12
|
||||
0x105 = repeat count of 13
|
||||
0x106 = repeat count of 14
|
||||
0x107 = repeat count of 15
|
||||
0x108 = repeat count of 16
|
||||
0x109 = repeat count of 32
|
||||
0x10a = repeat count of 64
|
||||
0x10b = repeat count of 128
|
||||
0x10c = repeat count of 256
|
||||
0x10d = repeat count of 512
|
||||
0x10e = repeat count of 1024
|
||||
0x10f = repeat count of 2048
|
||||
|
||||
Note that repeat counts are reset at the end of a row, so if a 0 run
|
||||
extends to the end of a row, a large repeat count may be used.
|
||||
|
||||
The reason for starting the run counts at 8 is that 0 is expected to
|
||||
be the most common symbol, and is typically encoded in 1 or 2 bits.
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <libchdr/huffman.h>
|
||||
|
||||
#define MAX(x,y) ((x) > (y) ? (x) : (y))
|
||||
|
||||
/***************************************************************************
|
||||
* MACROS
|
||||
***************************************************************************
|
||||
*/
|
||||
|
||||
#define MAKE_LOOKUP(code,bits) (((code) << 5) | ((bits) & 0x1f))
|
||||
|
||||
/***************************************************************************
|
||||
* IMPLEMENTATION
|
||||
***************************************************************************
|
||||
*/
|
||||
|
||||
/*-------------------------------------------------
|
||||
* huffman_context_base - create an encoding/
|
||||
* decoding context
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits)
|
||||
{
|
||||
struct huffman_decoder* decoder = NULL;
|
||||
|
||||
/* limit to 24 bits */
|
||||
if (maxbits > 24)
|
||||
return NULL;
|
||||
|
||||
decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder));
|
||||
decoder->numcodes = numcodes;
|
||||
decoder->maxbits = maxbits;
|
||||
decoder->lookup = (lookup_value*)malloc(sizeof(lookup_value) * (1 << maxbits));
|
||||
decoder->huffnode = (struct node_t*)malloc(sizeof(struct node_t) * numcodes);
|
||||
decoder->datahisto = NULL;
|
||||
decoder->prevdata = 0;
|
||||
decoder->rleremaining = 0;
|
||||
return decoder;
|
||||
}
|
||||
|
||||
void delete_huffman_decoder(struct huffman_decoder* decoder)
|
||||
{
|
||||
if (decoder != NULL)
|
||||
{
|
||||
if (decoder->lookup != NULL)
|
||||
free(decoder->lookup);
|
||||
if (decoder->huffnode != NULL)
|
||||
free(decoder->huffnode);
|
||||
free(decoder);
|
||||
}
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* decode_one - decode a single code from the
|
||||
* huffman stream
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf)
|
||||
{
|
||||
/* peek ahead to get maxbits worth of data */
|
||||
uint32_t bits = bitstream_peek(bitbuf, decoder->maxbits);
|
||||
|
||||
/* look it up, then remove the actual number of bits for this code */
|
||||
lookup_value lookup = decoder->lookup[bits];
|
||||
bitstream_remove(bitbuf, lookup & 0x1f);
|
||||
|
||||
/* return the value */
|
||||
return lookup >> 5;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* import_tree_rle - import an RLE-encoded
|
||||
* huffman tree from a source data stream
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf)
|
||||
{
|
||||
int numbits;
|
||||
uint32_t curnode;
|
||||
enum huffman_error error;
|
||||
|
||||
/* bits per entry depends on the maxbits */
|
||||
if (decoder->maxbits >= 16)
|
||||
numbits = 5;
|
||||
else if (decoder->maxbits >= 8)
|
||||
numbits = 4;
|
||||
else
|
||||
numbits = 3;
|
||||
|
||||
/* loop until we read all the nodes */
|
||||
for (curnode = 0; curnode < decoder->numcodes; )
|
||||
{
|
||||
/* a non-one value is just raw */
|
||||
int nodebits = bitstream_read(bitbuf, numbits);
|
||||
if (nodebits != 1)
|
||||
decoder->huffnode[curnode++].numbits = nodebits;
|
||||
|
||||
/* a one value is an escape code */
|
||||
else
|
||||
{
|
||||
/* a double 1 is just a single 1 */
|
||||
nodebits = bitstream_read(bitbuf, numbits);
|
||||
if (nodebits == 1)
|
||||
decoder->huffnode[curnode++].numbits = nodebits;
|
||||
|
||||
/* otherwise, we need one for value for the repeat count */
|
||||
else
|
||||
{
|
||||
int repcount = bitstream_read(bitbuf, numbits) + 3;
|
||||
if (repcount + curnode > decoder->numcodes)
|
||||
return HUFFERR_INVALID_DATA;
|
||||
while (repcount--)
|
||||
decoder->huffnode[curnode++].numbits = nodebits;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* make sure we ended up with the right number */
|
||||
if (curnode != decoder->numcodes)
|
||||
return HUFFERR_INVALID_DATA;
|
||||
|
||||
/* assign canonical codes for all nodes based on their code lengths */
|
||||
error = huffman_assign_canonical_codes(decoder);
|
||||
if (error != HUFFERR_NONE)
|
||||
return error;
|
||||
|
||||
/* build the lookup table */
|
||||
huffman_build_lookup_table(decoder);
|
||||
|
||||
/* determine final input length and report errors */
|
||||
return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
|
||||
}
|
||||
|
||||
|
||||
/*-------------------------------------------------
|
||||
* import_tree_huffman - import a huffman-encoded
|
||||
* huffman tree from a source data stream
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf)
|
||||
{
|
||||
int start;
|
||||
int last = 0;
|
||||
int count = 0;
|
||||
int index;
|
||||
uint32_t curcode;
|
||||
uint8_t rlefullbits = 0;
|
||||
uint32_t temp;
|
||||
enum huffman_error error;
|
||||
/* start by parsing the lengths for the small tree */
|
||||
struct huffman_decoder* smallhuff = create_huffman_decoder(24, 6);
|
||||
smallhuff->huffnode[0].numbits = bitstream_read(bitbuf, 3);
|
||||
start = bitstream_read(bitbuf, 3) + 1;
|
||||
for (index = 1; index < 24; index++)
|
||||
{
|
||||
if (index < start || count == 7)
|
||||
smallhuff->huffnode[index].numbits = 0;
|
||||
else
|
||||
{
|
||||
count = bitstream_read(bitbuf, 3);
|
||||
smallhuff->huffnode[index].numbits = (count == 7) ? 0 : count;
|
||||
}
|
||||
}
|
||||
|
||||
/* then regenerate the tree */
|
||||
error = huffman_assign_canonical_codes(smallhuff);
|
||||
if (error != HUFFERR_NONE)
|
||||
return error;
|
||||
huffman_build_lookup_table(smallhuff);
|
||||
|
||||
/* determine the maximum length of an RLE count */
|
||||
temp = decoder->numcodes - 9;
|
||||
while (temp != 0)
|
||||
temp >>= 1, rlefullbits++;
|
||||
|
||||
/* now process the rest of the data */
|
||||
for (curcode = 0; curcode < decoder->numcodes; )
|
||||
{
|
||||
int value = huffman_decode_one(smallhuff, bitbuf);
|
||||
if (value != 0)
|
||||
decoder->huffnode[curcode++].numbits = last = value - 1;
|
||||
else
|
||||
{
|
||||
int count = bitstream_read(bitbuf, 3) + 2;
|
||||
if (count == 7+2)
|
||||
count += bitstream_read(bitbuf, rlefullbits);
|
||||
for ( ; count != 0 && curcode < decoder->numcodes; count--)
|
||||
decoder->huffnode[curcode++].numbits = last;
|
||||
}
|
||||
}
|
||||
|
||||
/* make sure we ended up with the right number */
|
||||
if (curcode != decoder->numcodes)
|
||||
return HUFFERR_INVALID_DATA;
|
||||
|
||||
/* assign canonical codes for all nodes based on their code lengths */
|
||||
error = huffman_assign_canonical_codes(decoder);
|
||||
if (error != HUFFERR_NONE)
|
||||
return error;
|
||||
|
||||
/* build the lookup table */
|
||||
huffman_build_lookup_table(decoder);
|
||||
|
||||
/* determine final input length and report errors */
|
||||
return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* compute_tree_from_histo - common backend for
|
||||
* computing a tree based on the data histogram
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder)
|
||||
{
|
||||
uint32_t i;
|
||||
uint32_t lowerweight;
|
||||
uint32_t upperweight;
|
||||
/* compute the number of data items in the histogram */
|
||||
uint32_t sdatacount = 0;
|
||||
for (i = 0; i < decoder->numcodes; i++)
|
||||
sdatacount += decoder->datahisto[i];
|
||||
|
||||
/* binary search to achieve the optimum encoding */
|
||||
lowerweight = 0;
|
||||
upperweight = sdatacount * 2;
|
||||
while (1)
|
||||
{
|
||||
/* build a tree using the current weight */
|
||||
uint32_t curweight = (upperweight + lowerweight) / 2;
|
||||
int curmaxbits = huffman_build_tree(decoder, sdatacount, curweight);
|
||||
|
||||
/* apply binary search here */
|
||||
if (curmaxbits <= decoder->maxbits)
|
||||
{
|
||||
lowerweight = curweight;
|
||||
|
||||
/* early out if it worked with the raw weights, or if we're done searching */
|
||||
if (curweight == sdatacount || (upperweight - lowerweight) <= 1)
|
||||
break;
|
||||
}
|
||||
else
|
||||
upperweight = curweight;
|
||||
}
|
||||
|
||||
/* assign canonical codes for all nodes based on their code lengths */
|
||||
return huffman_assign_canonical_codes(decoder);
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* INTERNAL FUNCTIONS
|
||||
***************************************************************************
|
||||
*/
|
||||
|
||||
/*-------------------------------------------------
|
||||
* tree_node_compare - compare two tree nodes
|
||||
* by weight
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
static int huffman_tree_node_compare(const void *item1, const void *item2)
|
||||
{
|
||||
const struct node_t *node1 = *(const struct node_t **)item1;
|
||||
const struct node_t *node2 = *(const struct node_t **)item2;
|
||||
if (node2->weight != node1->weight)
|
||||
return node2->weight - node1->weight;
|
||||
if (node2->bits - node1->bits == 0)
|
||||
fprintf(stderr, "identical node sort keys, should not happen!\n");
|
||||
return (int)node1->bits - (int)node2->bits;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* build_tree - build a huffman tree based on the
|
||||
* data distribution
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight)
|
||||
{
|
||||
uint32_t curcode;
|
||||
int nextalloc;
|
||||
int listitems = 0;
|
||||
int maxbits = 0;
|
||||
/* make a list of all non-zero nodes */
|
||||
struct node_t** list = (struct node_t**)malloc(sizeof(struct node_t*) * decoder->numcodes * 2);
|
||||
memset(decoder->huffnode, 0, decoder->numcodes * sizeof(decoder->huffnode[0]));
|
||||
for (curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
if (decoder->datahisto[curcode] != 0)
|
||||
{
|
||||
list[listitems++] = &decoder->huffnode[curcode];
|
||||
decoder->huffnode[curcode].count = decoder->datahisto[curcode];
|
||||
decoder->huffnode[curcode].bits = curcode;
|
||||
|
||||
/* scale the weight by the current effective length, ensuring we don't go to 0 */
|
||||
decoder->huffnode[curcode].weight = ((uint64_t)decoder->datahisto[curcode]) * ((uint64_t)totalweight) / ((uint64_t)totaldata);
|
||||
if (decoder->huffnode[curcode].weight == 0)
|
||||
decoder->huffnode[curcode].weight = 1;
|
||||
}
|
||||
|
||||
#if 0
|
||||
fprintf(stderr, "Pre-sort:\n");
|
||||
for (int i = 0; i < listitems; i++) {
|
||||
fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* sort the list by weight, largest weight first */
|
||||
qsort(&list[0], listitems, sizeof(list[0]), huffman_tree_node_compare);
|
||||
|
||||
#if 0
|
||||
fprintf(stderr, "Post-sort:\n");
|
||||
for (int i = 0; i < listitems; i++) {
|
||||
fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
|
||||
}
|
||||
fprintf(stderr, "===================\n");
|
||||
#endif
|
||||
|
||||
/* now build the tree */
|
||||
nextalloc = decoder->numcodes;
|
||||
while (listitems > 1)
|
||||
{
|
||||
int curitem;
|
||||
/* remove lowest two items */
|
||||
struct node_t* node1 = &(*list[--listitems]);
|
||||
struct node_t* node0 = &(*list[--listitems]);
|
||||
|
||||
/* create new node */
|
||||
struct node_t* newnode = &decoder->huffnode[nextalloc++];
|
||||
newnode->parent = NULL;
|
||||
node0->parent = node1->parent = newnode;
|
||||
newnode->weight = node0->weight + node1->weight;
|
||||
|
||||
/* insert into list at appropriate location */
|
||||
for (curitem = 0; curitem < listitems; curitem++)
|
||||
if (newnode->weight > list[curitem]->weight)
|
||||
{
|
||||
memmove(&list[curitem+1], &list[curitem], (listitems - curitem) * sizeof(list[0]));
|
||||
break;
|
||||
}
|
||||
list[curitem] = newnode;
|
||||
listitems++;
|
||||
}
|
||||
|
||||
/* compute the number of bits in each code, and fill in another histogram */
|
||||
for (curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
{
|
||||
struct node_t *curnode;
|
||||
struct node_t* node = &decoder->huffnode[curcode];
|
||||
node->numbits = 0;
|
||||
node->bits = 0;
|
||||
|
||||
/* if we have a non-zero weight, compute the number of bits */
|
||||
if (node->weight > 0)
|
||||
{
|
||||
/* determine the number of bits for this node */
|
||||
for (curnode = node; curnode->parent != NULL; curnode = curnode->parent)
|
||||
node->numbits++;
|
||||
if (node->numbits == 0)
|
||||
node->numbits = 1;
|
||||
|
||||
/* keep track of the max */
|
||||
maxbits = MAX(maxbits, ((int)node->numbits));
|
||||
}
|
||||
}
|
||||
return maxbits;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* assign_canonical_codes - assign canonical codes
|
||||
* to all the nodes based on the number of bits
|
||||
* in each
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder)
|
||||
{
|
||||
uint32_t curcode;
|
||||
int codelen;
|
||||
uint32_t curstart = 0;
|
||||
/* build up a histogram of bit lengths */
|
||||
uint32_t bithisto[33] = { 0 };
|
||||
for (curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
{
|
||||
struct node_t* node = &decoder->huffnode[curcode];
|
||||
if (node->numbits > decoder->maxbits)
|
||||
return HUFFERR_INTERNAL_INCONSISTENCY;
|
||||
if (node->numbits <= 32)
|
||||
bithisto[node->numbits]++;
|
||||
}
|
||||
|
||||
/* for each code length, determine the starting code number */
|
||||
for (codelen = 32; codelen > 0; codelen--)
|
||||
{
|
||||
uint32_t nextstart = (curstart + bithisto[codelen]) >> 1;
|
||||
if (codelen != 1 && nextstart * 2 != (curstart + bithisto[codelen]))
|
||||
return HUFFERR_INTERNAL_INCONSISTENCY;
|
||||
bithisto[codelen] = curstart;
|
||||
curstart = nextstart;
|
||||
}
|
||||
|
||||
/* now assign canonical codes */
|
||||
for (curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
{
|
||||
struct node_t* node = &decoder->huffnode[curcode];
|
||||
if (node->numbits > 0)
|
||||
node->bits = bithisto[node->numbits]++;
|
||||
}
|
||||
return HUFFERR_NONE;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* build_lookup_table - build a lookup table for
|
||||
* fast decoding
|
||||
*-------------------------------------------------
|
||||
*/
|
||||
|
||||
void huffman_build_lookup_table(struct huffman_decoder* decoder)
|
||||
{
|
||||
uint32_t curcode;
|
||||
/* iterate over all codes */
|
||||
for (curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
{
|
||||
/* process all nodes which have non-zero bits */
|
||||
struct node_t* node = &decoder->huffnode[curcode];
|
||||
if (node->numbits > 0)
|
||||
{
|
||||
int shift;
|
||||
lookup_value *dest;
|
||||
lookup_value *destend;
|
||||
/* set up the entry */
|
||||
lookup_value value = MAKE_LOOKUP(curcode, node->numbits);
|
||||
|
||||
/* fill all matching entries */
|
||||
shift = decoder->maxbits - node->numbits;
|
||||
dest = &decoder->lookup[node->bits << shift];
|
||||
destend = &decoder->lookup[((node->bits + 1) << shift) - 1];
|
||||
while (dest <= destend)
|
||||
*dest++ = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
60
3rdparty/libjpeg/CMakeLists.txt
vendored
60
3rdparty/libjpeg/CMakeLists.txt
vendored
@@ -1,60 +0,0 @@
|
||||
add_library(jpeg
|
||||
jaricom.c
|
||||
jcapimin.c
|
||||
jcapistd.c
|
||||
jcarith.c
|
||||
jccoefct.c
|
||||
jccolor.c
|
||||
jcdctmgr.c
|
||||
jchuff.c
|
||||
jcinit.c
|
||||
jcmainct.c
|
||||
jcmarker.c
|
||||
jcmaster.c
|
||||
jcomapi.c
|
||||
jcparam.c
|
||||
jcprepct.c
|
||||
jcsample.c
|
||||
jctrans.c
|
||||
jdapimin.c
|
||||
jdapistd.c
|
||||
jdarith.c
|
||||
jdatadst.c
|
||||
jdatasrc.c
|
||||
jdcoefct.c
|
||||
jdcolor.c
|
||||
jddctmgr.c
|
||||
jdhuff.c
|
||||
jdinput.c
|
||||
jdmainct.c
|
||||
jdmarker.c
|
||||
jdmaster.c
|
||||
jdmerge.c
|
||||
jdpostct.c
|
||||
jdsample.c
|
||||
jdtrans.c
|
||||
jerror.c
|
||||
jfdctflt.c
|
||||
jfdctfst.c
|
||||
jfdctint.c
|
||||
jidctflt.c
|
||||
jidctfst.c
|
||||
jidctint.c
|
||||
jmemansi.c
|
||||
jmemmgr.c
|
||||
jquant1.c
|
||||
jquant2.c
|
||||
jutils.c
|
||||
jconfig.h
|
||||
jdct.h
|
||||
jerror.h
|
||||
jinclude.h
|
||||
jmemsys.h
|
||||
jmorecfg.h
|
||||
jpegint.h
|
||||
jpeglib.h
|
||||
jversion.h
|
||||
)
|
||||
|
||||
target_include_directories(jpeg PUBLIC .)
|
||||
add_library(JPEG::JPEG ALIAS jpeg)
|
||||
322
3rdparty/libjpeg/README
vendored
322
3rdparty/libjpeg/README
vendored
@@ -1,322 +0,0 @@
|
||||
The Independent JPEG Group's JPEG software
|
||||
==========================================
|
||||
|
||||
README for release 7 of 27-Jun-2009
|
||||
===================================
|
||||
|
||||
This distribution contains the seventh public release of the Independent JPEG
|
||||
Group's free JPEG software. You are welcome to redistribute this software and
|
||||
to use it for any purpose, subject to the conditions under LEGAL ISSUES, below.
|
||||
|
||||
This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone,
|
||||
Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson,
|
||||
Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers,
|
||||
and other members of the Independent JPEG Group.
|
||||
|
||||
IJG is not affiliated with the official ISO JPEG standards committee.
|
||||
|
||||
|
||||
DOCUMENTATION ROADMAP
|
||||
=====================
|
||||
|
||||
This file contains the following sections:
|
||||
|
||||
OVERVIEW General description of JPEG and the IJG software.
|
||||
LEGAL ISSUES Copyright, lack of warranty, terms of distribution.
|
||||
REFERENCES Where to learn more about JPEG.
|
||||
ARCHIVE LOCATIONS Where to find newer versions of this software.
|
||||
ACKNOWLEDGMENTS Special thanks.
|
||||
FILE FORMAT WARS Software *not* to get.
|
||||
TO DO Plans for future IJG releases.
|
||||
|
||||
Other documentation files in the distribution are:
|
||||
|
||||
User documentation:
|
||||
install.txt How to configure and install the IJG software.
|
||||
usage.txt Usage instructions for cjpeg, djpeg, jpegtran,
|
||||
rdjpgcom, and wrjpgcom.
|
||||
*.1 Unix-style man pages for programs (same info as usage.txt).
|
||||
wizard.txt Advanced usage instructions for JPEG wizards only.
|
||||
change.log Version-to-version change highlights.
|
||||
Programmer and internal documentation:
|
||||
libjpeg.txt How to use the JPEG library in your own programs.
|
||||
example.c Sample code for calling the JPEG library.
|
||||
structure.txt Overview of the JPEG library's internal structure.
|
||||
filelist.txt Road map of IJG files.
|
||||
coderules.txt Coding style rules --- please read if you contribute code.
|
||||
|
||||
Please read at least the files install.txt and usage.txt. Some information
|
||||
can also be found in the JPEG FAQ (Frequently Asked Questions) article. See
|
||||
ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.
|
||||
|
||||
If you want to understand how the JPEG code works, we suggest reading one or
|
||||
more of the REFERENCES, then looking at the documentation files (in roughly
|
||||
the order listed) before diving into the code.
|
||||
|
||||
|
||||
OVERVIEW
|
||||
========
|
||||
|
||||
This package contains C software to implement JPEG image encoding, decoding,
|
||||
and transcoding. JPEG (pronounced "jay-peg") is a standardized compression
|
||||
method for full-color and gray-scale images.
|
||||
|
||||
This software implements JPEG baseline, extended-sequential, and progressive
|
||||
compression processes. Provision is made for supporting all variants of these
|
||||
processes, although some uncommon parameter settings aren't implemented yet.
|
||||
We have made no provision for supporting the hierarchical or lossless
|
||||
processes defined in the standard.
|
||||
|
||||
We provide a set of library routines for reading and writing JPEG image files,
|
||||
plus two sample applications "cjpeg" and "djpeg", which use the library to
|
||||
perform conversion between JPEG and some other popular image file formats.
|
||||
The library is intended to be reused in other applications.
|
||||
|
||||
In order to support file conversion and viewing software, we have included
|
||||
considerable functionality beyond the bare JPEG coding/decoding capability;
|
||||
for example, the color quantization modules are not strictly part of JPEG
|
||||
decoding, but they are essential for output to colormapped file formats or
|
||||
colormapped displays. These extra functions can be compiled out of the
|
||||
library if not required for a particular application.
|
||||
|
||||
We have also included "jpegtran", a utility for lossless transcoding between
|
||||
different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple
|
||||
applications for inserting and extracting textual comments in JFIF files.
|
||||
|
||||
The emphasis in designing this software has been on achieving portability and
|
||||
flexibility, while also making it fast enough to be useful. In particular,
|
||||
the software is not intended to be read as a tutorial on JPEG. (See the
|
||||
REFERENCES section for introductory material.) Rather, it is intended to
|
||||
be reliable, portable, industrial-strength code. We do not claim to have
|
||||
achieved that goal in every aspect of the software, but we strive for it.
|
||||
|
||||
We welcome the use of this software as a component of commercial products.
|
||||
No royalty is required, but we do ask for an acknowledgement in product
|
||||
documentation, as described under LEGAL ISSUES.
|
||||
|
||||
|
||||
LEGAL ISSUES
|
||||
============
|
||||
|
||||
In plain English:
|
||||
|
||||
1. We don't promise that this software works. (But if you find any bugs,
|
||||
please let us know!)
|
||||
2. You can use this software for whatever you want. You don't have to pay us.
|
||||
3. You may not pretend that you wrote this software. If you use it in a
|
||||
program, you must acknowledge somewhere in your documentation that
|
||||
you've used the IJG code.
|
||||
|
||||
In legalese:
|
||||
|
||||
The authors make NO WARRANTY or representation, either express or implied,
|
||||
with respect to this software, its quality, accuracy, merchantability, or
|
||||
fitness for a particular purpose. This software is provided "AS IS", and you,
|
||||
its user, assume the entire risk as to its quality and accuracy.
|
||||
|
||||
This software is copyright (C) 1991-2009, Thomas G. Lane, Guido Vollbeding.
|
||||
All Rights Reserved except as specified below.
|
||||
|
||||
Permission is hereby granted to use, copy, modify, and distribute this
|
||||
software (or portions thereof) for any purpose, without fee, subject to these
|
||||
conditions:
|
||||
(1) If any part of the source code for this software is distributed, then this
|
||||
README file must be included, with this copyright and no-warranty notice
|
||||
unaltered; and any additions, deletions, or changes to the original files
|
||||
must be clearly indicated in accompanying documentation.
|
||||
(2) If only executable code is distributed, then the accompanying
|
||||
documentation must state that "this software is based in part on the work of
|
||||
the Independent JPEG Group".
|
||||
(3) Permission for use of this software is granted only if the user accepts
|
||||
full responsibility for any undesirable consequences; the authors accept
|
||||
NO LIABILITY for damages of any kind.
|
||||
|
||||
These conditions apply to any software derived from or based on the IJG code,
|
||||
not just to the unmodified library. If you use our work, you ought to
|
||||
acknowledge us.
|
||||
|
||||
Permission is NOT granted for the use of any IJG author's name or company name
|
||||
in advertising or publicity relating to this software or products derived from
|
||||
it. This software may be referred to only as "the Independent JPEG Group's
|
||||
software".
|
||||
|
||||
We specifically permit and encourage the use of this software as the basis of
|
||||
commercial products, provided that all warranty or liability claims are
|
||||
assumed by the product vendor.
|
||||
|
||||
|
||||
ansi2knr.c is included in this distribution by permission of L. Peter Deutsch,
|
||||
sole proprietor of its copyright holder, Aladdin Enterprises of Menlo Park, CA.
|
||||
ansi2knr.c is NOT covered by the above copyright and conditions, but instead
|
||||
by the usual distribution terms of the Free Software Foundation; principally,
|
||||
that you must include source code if you redistribute it. (See the file
|
||||
ansi2knr.c for full details.) However, since ansi2knr.c is not needed as part
|
||||
of any program generated from the IJG code, this does not limit you more than
|
||||
the foregoing paragraphs do.
|
||||
|
||||
The Unix configuration script "configure" was produced with GNU Autoconf.
|
||||
It is copyright by the Free Software Foundation but is freely distributable.
|
||||
The same holds for its supporting scripts (config.guess, config.sub,
|
||||
ltmain.sh). Another support script, install-sh, is copyright by X Consortium
|
||||
but is also freely distributable.
|
||||
|
||||
The IJG distribution formerly included code to read and write GIF files.
|
||||
To avoid entanglement with the Unisys LZW patent, GIF reading support has
|
||||
been removed altogether, and the GIF writer has been simplified to produce
|
||||
"uncompressed GIFs". This technique does not use the LZW algorithm; the
|
||||
resulting GIF files are larger than usual, but are readable by all standard
|
||||
GIF decoders.
|
||||
|
||||
We are required to state that
|
||||
"The Graphics Interchange Format(c) is the Copyright property of
|
||||
CompuServe Incorporated. GIF(sm) is a Service Mark property of
|
||||
CompuServe Incorporated."
|
||||
|
||||
|
||||
REFERENCES
|
||||
==========
|
||||
|
||||
We recommend reading one or more of these references before trying to
|
||||
understand the innards of the JPEG software.
|
||||
|
||||
The best short technical introduction to the JPEG compression algorithm is
|
||||
Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
|
||||
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
|
||||
(Adjacent articles in that issue discuss MPEG motion picture compression,
|
||||
applications of JPEG, and related topics.) If you don't have the CACM issue
|
||||
handy, a PostScript file containing a revised version of Wallace's article is
|
||||
available at http://www.ijg.org/files/wallace.ps.gz. The file (actually
|
||||
a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
|
||||
omits the sample images that appeared in CACM, but it includes corrections
|
||||
and some added material. Note: the Wallace article is copyright ACM and IEEE,
|
||||
and it may not be used for commercial purposes.
|
||||
|
||||
A somewhat less technical, more leisurely introduction to JPEG can be found in
|
||||
"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
|
||||
M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides
|
||||
good explanations and example C code for a multitude of compression methods
|
||||
including JPEG. It is an excellent source if you are comfortable reading C
|
||||
code but don't know much about data compression in general. The book's JPEG
|
||||
sample code is far from industrial-strength, but when you are ready to look
|
||||
at a full implementation, you've got one here...
|
||||
|
||||
The best currently available description of JPEG is the textbook "JPEG Still
|
||||
Image Data Compression Standard" by William B. Pennebaker and Joan L.
|
||||
Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.
|
||||
Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG
|
||||
standards (DIS 10918-1 and draft DIS 10918-2).
|
||||
Although this is by far the most detailed and comprehensive exposition of
|
||||
JPEG publicly available, we point out that it is still missing an explanation
|
||||
of the most essential properties and algorithms of the underlying DCT
|
||||
technology.
|
||||
If you think that you know about DCT-based JPEG after reading this book,
|
||||
then you are in delusion. The real fundamentals and corresponding potential
|
||||
of DCT-based JPEG are not publicly known so far, and that is the reason for
|
||||
all the mistaken developments taking place in the image coding domain.
|
||||
|
||||
The original JPEG standard is divided into two parts, Part 1 being the actual
|
||||
specification, while Part 2 covers compliance testing methods. Part 1 is
|
||||
titled "Digital Compression and Coding of Continuous-tone Still Images,
|
||||
Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
|
||||
10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of
|
||||
Continuous-tone Still Images, Part 2: Compliance testing" and has document
|
||||
numbers ISO/IEC IS 10918-2, ITU-T T.83.
|
||||
|
||||
The JPEG standard does not specify all details of an interchangeable file
|
||||
format. For the omitted details we follow the "JFIF" conventions, revision
|
||||
1.02. A copy of the JFIF spec is available from:
|
||||
Literature Department
|
||||
C-Cube Microsystems, Inc.
|
||||
1778 McCarthy Blvd.
|
||||
Milpitas, CA 95035
|
||||
phone (408) 944-6300, fax (408) 944-6314
|
||||
A PostScript version of this document is available at
|
||||
http://www.ijg.org/files/jfif.ps.gz. There is also a plain text version at
|
||||
http://www.ijg.org/files/jfif.txt.gz, but it is missing the figures.
|
||||
|
||||
The TIFF 6.0 file format specification can be obtained by FTP from
|
||||
ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme
|
||||
found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems.
|
||||
IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6).
|
||||
Instead, we recommend the JPEG design proposed by TIFF Technical Note #2
|
||||
(Compression tag 7). Copies of this Note can be obtained from
|
||||
http://www.ijg.org/files/. It is expected that the next revision
|
||||
of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
|
||||
Although IJG's own code does not support TIFF/JPEG, the free libtiff library
|
||||
uses our library to implement TIFF/JPEG per the Note.
|
||||
|
||||
|
||||
ARCHIVE LOCATIONS
|
||||
=================
|
||||
|
||||
The "official" archive site for this software is www.ijg.org.
|
||||
The most recent released version can always be found there in
|
||||
directory "files". This particular version will be archived as
|
||||
http://www.ijg.org/files/jpegsrc.v7.tar.gz, and in Windows-compatible
|
||||
"zip" archive format as http://www.ijg.org/files/jpegsr7.zip.
|
||||
|
||||
The JPEG FAQ (Frequently Asked Questions) article is a source of some
|
||||
general information about JPEG.
|
||||
It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/
|
||||
and other news.answers archive sites, including the official news.answers
|
||||
archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.
|
||||
If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu
|
||||
with body
|
||||
send usenet/news.answers/jpeg-faq/part1
|
||||
send usenet/news.answers/jpeg-faq/part2
|
||||
|
||||
|
||||
ACKNOWLEDGMENTS
|
||||
===============
|
||||
|
||||
Thank to Juergen Bruder of the Georg-Cantor-Organization at the
|
||||
Martin-Luther-University Halle for providing me with a copy of the common
|
||||
DCT algorithm article, only to find out that I had come to the same result
|
||||
in a more direct and comprehensible way with a more generative approach.
|
||||
|
||||
Thank to Istvan Sebestyen and Joan L. Mitchell for inviting me to the
|
||||
ITU JPEG (Study Group 16) meeting in Geneva, Switzerland.
|
||||
|
||||
Thank to Thomas Wiegand and Gary Sullivan for inviting me to the
|
||||
Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland.
|
||||
|
||||
Thank to John Korejwa and Massimo Ballerini for inviting me to
|
||||
fruitful consultations in Boston, MA and Milan, Italy.
|
||||
|
||||
Thank to Hendrik Elstner, Roland Fassauer, and Simone Zuck for
|
||||
corresponding business development.
|
||||
|
||||
Thank to Nico Zschach and Dirk Stelling of the technical support team
|
||||
at the Digital Images company in Halle for providing me with extra
|
||||
equipment for configuration tests.
|
||||
|
||||
Thank to Richard F. Lyon (then of Foveon Inc.) for fruitful
|
||||
communication about JPEG configuration in Sigma Photo Pro software.
|
||||
|
||||
Last but not least special thank to Thomas G. Lane for the original
|
||||
design and development of this singular software package.
|
||||
|
||||
|
||||
FILE FORMAT WARS
|
||||
================
|
||||
|
||||
The ISO JPEG standards committee actually promotes different formats like
|
||||
JPEG-2000 or JPEG-XR which are incompatible with original DCT-based JPEG
|
||||
and which are based on faulty technologies. IJG therefore does not and
|
||||
will not support such momentary mistakes (see REFERENCES).
|
||||
We have little or no sympathy for the promotion of these formats. Indeed,
|
||||
one of the original reasons for developing this free software was to help
|
||||
force convergence on common, interoperable format standards for JPEG files.
|
||||
Don't use an incompatible file format!
|
||||
(In any case, our decoder will remain capable of reading existing JPEG
|
||||
image files indefinitely.)
|
||||
|
||||
|
||||
TO DO
|
||||
=====
|
||||
|
||||
v7 is basically just a necessary interim release, paving the way for a
|
||||
major breakthrough in image coding technology with the next v8 package
|
||||
which is scheduled for release in the year 2010.
|
||||
|
||||
Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org.
|
||||
270
3rdparty/libjpeg/change.log
vendored
270
3rdparty/libjpeg/change.log
vendored
@@ -1,270 +0,0 @@
|
||||
CHANGE LOG for Independent JPEG Group's JPEG software
|
||||
|
||||
|
||||
Version 7 27-Jun-2009
|
||||
----------------------
|
||||
|
||||
New scaled DCTs implemented.
|
||||
djpeg now supports scalings N/8 with all N from 1 to 16.
|
||||
cjpeg now supports scalings 8/N with all N from 1 to 16.
|
||||
Scaled DCTs with size larger than 8 are now also used for resolving the
|
||||
common 2x2 chroma subsampling case without additional spatial resampling.
|
||||
Separate spatial resampling for those kind of files is now only necessary
|
||||
for N>8 scaling cases.
|
||||
Furthermore, separate scaled DCT functions are provided for direct resolving
|
||||
of the common asymmetric subsampling cases (2x1 and 1x2) without additional
|
||||
spatial resampling.
|
||||
|
||||
cjpeg -quality option has been extended for support of separate quality
|
||||
settings for luminance and chrominance (or in general, for every provided
|
||||
quantization table slot).
|
||||
New API function jpeg_default_qtables() and q_scale_factor array in library.
|
||||
|
||||
Added -nosmooth option to cjpeg, complementary to djpeg.
|
||||
New variable "do_fancy_downsampling" in library, complement to fancy
|
||||
upsampling. Fancy upsampling now uses direct DCT scaling with sizes
|
||||
larger than 8. The old method is not reversible and has been removed.
|
||||
|
||||
Support arithmetic entropy encoding and decoding.
|
||||
Added files jaricom.c, jcarith.c, jdarith.c.
|
||||
|
||||
Straighten the file structure:
|
||||
Removed files jidctred.c, jcphuff.c, jchuff.h, jdphuff.c, jdhuff.h.
|
||||
|
||||
jpegtran has a new "lossless" cropping feature.
|
||||
|
||||
Implement -perfect option in jpegtran, new API function
|
||||
jtransform_perfect_transform() in transupp. (DP 204_perfect.dpatch)
|
||||
|
||||
Better error messages for jpegtran fopen failure.
|
||||
(DP 203_jpegtran_errmsg.dpatch)
|
||||
|
||||
Fix byte order issue with 16bit PPM/PGM files in rdppm.c/wrppm.c:
|
||||
according to Netpbm, the de facto standard implementation of the PNM formats,
|
||||
the most significant byte is first. (DP 203_rdppm.dpatch)
|
||||
|
||||
Add -raw option to rdjpgcom not to mangle the output.
|
||||
(DP 205_rdjpgcom_raw.dpatch)
|
||||
|
||||
Make rdjpgcom locale aware. (DP 201_rdjpgcom_locale.dpatch)
|
||||
|
||||
Add extern "C" to jpeglib.h.
|
||||
This avoids the need to put extern "C" { ... } around #include "jpeglib.h"
|
||||
in your C++ application. Defining the symbol DONT_USE_EXTERN_C in the
|
||||
configuration prevents this. (DP 202_jpeglib.h_c++.dpatch)
|
||||
|
||||
|
||||
Version 6b 27-Mar-1998
|
||||
-----------------------
|
||||
|
||||
jpegtran has new features for lossless image transformations (rotation
|
||||
and flipping) as well as "lossless" reduction to grayscale.
|
||||
|
||||
jpegtran now copies comments by default; it has a -copy switch to enable
|
||||
copying all APPn blocks as well, or to suppress comments. (Formerly it
|
||||
always suppressed comments and APPn blocks.) jpegtran now also preserves
|
||||
JFIF version and resolution information.
|
||||
|
||||
New decompressor library feature: COM and APPn markers found in the input
|
||||
file can be saved in memory for later use by the application. (Before,
|
||||
you had to code this up yourself with a custom marker processor.)
|
||||
|
||||
There is an unused field "void * client_data" now in compress and decompress
|
||||
parameter structs; this may be useful in some applications.
|
||||
|
||||
JFIF version number information is now saved by the decoder and accepted by
|
||||
the encoder. jpegtran uses this to copy the source file's version number,
|
||||
to ensure "jpegtran -copy all" won't create bogus files that contain JFXX
|
||||
extensions but claim to be version 1.01. Applications that generate their
|
||||
own JFXX extension markers also (finally) have a supported way to cause the
|
||||
encoder to emit JFIF version number 1.02.
|
||||
|
||||
djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather
|
||||
than as unknown APP0 markers.
|
||||
|
||||
In -verbose mode, djpeg and rdjpgcom will try to print the contents of
|
||||
APP12 markers as text. Some digital cameras store useful text information
|
||||
in APP12 markers.
|
||||
|
||||
Handling of truncated data streams is more robust: blocks beyond the one in
|
||||
which the error occurs will be output as uniform gray, or left unchanged
|
||||
if decoding a progressive JPEG. The appearance no longer depends on the
|
||||
Huffman tables being used.
|
||||
|
||||
Huffman tables are checked for validity much more carefully than before.
|
||||
|
||||
To avoid the Unisys LZW patent, djpeg's GIF output capability has been
|
||||
changed to produce "uncompressed GIFs", and cjpeg's GIF input capability
|
||||
has been removed altogether. We're not happy about it either, but there
|
||||
seems to be no good alternative.
|
||||
|
||||
The configure script now supports building libjpeg as a shared library
|
||||
on many flavors of Unix (all the ones that GNU libtool knows how to
|
||||
build shared libraries for). Use "./configure --enable-shared" to
|
||||
try this out.
|
||||
|
||||
New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio.
|
||||
Also, a jconfig file and a build script for Metrowerks CodeWarrior
|
||||
on Apple Macintosh. makefile.dj has been updated for DJGPP v2, and there
|
||||
are miscellaneous other minor improvements in the makefiles.
|
||||
|
||||
jmemmac.c now knows how to create temporary files following Mac System 7
|
||||
conventions.
|
||||
|
||||
djpeg's -map switch is now able to read raw-format PPM files reliably.
|
||||
|
||||
cjpeg -progressive -restart no longer generates any unnecessary DRI markers.
|
||||
|
||||
Multiple calls to jpeg_simple_progression for a single JPEG object
|
||||
no longer leak memory.
|
||||
|
||||
|
||||
Version 6a 7-Feb-96
|
||||
--------------------
|
||||
|
||||
Library initialization sequence modified to detect version mismatches
|
||||
and struct field packing mismatches between library and calling application.
|
||||
This change requires applications to be recompiled, but does not require
|
||||
any application source code change.
|
||||
|
||||
All routine declarations changed to the style "GLOBAL(type) name ...",
|
||||
that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the
|
||||
routine's return type as an argument. This makes it possible to add
|
||||
Microsoft-style linkage keywords to all the routines by changing just
|
||||
these macros. Note that any application code that was using these macros
|
||||
will have to be changed.
|
||||
|
||||
DCT coefficient quantization tables are now stored in normal array order
|
||||
rather than zigzag order. Application code that calls jpeg_add_quant_table,
|
||||
or otherwise manipulates quantization tables directly, will need to be
|
||||
changed. If you need to make such code work with either older or newer
|
||||
versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is
|
||||
recommended.
|
||||
|
||||
djpeg's trace capability now dumps DQT tables in natural order, not zigzag
|
||||
order. This allows the trace output to be made into a "-qtables" file
|
||||
more easily.
|
||||
|
||||
New system-dependent memory manager module for use on Apple Macintosh.
|
||||
|
||||
Fix bug in cjpeg's -smooth option: last one or two scanlines would be
|
||||
duplicates of the prior line unless the image height mod 16 was 1 or 2.
|
||||
|
||||
Repair minor problems in VMS, BCC, MC6 makefiles.
|
||||
|
||||
New configure script based on latest GNU Autoconf.
|
||||
|
||||
Correct the list of include files needed by MetroWerks C for ccommand().
|
||||
|
||||
Numerous small documentation updates.
|
||||
|
||||
|
||||
Version 6 2-Aug-95
|
||||
-------------------
|
||||
|
||||
Progressive JPEG support: library can read and write full progressive JPEG
|
||||
files. A "buffered image" mode supports incremental decoding for on-the-fly
|
||||
display of progressive images. Simply recompiling an existing IJG-v5-based
|
||||
decoder with v6 should allow it to read progressive files, though of course
|
||||
without any special progressive display.
|
||||
|
||||
New "jpegtran" application performs lossless transcoding between different
|
||||
JPEG formats; primarily, it can be used to convert baseline to progressive
|
||||
JPEG and vice versa. In support of jpegtran, the library now allows lossless
|
||||
reading and writing of JPEG files as DCT coefficient arrays. This ability
|
||||
may be of use in other applications.
|
||||
|
||||
Notes for programmers:
|
||||
* We changed jpeg_start_decompress() to be able to suspend; this makes all
|
||||
decoding modes available to suspending-input applications. However,
|
||||
existing applications that use suspending input will need to be changed
|
||||
to check the return value from jpeg_start_decompress(). You don't need to
|
||||
do anything if you don't use a suspending data source.
|
||||
* We changed the interface to the virtual array routines: access_virt_array
|
||||
routines now take a count of the number of rows to access this time. The
|
||||
last parameter to request_virt_array routines is now interpreted as the
|
||||
maximum number of rows that may be accessed at once, but not necessarily
|
||||
the height of every access.
|
||||
|
||||
|
||||
Version 5b 15-Mar-95
|
||||
---------------------
|
||||
|
||||
Correct bugs with grayscale images having v_samp_factor > 1.
|
||||
|
||||
jpeg_write_raw_data() now supports output suspension.
|
||||
|
||||
Correct bugs in "configure" script for case of compiling in
|
||||
a directory other than the one containing the source files.
|
||||
|
||||
Repair bug in jquant1.c: sometimes didn't use as many colors as it could.
|
||||
|
||||
Borland C makefile and jconfig file work under either MS-DOS or OS/2.
|
||||
|
||||
Miscellaneous improvements to documentation.
|
||||
|
||||
|
||||
Version 5a 7-Dec-94
|
||||
--------------------
|
||||
|
||||
Changed color conversion roundoff behavior so that grayscale values are
|
||||
represented exactly. (This causes test image files to change.)
|
||||
|
||||
Make ordered dither use 16x16 instead of 4x4 pattern for a small quality
|
||||
improvement.
|
||||
|
||||
New configure script based on latest GNU Autoconf.
|
||||
Fix configure script to handle CFLAGS correctly.
|
||||
Rename *.auto files to *.cfg, so that configure script still works if
|
||||
file names have been truncated for DOS.
|
||||
|
||||
Fix bug in rdbmp.c: didn't allow for extra data between header and image.
|
||||
|
||||
Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data.
|
||||
|
||||
Fix several bugs in rdrle.c.
|
||||
|
||||
NEED_SHORT_EXTERNAL_NAMES option was broken.
|
||||
|
||||
Revise jerror.h/jerror.c for more flexibility in message table.
|
||||
|
||||
Repair oversight in jmemname.c NO_MKTEMP case: file could be there
|
||||
but unreadable.
|
||||
|
||||
|
||||
Version 5 24-Sep-94
|
||||
--------------------
|
||||
|
||||
Version 5 represents a nearly complete redesign and rewrite of the IJG
|
||||
software. Major user-visible changes include:
|
||||
* Automatic configuration simplifies installation for most Unix systems.
|
||||
* A range of speed vs. image quality tradeoffs are supported.
|
||||
This includes resizing of an image during decompression: scaling down
|
||||
by a factor of 1/2, 1/4, or 1/8 is handled very efficiently.
|
||||
* New programs rdjpgcom and wrjpgcom allow insertion and extraction
|
||||
of text comments in a JPEG file.
|
||||
|
||||
The application programmer's interface to the library has changed completely.
|
||||
Notable improvements include:
|
||||
* We have eliminated the use of callback routines for handling the
|
||||
uncompressed image data. The application now sees the library as a
|
||||
set of routines that it calls to read or write image data on a
|
||||
scanline-by-scanline basis.
|
||||
* The application image data is represented in a conventional interleaved-
|
||||
pixel format, rather than as a separate array for each color channel.
|
||||
This can save a copying step in many programs.
|
||||
* The handling of compressed data has been cleaned up: the application can
|
||||
supply routines to source or sink the compressed data. It is possible to
|
||||
suspend processing on source/sink buffer overrun, although this is not
|
||||
supported in all operating modes.
|
||||
* All static state has been eliminated from the library, so that multiple
|
||||
instances of compression or decompression can be active concurrently.
|
||||
* JPEG abbreviated datastream formats are supported, ie, quantization and
|
||||
Huffman tables can be stored separately from the image data.
|
||||
* And not only that, but the documentation of the library has improved
|
||||
considerably!
|
||||
|
||||
|
||||
The last widely used release before the version 5 rewrite was version 4A of
|
||||
18-Feb-93. Change logs before that point have been discarded, since they
|
||||
are not of much interest after the rewrite.
|
||||
215
3rdparty/libjpeg/filelist.txt
vendored
215
3rdparty/libjpeg/filelist.txt
vendored
@@ -1,215 +0,0 @@
|
||||
IJG JPEG LIBRARY: FILE LIST
|
||||
|
||||
Copyright (C) 1994-2009, Thomas G. Lane, Guido Vollbeding.
|
||||
This file is part of the Independent JPEG Group's software.
|
||||
For conditions of distribution and use, see the accompanying README file.
|
||||
|
||||
|
||||
Here is a road map to the files in the IJG JPEG distribution. The
|
||||
distribution includes the JPEG library proper, plus two application
|
||||
programs ("cjpeg" and "djpeg") which use the library to convert JPEG
|
||||
files to and from some other popular image formats. A third application
|
||||
"jpegtran" uses the library to do lossless conversion between different
|
||||
variants of JPEG. There are also two stand-alone applications,
|
||||
"rdjpgcom" and "wrjpgcom".
|
||||
|
||||
|
||||
THE JPEG LIBRARY
|
||||
================
|
||||
|
||||
Include files:
|
||||
|
||||
jpeglib.h JPEG library's exported data and function declarations.
|
||||
jconfig.h Configuration declarations. Note: this file is not present
|
||||
in the distribution; it is generated during installation.
|
||||
jmorecfg.h Additional configuration declarations; need not be changed
|
||||
for a standard installation.
|
||||
jerror.h Declares JPEG library's error and trace message codes.
|
||||
jinclude.h Central include file used by all IJG .c files to reference
|
||||
system include files.
|
||||
jpegint.h JPEG library's internal data structures.
|
||||
jdct.h Private declarations for forward & reverse DCT subsystems.
|
||||
jmemsys.h Private declarations for memory management subsystem.
|
||||
jversion.h Version information.
|
||||
|
||||
Applications using the library should include jpeglib.h (which in turn
|
||||
includes jconfig.h and jmorecfg.h). Optionally, jerror.h may be included
|
||||
if the application needs to reference individual JPEG error codes. The
|
||||
other include files are intended for internal use and would not normally
|
||||
be included by an application program. (cjpeg/djpeg/etc do use jinclude.h,
|
||||
since its function is to improve portability of the whole IJG distribution.
|
||||
Most other applications will directly include the system include files they
|
||||
want, and hence won't need jinclude.h.)
|
||||
|
||||
|
||||
C source code files:
|
||||
|
||||
These files contain most of the functions intended to be called directly by
|
||||
an application program:
|
||||
|
||||
jcapimin.c Application program interface: core routines for compression.
|
||||
jcapistd.c Application program interface: standard compression.
|
||||
jdapimin.c Application program interface: core routines for decompression.
|
||||
jdapistd.c Application program interface: standard decompression.
|
||||
jcomapi.c Application program interface routines common to compression
|
||||
and decompression.
|
||||
jcparam.c Compression parameter setting helper routines.
|
||||
jctrans.c API and library routines for transcoding compression.
|
||||
jdtrans.c API and library routines for transcoding decompression.
|
||||
|
||||
Compression side of the library:
|
||||
|
||||
jcinit.c Initialization: determines which other modules to use.
|
||||
jcmaster.c Master control: setup and inter-pass sequencing logic.
|
||||
jcmainct.c Main buffer controller (preprocessor => JPEG compressor).
|
||||
jcprepct.c Preprocessor buffer controller.
|
||||
jccoefct.c Buffer controller for DCT coefficient buffer.
|
||||
jccolor.c Color space conversion.
|
||||
jcsample.c Downsampling.
|
||||
jcdctmgr.c DCT manager (DCT implementation selection & control).
|
||||
jfdctint.c Forward DCT using slow-but-accurate integer method.
|
||||
jfdctfst.c Forward DCT using faster, less accurate integer method.
|
||||
jfdctflt.c Forward DCT using floating-point arithmetic.
|
||||
jchuff.c Huffman entropy coding.
|
||||
jcarith.c Arithmetic entropy coding.
|
||||
jcmarker.c JPEG marker writing.
|
||||
jdatadst.c Data destination manager for stdio output.
|
||||
|
||||
Decompression side of the library:
|
||||
|
||||
jdmaster.c Master control: determines which other modules to use.
|
||||
jdinput.c Input controller: controls input processing modules.
|
||||
jdmainct.c Main buffer controller (JPEG decompressor => postprocessor).
|
||||
jdcoefct.c Buffer controller for DCT coefficient buffer.
|
||||
jdpostct.c Postprocessor buffer controller.
|
||||
jdmarker.c JPEG marker reading.
|
||||
jdhuff.c Huffman entropy decoding.
|
||||
jdarith.c Arithmetic entropy decoding.
|
||||
jddctmgr.c IDCT manager (IDCT implementation selection & control).
|
||||
jidctint.c Inverse DCT using slow-but-accurate integer method.
|
||||
jidctfst.c Inverse DCT using faster, less accurate integer method.
|
||||
jidctflt.c Inverse DCT using floating-point arithmetic.
|
||||
jdsample.c Upsampling.
|
||||
jdcolor.c Color space conversion.
|
||||
jdmerge.c Merged upsampling/color conversion (faster, lower quality).
|
||||
jquant1.c One-pass color quantization using a fixed-spacing colormap.
|
||||
jquant2.c Two-pass color quantization using a custom-generated colormap.
|
||||
Also handles one-pass quantization to an externally given map.
|
||||
jdatasrc.c Data source manager for stdio input.
|
||||
|
||||
Support files for both compression and decompression:
|
||||
|
||||
jaricom.c Tables for common use in arithmetic entropy encoding and
|
||||
decoding routines.
|
||||
jerror.c Standard error handling routines (application replaceable).
|
||||
jmemmgr.c System-independent (more or less) memory management code.
|
||||
jutils.c Miscellaneous utility routines.
|
||||
|
||||
jmemmgr.c relies on a system-dependent memory management module. The IJG
|
||||
distribution includes the following implementations of the system-dependent
|
||||
module:
|
||||
|
||||
jmemnobs.c "No backing store": assumes adequate virtual memory exists.
|
||||
jmemansi.c Makes temporary files with ANSI-standard routine tmpfile().
|
||||
jmemname.c Makes temporary files with program-generated file names.
|
||||
jmemdos.c Custom implementation for MS-DOS (16-bit environment only):
|
||||
can use extended and expanded memory as well as temp files.
|
||||
jmemmac.c Custom implementation for Apple Macintosh.
|
||||
|
||||
Exactly one of the system-dependent modules should be configured into an
|
||||
installed JPEG library (see install.txt for hints about which one to use).
|
||||
On unusual systems you may find it worthwhile to make a special
|
||||
system-dependent memory manager.
|
||||
|
||||
|
||||
Non-C source code files:
|
||||
|
||||
jmemdosa.asm 80x86 assembly code support for jmemdos.c; used only in
|
||||
MS-DOS-specific configurations of the JPEG library.
|
||||
|
||||
|
||||
CJPEG/DJPEG/JPEGTRAN
|
||||
====================
|
||||
|
||||
Include files:
|
||||
|
||||
cdjpeg.h Declarations shared by cjpeg/djpeg/jpegtran modules.
|
||||
cderror.h Additional error and trace message codes for cjpeg et al.
|
||||
transupp.h Declarations for jpegtran support routines in transupp.c.
|
||||
|
||||
C source code files:
|
||||
|
||||
cjpeg.c Main program for cjpeg.
|
||||
djpeg.c Main program for djpeg.
|
||||
jpegtran.c Main program for jpegtran.
|
||||
cdjpeg.c Utility routines used by all three programs.
|
||||
rdcolmap.c Code to read a colormap file for djpeg's "-map" switch.
|
||||
rdswitch.c Code to process some of cjpeg's more complex switches.
|
||||
Also used by jpegtran.
|
||||
transupp.c Support code for jpegtran: lossless image manipulations.
|
||||
|
||||
Image file reader modules for cjpeg:
|
||||
|
||||
rdbmp.c BMP file input.
|
||||
rdgif.c GIF file input (now just a stub).
|
||||
rdppm.c PPM/PGM file input.
|
||||
rdrle.c Utah RLE file input.
|
||||
rdtarga.c Targa file input.
|
||||
|
||||
Image file writer modules for djpeg:
|
||||
|
||||
wrbmp.c BMP file output.
|
||||
wrgif.c GIF file output (a mere shadow of its former self).
|
||||
wrppm.c PPM/PGM file output.
|
||||
wrrle.c Utah RLE file output.
|
||||
wrtarga.c Targa file output.
|
||||
|
||||
|
||||
RDJPGCOM/WRJPGCOM
|
||||
=================
|
||||
|
||||
C source code files:
|
||||
|
||||
rdjpgcom.c Stand-alone rdjpgcom application.
|
||||
wrjpgcom.c Stand-alone wrjpgcom application.
|
||||
|
||||
These programs do not depend on the IJG library. They do use
|
||||
jconfig.h and jinclude.h, only to improve portability.
|
||||
|
||||
|
||||
ADDITIONAL FILES
|
||||
================
|
||||
|
||||
Documentation (see README for a guide to the documentation files):
|
||||
|
||||
README Master documentation file.
|
||||
*.txt Other documentation files.
|
||||
*.1 Documentation in Unix man page format.
|
||||
change.log Version-to-version change highlights.
|
||||
example.c Sample code for calling JPEG library.
|
||||
|
||||
Configuration/installation files and programs (see install.txt for more info):
|
||||
|
||||
configure Unix shell script to perform automatic configuration.
|
||||
configure.ac Source file for use with Autoconf to generate configure.
|
||||
ltmain.sh Support scripts for configure (from GNU libtool).
|
||||
config.guess
|
||||
config.sub
|
||||
depcomp
|
||||
missing
|
||||
install-sh Install shell script for those Unix systems lacking one.
|
||||
Makefile.in Makefile input for configure.
|
||||
Makefile.am Source file for use with Automake to generate Makefile.in.
|
||||
ckconfig.c Program to generate jconfig.h on non-Unix systems.
|
||||
jconfig.txt Template for making jconfig.h by hand.
|
||||
mak*.* Sample makefiles for particular systems.
|
||||
jconfig.* Sample jconfig.h for particular systems.
|
||||
libjpeg.map Script to generate shared library with versioned symbols.
|
||||
aclocal.m4 M4 macro definitions for use with Autoconf.
|
||||
ansi2knr.c De-ANSIfier for pre-ANSI C compilers (courtesy of
|
||||
L. Peter Deutsch and Aladdin Enterprises).
|
||||
|
||||
Test files (see install.txt for test procedure):
|
||||
|
||||
test*.* Source and comparison files for confidence test.
|
||||
These are binary image files, NOT text files.
|
||||
148
3rdparty/libjpeg/jaricom.c
vendored
148
3rdparty/libjpeg/jaricom.c
vendored
@@ -1,148 +0,0 @@
|
||||
/*
|
||||
* jaricom.c
|
||||
*
|
||||
* Developed 1997 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains probability estimation tables for common use in
|
||||
* arithmetic entropy encoding and decoding routines.
|
||||
*
|
||||
* This data represents Table D.2 in the JPEG spec (ISO/IEC IS 10918-1
|
||||
* and CCITT Recommendation ITU-T T.81) and Table 24 in the JBIG spec
|
||||
* (ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82).
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
/* The following #define specifies the packing of the four components
|
||||
* into the compact INT32 representation.
|
||||
* Note that this formula must match the actual arithmetic encoder
|
||||
* and decoder implementation. The implementation has to be changed
|
||||
* if this formula is changed.
|
||||
* The current organization is leaned on Markus Kuhn's JBIG
|
||||
* implementation (jbig_tab.c).
|
||||
*/
|
||||
|
||||
#define V(a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b)
|
||||
|
||||
const INT32 jaritab[113] = {
|
||||
/*
|
||||
* Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS
|
||||
*/
|
||||
/* 0 */ V( 0x5a1d, 1, 1, 1 ),
|
||||
/* 1 */ V( 0x2586, 14, 2, 0 ),
|
||||
/* 2 */ V( 0x1114, 16, 3, 0 ),
|
||||
/* 3 */ V( 0x080b, 18, 4, 0 ),
|
||||
/* 4 */ V( 0x03d8, 20, 5, 0 ),
|
||||
/* 5 */ V( 0x01da, 23, 6, 0 ),
|
||||
/* 6 */ V( 0x00e5, 25, 7, 0 ),
|
||||
/* 7 */ V( 0x006f, 28, 8, 0 ),
|
||||
/* 8 */ V( 0x0036, 30, 9, 0 ),
|
||||
/* 9 */ V( 0x001a, 33, 10, 0 ),
|
||||
/* 10 */ V( 0x000d, 35, 11, 0 ),
|
||||
/* 11 */ V( 0x0006, 9, 12, 0 ),
|
||||
/* 12 */ V( 0x0003, 10, 13, 0 ),
|
||||
/* 13 */ V( 0x0001, 12, 13, 0 ),
|
||||
/* 14 */ V( 0x5a7f, 15, 15, 1 ),
|
||||
/* 15 */ V( 0x3f25, 36, 16, 0 ),
|
||||
/* 16 */ V( 0x2cf2, 38, 17, 0 ),
|
||||
/* 17 */ V( 0x207c, 39, 18, 0 ),
|
||||
/* 18 */ V( 0x17b9, 40, 19, 0 ),
|
||||
/* 19 */ V( 0x1182, 42, 20, 0 ),
|
||||
/* 20 */ V( 0x0cef, 43, 21, 0 ),
|
||||
/* 21 */ V( 0x09a1, 45, 22, 0 ),
|
||||
/* 22 */ V( 0x072f, 46, 23, 0 ),
|
||||
/* 23 */ V( 0x055c, 48, 24, 0 ),
|
||||
/* 24 */ V( 0x0406, 49, 25, 0 ),
|
||||
/* 25 */ V( 0x0303, 51, 26, 0 ),
|
||||
/* 26 */ V( 0x0240, 52, 27, 0 ),
|
||||
/* 27 */ V( 0x01b1, 54, 28, 0 ),
|
||||
/* 28 */ V( 0x0144, 56, 29, 0 ),
|
||||
/* 29 */ V( 0x00f5, 57, 30, 0 ),
|
||||
/* 30 */ V( 0x00b7, 59, 31, 0 ),
|
||||
/* 31 */ V( 0x008a, 60, 32, 0 ),
|
||||
/* 32 */ V( 0x0068, 62, 33, 0 ),
|
||||
/* 33 */ V( 0x004e, 63, 34, 0 ),
|
||||
/* 34 */ V( 0x003b, 32, 35, 0 ),
|
||||
/* 35 */ V( 0x002c, 33, 9, 0 ),
|
||||
/* 36 */ V( 0x5ae1, 37, 37, 1 ),
|
||||
/* 37 */ V( 0x484c, 64, 38, 0 ),
|
||||
/* 38 */ V( 0x3a0d, 65, 39, 0 ),
|
||||
/* 39 */ V( 0x2ef1, 67, 40, 0 ),
|
||||
/* 40 */ V( 0x261f, 68, 41, 0 ),
|
||||
/* 41 */ V( 0x1f33, 69, 42, 0 ),
|
||||
/* 42 */ V( 0x19a8, 70, 43, 0 ),
|
||||
/* 43 */ V( 0x1518, 72, 44, 0 ),
|
||||
/* 44 */ V( 0x1177, 73, 45, 0 ),
|
||||
/* 45 */ V( 0x0e74, 74, 46, 0 ),
|
||||
/* 46 */ V( 0x0bfb, 75, 47, 0 ),
|
||||
/* 47 */ V( 0x09f8, 77, 48, 0 ),
|
||||
/* 48 */ V( 0x0861, 78, 49, 0 ),
|
||||
/* 49 */ V( 0x0706, 79, 50, 0 ),
|
||||
/* 50 */ V( 0x05cd, 48, 51, 0 ),
|
||||
/* 51 */ V( 0x04de, 50, 52, 0 ),
|
||||
/* 52 */ V( 0x040f, 50, 53, 0 ),
|
||||
/* 53 */ V( 0x0363, 51, 54, 0 ),
|
||||
/* 54 */ V( 0x02d4, 52, 55, 0 ),
|
||||
/* 55 */ V( 0x025c, 53, 56, 0 ),
|
||||
/* 56 */ V( 0x01f8, 54, 57, 0 ),
|
||||
/* 57 */ V( 0x01a4, 55, 58, 0 ),
|
||||
/* 58 */ V( 0x0160, 56, 59, 0 ),
|
||||
/* 59 */ V( 0x0125, 57, 60, 0 ),
|
||||
/* 60 */ V( 0x00f6, 58, 61, 0 ),
|
||||
/* 61 */ V( 0x00cb, 59, 62, 0 ),
|
||||
/* 62 */ V( 0x00ab, 61, 63, 0 ),
|
||||
/* 63 */ V( 0x008f, 61, 32, 0 ),
|
||||
/* 64 */ V( 0x5b12, 65, 65, 1 ),
|
||||
/* 65 */ V( 0x4d04, 80, 66, 0 ),
|
||||
/* 66 */ V( 0x412c, 81, 67, 0 ),
|
||||
/* 67 */ V( 0x37d8, 82, 68, 0 ),
|
||||
/* 68 */ V( 0x2fe8, 83, 69, 0 ),
|
||||
/* 69 */ V( 0x293c, 84, 70, 0 ),
|
||||
/* 70 */ V( 0x2379, 86, 71, 0 ),
|
||||
/* 71 */ V( 0x1edf, 87, 72, 0 ),
|
||||
/* 72 */ V( 0x1aa9, 87, 73, 0 ),
|
||||
/* 73 */ V( 0x174e, 72, 74, 0 ),
|
||||
/* 74 */ V( 0x1424, 72, 75, 0 ),
|
||||
/* 75 */ V( 0x119c, 74, 76, 0 ),
|
||||
/* 76 */ V( 0x0f6b, 74, 77, 0 ),
|
||||
/* 77 */ V( 0x0d51, 75, 78, 0 ),
|
||||
/* 78 */ V( 0x0bb6, 77, 79, 0 ),
|
||||
/* 79 */ V( 0x0a40, 77, 48, 0 ),
|
||||
/* 80 */ V( 0x5832, 80, 81, 1 ),
|
||||
/* 81 */ V( 0x4d1c, 88, 82, 0 ),
|
||||
/* 82 */ V( 0x438e, 89, 83, 0 ),
|
||||
/* 83 */ V( 0x3bdd, 90, 84, 0 ),
|
||||
/* 84 */ V( 0x34ee, 91, 85, 0 ),
|
||||
/* 85 */ V( 0x2eae, 92, 86, 0 ),
|
||||
/* 86 */ V( 0x299a, 93, 87, 0 ),
|
||||
/* 87 */ V( 0x2516, 86, 71, 0 ),
|
||||
/* 88 */ V( 0x5570, 88, 89, 1 ),
|
||||
/* 89 */ V( 0x4ca9, 95, 90, 0 ),
|
||||
/* 90 */ V( 0x44d9, 96, 91, 0 ),
|
||||
/* 91 */ V( 0x3e22, 97, 92, 0 ),
|
||||
/* 92 */ V( 0x3824, 99, 93, 0 ),
|
||||
/* 93 */ V( 0x32b4, 99, 94, 0 ),
|
||||
/* 94 */ V( 0x2e17, 93, 86, 0 ),
|
||||
/* 95 */ V( 0x56a8, 95, 96, 1 ),
|
||||
/* 96 */ V( 0x4f46, 101, 97, 0 ),
|
||||
/* 97 */ V( 0x47e5, 102, 98, 0 ),
|
||||
/* 98 */ V( 0x41cf, 103, 99, 0 ),
|
||||
/* 99 */ V( 0x3c3d, 104, 100, 0 ),
|
||||
/* 100 */ V( 0x375e, 99, 93, 0 ),
|
||||
/* 101 */ V( 0x5231, 105, 102, 0 ),
|
||||
/* 102 */ V( 0x4c0f, 106, 103, 0 ),
|
||||
/* 103 */ V( 0x4639, 107, 104, 0 ),
|
||||
/* 104 */ V( 0x415e, 103, 99, 0 ),
|
||||
/* 105 */ V( 0x5627, 105, 106, 1 ),
|
||||
/* 106 */ V( 0x50e7, 108, 107, 0 ),
|
||||
/* 107 */ V( 0x4b85, 109, 103, 0 ),
|
||||
/* 108 */ V( 0x5597, 110, 109, 0 ),
|
||||
/* 109 */ V( 0x504f, 111, 107, 0 ),
|
||||
/* 110 */ V( 0x5a10, 110, 111, 1 ),
|
||||
/* 111 */ V( 0x5522, 112, 109, 0 ),
|
||||
/* 112 */ V( 0x59eb, 112, 111, 1 )
|
||||
};
|
||||
282
3rdparty/libjpeg/jcapimin.c
vendored
282
3rdparty/libjpeg/jcapimin.c
vendored
@@ -1,282 +0,0 @@
|
||||
/*
|
||||
* jcapimin.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the compression half
|
||||
* of the JPEG library. These are the "minimum" API routines that may be
|
||||
* needed in either the normal full-compression case or the transcoding-only
|
||||
* case.
|
||||
*
|
||||
* Most of the routines intended to be called directly by an application
|
||||
* are in this file or in jcapistd.c. But also see jcparam.c for
|
||||
* parameter-setup helper routines, jcomapi.c for routines shared by
|
||||
* compression and decompression, and jctrans.c for the transcoding case.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG compression object.
|
||||
* The error manager must already be set up (in case memory manager fails).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Guard against version mismatches between library and caller. */
|
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
|
||||
if (version != JPEG_LIB_VERSION)
|
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
|
||||
if (structsize != SIZEOF(struct jpeg_compress_struct))
|
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||
(int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
|
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set
|
||||
* client_data, so we have to save and restore those fields.
|
||||
* Note: if application hasn't set client_data, tools like Purify may
|
||||
* complain here.
|
||||
*/
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
|
||||
MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
|
||||
cinfo->err = err;
|
||||
cinfo->client_data = client_data;
|
||||
}
|
||||
cinfo->is_decompressor = FALSE;
|
||||
|
||||
/* Initialize a memory manager instance for this object */
|
||||
jinit_memory_mgr((j_common_ptr) cinfo);
|
||||
|
||||
/* Zero out pointers to permanent structures. */
|
||||
cinfo->progress = NULL;
|
||||
cinfo->dest = NULL;
|
||||
|
||||
cinfo->comp_info = NULL;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
cinfo->q_scale_factor[i] = 100;
|
||||
}
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
|
||||
cinfo->script_space = NULL;
|
||||
|
||||
cinfo->input_gamma = 1.0; /* in case application forgets */
|
||||
|
||||
/* OK, I'm ready */
|
||||
cinfo->global_state = CSTATE_START;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG compression object
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression operation,
|
||||
* but don't destroy the object itself.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Forcibly suppress or un-suppress all quantization and Huffman tables.
|
||||
* Marks all currently defined tables as already written (if suppress)
|
||||
* or not written (if !suppress). This will control whether they get emitted
|
||||
* by a subsequent jpeg_start_compress call.
|
||||
*
|
||||
* This routine is exported for use by applications that want to produce
|
||||
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
|
||||
* since it is called by jpeg_start_compress, we put it here --- otherwise
|
||||
* jcparam.o would be linked whether the application used it or not.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
|
||||
{
|
||||
int i;
|
||||
JQUANT_TBL * qtbl;
|
||||
JHUFF_TBL * htbl;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
|
||||
qtbl->sent_table = suppress;
|
||||
}
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
|
||||
htbl->sent_table = suppress;
|
||||
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
|
||||
htbl->sent_table = suppress;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG compression.
|
||||
*
|
||||
* If a multipass operating mode was selected, this may do a great deal of
|
||||
* work including most of the actual output.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_finish_compress (j_compress_ptr cinfo)
|
||||
{
|
||||
JDIMENSION iMCU_row;
|
||||
|
||||
if (cinfo->global_state == CSTATE_SCANNING ||
|
||||
cinfo->global_state == CSTATE_RAW_OK) {
|
||||
/* Terminate first pass */
|
||||
if (cinfo->next_scanline < cinfo->image_height)
|
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
} else if (cinfo->global_state != CSTATE_WRCOEFS)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Perform any remaining passes */
|
||||
while (! cinfo->master->is_last_pass) {
|
||||
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) iMCU_row;
|
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
/* We bypass the main controller and invoke coef controller directly;
|
||||
* all work is being done from the coefficient buffer.
|
||||
*/
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
(*cinfo->master->finish_pass) (cinfo);
|
||||
}
|
||||
/* Write EOI, do final cleanup */
|
||||
(*cinfo->marker->write_file_trailer) (cinfo);
|
||||
(*cinfo->dest->term_destination) (cinfo);
|
||||
/* We can use jpeg_abort to release memory and reset global_state */
|
||||
jpeg_abort((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write a special marker.
|
||||
* This is only recommended for writing COM or APPn markers.
|
||||
* Must be called after jpeg_start_compress() and before
|
||||
* first call to jpeg_write_scanlines() or jpeg_write_raw_data().
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_marker (j_compress_ptr cinfo, int marker,
|
||||
const JOCTET *dataptr, unsigned int datalen)
|
||||
{
|
||||
JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
|
||||
|
||||
if (cinfo->next_scanline != 0 ||
|
||||
(cinfo->global_state != CSTATE_SCANNING &&
|
||||
cinfo->global_state != CSTATE_RAW_OK &&
|
||||
cinfo->global_state != CSTATE_WRCOEFS))
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
|
||||
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
|
||||
while (datalen--) {
|
||||
(*write_marker_byte) (cinfo, *dataptr);
|
||||
dataptr++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Same, but piecemeal. */
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
|
||||
{
|
||||
if (cinfo->next_scanline != 0 ||
|
||||
(cinfo->global_state != CSTATE_SCANNING &&
|
||||
cinfo->global_state != CSTATE_RAW_OK &&
|
||||
cinfo->global_state != CSTATE_WRCOEFS))
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_m_byte (j_compress_ptr cinfo, int val)
|
||||
{
|
||||
(*cinfo->marker->write_marker_byte) (cinfo, val);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate compression function: just write an abbreviated table file.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
*
|
||||
* To produce a pair of files containing abbreviated tables and abbreviated
|
||||
* image data, one would proceed as follows:
|
||||
*
|
||||
* initialize JPEG object
|
||||
* set JPEG parameters
|
||||
* set destination to table file
|
||||
* jpeg_write_tables(cinfo);
|
||||
* set destination to image file
|
||||
* jpeg_start_compress(cinfo, FALSE);
|
||||
* write data...
|
||||
* jpeg_finish_compress(cinfo);
|
||||
*
|
||||
* jpeg_write_tables has the side effect of marking all tables written
|
||||
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
|
||||
* will not re-emit the tables unless it is passed write_all_tables=TRUE.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_tables (j_compress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Initialize the marker writer ... bit of a crock to do it here. */
|
||||
jinit_marker_writer(cinfo);
|
||||
/* Write them tables! */
|
||||
(*cinfo->marker->write_tables_only) (cinfo);
|
||||
/* And clean up. */
|
||||
(*cinfo->dest->term_destination) (cinfo);
|
||||
/*
|
||||
* In library releases up through v6a, we called jpeg_abort() here to free
|
||||
* any working memory allocated by the destination manager and marker
|
||||
* writer. Some applications had a problem with that: they allocated space
|
||||
* of their own from the library memory manager, and didn't want it to go
|
||||
* away during write_tables. So now we do nothing. This will cause a
|
||||
* memory leak if an app calls write_tables repeatedly without doing a full
|
||||
* compression cycle or otherwise resetting the JPEG object. However, that
|
||||
* seems less bad than unexpectedly freeing memory in the normal case.
|
||||
* An app that prefers the old behavior can call jpeg_abort for itself after
|
||||
* each call to jpeg_write_tables().
|
||||
*/
|
||||
}
|
||||
161
3rdparty/libjpeg/jcapistd.c
vendored
161
3rdparty/libjpeg/jcapistd.c
vendored
@@ -1,161 +0,0 @@
|
||||
/*
|
||||
* jcapistd.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the compression half
|
||||
* of the JPEG library. These are the "standard" API routines that are
|
||||
* used in the normal full-compression case. They are not used by a
|
||||
* transcoding-only application. Note that if an application links in
|
||||
* jpeg_start_compress, it will end up linking in the entire compressor.
|
||||
* We thus must separate this file from jcapimin.c to avoid linking the
|
||||
* whole compression library into a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Compression initialization.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
*
|
||||
* We require a write_all_tables parameter as a failsafe check when writing
|
||||
* multiple datastreams from the same compression object. Since prior runs
|
||||
* will have left all the tables marked sent_table=TRUE, a subsequent run
|
||||
* would emit an abbreviated stream (no tables) by default. This may be what
|
||||
* is wanted, but for safety's sake it should not be the default behavior:
|
||||
* programmers should have to make a deliberate choice to emit abbreviated
|
||||
* images. Therefore the documentation and examples should encourage people
|
||||
* to pass write_all_tables=TRUE; then it will take active thought to do the
|
||||
* wrong thing.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (write_all_tables)
|
||||
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
|
||||
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Perform master selection of active modules */
|
||||
jinit_compress_master(cinfo);
|
||||
/* Set up for the first pass */
|
||||
(*cinfo->master->prepare_for_pass) (cinfo);
|
||||
/* Ready for application to drive first pass through jpeg_write_scanlines
|
||||
* or jpeg_write_raw_data.
|
||||
*/
|
||||
cinfo->next_scanline = 0;
|
||||
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write some scanlines of data to the JPEG compressor.
|
||||
*
|
||||
* The return value will be the number of lines actually written.
|
||||
* This should be less than the supplied num_lines only in case that
|
||||
* the data destination module has requested suspension of the compressor,
|
||||
* or if more than image_height scanlines are passed in.
|
||||
*
|
||||
* Note: we warn about excess calls to jpeg_write_scanlines() since
|
||||
* this likely signals an application programmer error. However,
|
||||
* excess scanlines passed in the last valid call are *silently* ignored,
|
||||
* so that the application need not adjust num_lines for end-of-image
|
||||
* when using a multiple-scanline buffer.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
|
||||
JDIMENSION num_lines)
|
||||
{
|
||||
JDIMENSION row_ctr, rows_left;
|
||||
|
||||
if (cinfo->global_state != CSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->next_scanline >= cinfo->image_height)
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->image_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_scanlines. This lets output of the frame/scan headers be
|
||||
* delayed so that application can write COM, etc, markers between
|
||||
* jpeg_start_compress and jpeg_write_scanlines.
|
||||
*/
|
||||
if (cinfo->master->call_pass_startup)
|
||||
(*cinfo->master->pass_startup) (cinfo);
|
||||
|
||||
/* Ignore any extra scanlines at bottom of image. */
|
||||
rows_left = cinfo->image_height - cinfo->next_scanline;
|
||||
if (num_lines > rows_left)
|
||||
num_lines = rows_left;
|
||||
|
||||
row_ctr = 0;
|
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
|
||||
cinfo->next_scanline += row_ctr;
|
||||
return row_ctr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate entry point to write raw data.
|
||||
* Processes exactly one iMCU row per call, unless suspended.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
|
||||
JDIMENSION num_lines)
|
||||
{
|
||||
JDIMENSION lines_per_iMCU_row;
|
||||
|
||||
if (cinfo->global_state != CSTATE_RAW_OK)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->next_scanline >= cinfo->image_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->image_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Give master control module another chance if this is first call to
|
||||
* jpeg_write_raw_data. This lets output of the frame/scan headers be
|
||||
* delayed so that application can write COM, etc, markers between
|
||||
* jpeg_start_compress and jpeg_write_raw_data.
|
||||
*/
|
||||
if (cinfo->master->call_pass_startup)
|
||||
(*cinfo->master->pass_startup) (cinfo);
|
||||
|
||||
/* Verify that at least one iMCU row has been passed. */
|
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
|
||||
if (num_lines < lines_per_iMCU_row)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* Directly compress the row. */
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, data)) {
|
||||
/* If compressor did not consume the whole row, suspend processing. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* OK, we processed one iMCU row. */
|
||||
cinfo->next_scanline += lines_per_iMCU_row;
|
||||
return lines_per_iMCU_row;
|
||||
}
|
||||
921
3rdparty/libjpeg/jcarith.c
vendored
921
3rdparty/libjpeg/jcarith.c
vendored
@@ -1,921 +0,0 @@
|
||||
/*
|
||||
* jcarith.c
|
||||
*
|
||||
* Developed 1997 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains portable arithmetic entropy encoding routines for JPEG
|
||||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
|
||||
*
|
||||
* Both sequential and progressive modes are supported in this single module.
|
||||
*
|
||||
* Suspension is not currently supported in this module.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Expanded entropy encoder object for arithmetic encoding. */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_encoder pub; /* public fields */
|
||||
|
||||
INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
|
||||
INT32 a; /* A register, normalized size of coding interval */
|
||||
INT32 sc; /* counter for stacked 0xFF values which might overflow */
|
||||
INT32 zc; /* counter for pending 0x00 output values which might *
|
||||
* be discarded at the end ("Pacman" termination) */
|
||||
int ct; /* bit shift counter, determines when next byte will be written */
|
||||
int buffer; /* buffer for most recent output byte != 0xFF */
|
||||
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
int next_restart_num; /* next restart number to write (0-7) */
|
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */
|
||||
unsigned char * dc_stats[NUM_ARITH_TBLS];
|
||||
unsigned char * ac_stats[NUM_ARITH_TBLS];
|
||||
} arith_entropy_encoder;
|
||||
|
||||
typedef arith_entropy_encoder * arith_entropy_ptr;
|
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area.
|
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
||||
* Note that we use one additional AC bin for codings with fixed
|
||||
* probability (0.5), thus the minimum number for AC is 246.
|
||||
*
|
||||
* We use a compact representation with 1 byte per statistics bin,
|
||||
* thus the numbers directly represent byte sizes.
|
||||
* This 1 byte per statistics bin contains the meaning of the MPS
|
||||
* (more probable symbol) in the highest bit (mask 0x80), and the
|
||||
* index into the probability estimation state machine table
|
||||
* in the lower bits (mask 0x7F).
|
||||
*/
|
||||
|
||||
#define DC_STAT_BINS 64
|
||||
#define AC_STAT_BINS 256
|
||||
|
||||
/* NOTE: Uncomment the following #define if you want to use the
|
||||
* given formula for calculating the AC conditioning parameter Kx
|
||||
* for spectral selection progressive coding in section G.1.3.2
|
||||
* of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
|
||||
* Although the spec and P&M authors claim that this "has proven
|
||||
* to give good results for 8 bit precision samples", I'm not
|
||||
* convinced yet that this is really beneficial.
|
||||
* Early tests gave only very marginal compression enhancements
|
||||
* (a few - around 5 or so - bytes even for very large files),
|
||||
* which would turn out rather negative if we'd suppress the
|
||||
* DAC (Define Arithmetic Conditioning) marker segments for
|
||||
* the default parameters in the future.
|
||||
* Note that currently the marker writing module emits 12-byte
|
||||
* DAC segments for a full-component scan in a color image.
|
||||
* This is not worth worrying about IMHO. However, since the
|
||||
* spec defines the default values to be used if the tables
|
||||
* are omitted (unlike Huffman tables, which are required
|
||||
* anyway), one might optimize this behaviour in the future,
|
||||
* and then it would be disadvantageous to use custom tables if
|
||||
* they don't provide sufficient gain to exceed the DAC size.
|
||||
*
|
||||
* On the other hand, I'd consider it as a reasonable result
|
||||
* that the conditioning has no significant influence on the
|
||||
* compression performance. This means that the basic
|
||||
* statistical model is already rather stable.
|
||||
*
|
||||
* Thus, at the moment, we use the default conditioning values
|
||||
* anyway, and do not use the custom formula.
|
||||
*
|
||||
#define CALCULATE_SPECTRAL_CONDITIONING
|
||||
*/
|
||||
|
||||
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
||||
* We assume that int right shift is unsigned if INT32 right shift is,
|
||||
* which should be safe.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define ISHIFT_TEMPS int ishift_temp;
|
||||
#define IRIGHT_SHIFT(x,shft) \
|
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
||||
(ishift_temp >> (shft)))
|
||||
#else
|
||||
#define ISHIFT_TEMPS
|
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_byte (int val, j_compress_ptr cinfo)
|
||||
/* Write next output byte; we do not support suspension in this module. */
|
||||
{
|
||||
struct jpeg_destination_mgr * dest = cinfo->dest;
|
||||
|
||||
*dest->next_output_byte++ = (JOCTET) val;
|
||||
if (--dest->free_in_buffer == 0)
|
||||
if (! (*dest->empty_output_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at the end of an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass (j_compress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||
INT32 temp;
|
||||
|
||||
/* Section D.1.8: Termination of encoding */
|
||||
|
||||
/* Find the e->c in the coding interval with the largest
|
||||
* number of trailing zero bits */
|
||||
if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
|
||||
e->c = temp + 0x8000L;
|
||||
else
|
||||
e->c = temp;
|
||||
/* Send remaining bytes to output */
|
||||
e->c <<= e->ct;
|
||||
if (e->c & 0xF8000000L) {
|
||||
/* One final overflow has to be handled */
|
||||
if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer + 1, cinfo);
|
||||
if (e->buffer + 1 == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
||||
e->sc = 0;
|
||||
} else {
|
||||
if (e->buffer == 0)
|
||||
++e->zc;
|
||||
else if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer, cinfo);
|
||||
}
|
||||
if (e->sc) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
do {
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(0x00, cinfo);
|
||||
} while (--e->sc);
|
||||
}
|
||||
}
|
||||
/* Output final bytes only if they are not 0x00 */
|
||||
if (e->c & 0x7FFF800L) {
|
||||
if (e->zc) /* output final pending zero bytes */
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte((e->c >> 19) & 0xFF, cinfo);
|
||||
if (((e->c >> 19) & 0xFF) == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
if (e->c & 0x7F800L) {
|
||||
emit_byte((e->c >> 11) & 0xFF, cinfo);
|
||||
if (((e->c >> 11) & 0xFF) == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic encoding routine (common in JPEG and JBIG).
|
||||
* This needs to go as fast as possible.
|
||||
* Machine-dependent optimization facilities
|
||||
* are not utilized in this portable implementation.
|
||||
* However, this code should be fairly efficient and
|
||||
* may be a good base for further optimizations anyway.
|
||||
*
|
||||
* Parameter 'val' to be encoded may be 0 or 1 (binary decision).
|
||||
*
|
||||
* Note: I've added full "Pacman" termination support to the
|
||||
* byte output routines, which is equivalent to the optional
|
||||
* Discard_final_zeros procedure (Figure D.15) in the spec.
|
||||
* Thus, we always produce the shortest possible output
|
||||
* stream compliant to the spec (no trailing zero bytes,
|
||||
* except for FF stuffing).
|
||||
*
|
||||
* I've also introduced a new scheme for accessing
|
||||
* the probability estimation state machine table,
|
||||
* derived from Markus Kuhn's JBIG implementation.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
|
||||
{
|
||||
extern const INT32 jaritab[];
|
||||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||
register unsigned char nl, nm;
|
||||
register INT32 qe, temp;
|
||||
register int sv;
|
||||
|
||||
/* Fetch values from our compact representation of Table D.2:
|
||||
* Qe values and probability estimation state machine
|
||||
*/
|
||||
sv = *st;
|
||||
qe = jaritab[sv & 0x7F]; /* => Qe_Value */
|
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
||||
|
||||
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */
|
||||
e->a -= qe;
|
||||
if (val != (sv >> 7)) {
|
||||
/* Encode the less probable symbol */
|
||||
if (e->a >= qe) {
|
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange
|
||||
* the two symbols for coding efficiency, otherwise code the LPS
|
||||
* as usual: */
|
||||
e->c += e->a;
|
||||
e->a = qe;
|
||||
}
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
} else {
|
||||
/* Encode the more probable symbol */
|
||||
if (e->a >= 0x8000L)
|
||||
return; /* A >= 0x8000 -> ready, no renormalization required */
|
||||
if (e->a < qe) {
|
||||
/* If the interval size (qe) for the less probable symbol (LPS)
|
||||
* is larger than the interval size for the MPS, then exchange
|
||||
* the two symbols for coding efficiency: */
|
||||
e->c += e->a;
|
||||
e->a = qe;
|
||||
}
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
}
|
||||
|
||||
/* Renormalization & data output per section D.1.6 */
|
||||
do {
|
||||
e->a <<= 1;
|
||||
e->c <<= 1;
|
||||
if (--e->ct == 0) {
|
||||
/* Another byte is ready for output */
|
||||
temp = e->c >> 19;
|
||||
if (temp > 0xFF) {
|
||||
/* Handle overflow over all stacked 0xFF bytes */
|
||||
if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer + 1, cinfo);
|
||||
if (e->buffer + 1 == 0xFF)
|
||||
emit_byte(0x00, cinfo);
|
||||
}
|
||||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
|
||||
e->sc = 0;
|
||||
/* Note: The 3 spacer bits in the C register guarantee
|
||||
* that the new buffer byte can't be 0xFF here
|
||||
* (see page 160 in the P&M JPEG book). */
|
||||
e->buffer = temp & 0xFF; /* new output byte, might overflow later */
|
||||
} else if (temp == 0xFF) {
|
||||
++e->sc; /* stack 0xFF byte (which might overflow later) */
|
||||
} else {
|
||||
/* Output all stacked 0xFF bytes, they will not overflow any more */
|
||||
if (e->buffer == 0)
|
||||
++e->zc;
|
||||
else if (e->buffer >= 0) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
emit_byte(e->buffer, cinfo);
|
||||
}
|
||||
if (e->sc) {
|
||||
if (e->zc)
|
||||
do emit_byte(0x00, cinfo);
|
||||
while (--e->zc);
|
||||
do {
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(0x00, cinfo);
|
||||
} while (--e->sc);
|
||||
}
|
||||
e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
|
||||
}
|
||||
e->c &= 0x7FFFFL;
|
||||
e->ct += 8;
|
||||
}
|
||||
} while (e->a < 0x8000L);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Emit a restart marker & resynchronize predictions.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
emit_restart (j_compress_ptr cinfo, int restart_num)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
finish_pass(cinfo);
|
||||
|
||||
emit_byte(0xFF, cinfo);
|
||||
emit_byte(JPEG_RST0 + restart_num, cinfo);
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Re-initialize statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
|
||||
/* Reset DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset arithmetic encoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0x10000L;
|
||||
entropy->sc = 0;
|
||||
entropy->zc = 0;
|
||||
entropy->ct = 11;
|
||||
entropy->buffer = -1; /* empty */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl;
|
||||
int v, v2, m;
|
||||
ISHIFT_TEMPS
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
||||
|
||||
/* Compute the DC value after the required point transform by Al.
|
||||
* This is simply an arithmetic right shift.
|
||||
*/
|
||||
m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
|
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */
|
||||
if ((v = m - entropy->last_dc_val[ci]) == 0) {
|
||||
arith_encode(cinfo, st, 0);
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
} else {
|
||||
entropy->last_dc_val[ci] = m;
|
||||
arith_encode(cinfo, st, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
||||
st += 2; /* Table F.4: SP = S0 + 2 */
|
||||
entropy->dc_context[ci] = 4; /* small positive diff category */
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
||||
st += 3; /* Table F.4: SN = S0 + 3 */
|
||||
entropy->dc_context[ci] = 8; /* small negative diff category */
|
||||
}
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] += 8; /* large diff category */
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, k, ke;
|
||||
int v, v2, m;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data block */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = cinfo->Se + 1; ke > 1; ke--)
|
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably
|
||||
* in C, we shift after obtaining the absolute value.
|
||||
*/
|
||||
if ((v = (*block)[jpeg_natural_order[ke - 1]]) >= 0) {
|
||||
if (v >>= cinfo->Al) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) break;
|
||||
}
|
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */
|
||||
for (k = cinfo->Ss; k < ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
for (;;) {
|
||||
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
|
||||
if (v >>= cinfo->Al) {
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) {
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
st += 2;
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
if (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
/* Encode EOB decision only if k <= cinfo->Se */
|
||||
if (k <= cinfo->Se) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for DC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
unsigned char st[4];
|
||||
int Al, blkn;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
Al = cinfo->Al;
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
st[0] = 0; /* use fixed probability estimation */
|
||||
/* We simply emit the Al'th bit of the DC coefficient value. */
|
||||
arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU encoding for AC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, k, ke, kex;
|
||||
int v;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data block */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Section G.1.3.3: Encoding of AC coefficients */
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = cinfo->Se + 1; ke > 1; ke--)
|
||||
/* We must apply the point transform by Al. For AC coefficients this
|
||||
* is an integer division with rounding towards 0. To do this portably
|
||||
* in C, we shift after obtaining the absolute value.
|
||||
*/
|
||||
if ((v = (*block)[jpeg_natural_order[ke - 1]]) >= 0) {
|
||||
if (v >>= cinfo->Al) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) break;
|
||||
}
|
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */
|
||||
for (kex = ke; kex > 1; kex--)
|
||||
if ((v = (*block)[jpeg_natural_order[kex - 1]]) >= 0) {
|
||||
if (v >>= cinfo->Ah) break;
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Ah) break;
|
||||
}
|
||||
|
||||
/* Figure G.10: Encode_AC_Coefficients_SA */
|
||||
for (k = cinfo->Ss; k < ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (k >= kex)
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
for (;;) {
|
||||
if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
|
||||
if (v >>= cinfo->Al) {
|
||||
if (v >> 1) /* previously nonzero coef */
|
||||
arith_encode(cinfo, st + 2, (v & 1));
|
||||
else { /* newly nonzero coef */
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
|
||||
}
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
v = -v;
|
||||
if (v >>= cinfo->Al) {
|
||||
if (v >> 1) /* previously nonzero coef */
|
||||
arith_encode(cinfo, st + 2, (v & 1));
|
||||
else { /* newly nonzero coef */
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
}
|
||||
/* Encode EOB decision only if k <= cinfo->Se */
|
||||
if (k <= cinfo->Se) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Encode and output one MCU's worth of arithmetic-compressed coefficients.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
jpeg_component_info * compptr;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, k, ke;
|
||||
int v, v2, m;
|
||||
|
||||
/* Emit restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0) {
|
||||
emit_restart(cinfo, entropy->next_restart_num);
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num++;
|
||||
entropy->next_restart_num &= 7;
|
||||
}
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
/* Encode the MCU data blocks */
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
|
||||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
|
||||
|
||||
tbl = compptr->dc_tbl_no;
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.4: Encode_DC_DIFF */
|
||||
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
|
||||
arith_encode(cinfo, st, 0);
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
} else {
|
||||
entropy->last_dc_val[ci] = (*block)[0];
|
||||
arith_encode(cinfo, st, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
|
||||
st += 2; /* Table F.4: SP = S0 + 2 */
|
||||
entropy->dc_context[ci] = 4; /* small positive diff category */
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
|
||||
st += 3; /* Table F.4: SN = S0 + 3 */
|
||||
entropy->dc_context[ci] = 8; /* small negative diff category */
|
||||
}
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] += 8; /* large diff category */
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
|
||||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
|
||||
|
||||
tbl = compptr->ac_tbl_no;
|
||||
|
||||
/* Establish EOB (end-of-block) index */
|
||||
for (ke = DCTSIZE2; ke > 1; ke--)
|
||||
if ((*block)[jpeg_natural_order[ke - 1]]) break;
|
||||
|
||||
/* Figure F.5: Encode_AC_Coefficients */
|
||||
for (k = 1; k < ke; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 0); /* EOB decision */
|
||||
while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
|
||||
arith_encode(cinfo, st + 1, 0); st += 3; k++;
|
||||
}
|
||||
arith_encode(cinfo, st + 1, 1);
|
||||
/* Figure F.6: Encoding nonzero value v */
|
||||
/* Figure F.7: Encoding the sign of v */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
if (v > 0) {
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
|
||||
} else {
|
||||
v = -v;
|
||||
arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
|
||||
}
|
||||
st += 2;
|
||||
/* Figure F.8: Encoding the magnitude category of v */
|
||||
m = 0;
|
||||
if (v -= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m = 1;
|
||||
v2 = v;
|
||||
if (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (v2 >>= 1) {
|
||||
arith_encode(cinfo, st, 1);
|
||||
m <<= 1;
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
arith_encode(cinfo, st, 0);
|
||||
/* Figure F.9: Encoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
arith_encode(cinfo, st, (m & v) ? 1 : 0);
|
||||
}
|
||||
/* Encode EOB decision only if k < DCTSIZE2 */
|
||||
if (k < DCTSIZE2) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
arith_encode(cinfo, st, 1);
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass (j_compress_ptr cinfo, boolean gather_statistics)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci, tbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
if (gather_statistics)
|
||||
/* Make sure to avoid that in the master control logic!
|
||||
* We are fully adaptive here and need no extra
|
||||
* statistics gathering pass!
|
||||
*/
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
|
||||
/* We assume jcmaster.c already validated the progressive scan parameters. */
|
||||
|
||||
/* Select execution routines */
|
||||
if (cinfo->progressive_mode) {
|
||||
if (cinfo->Ah == 0) {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.encode_mcu = encode_mcu_DC_first;
|
||||
else
|
||||
entropy->pub.encode_mcu = encode_mcu_AC_first;
|
||||
} else {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
||||
else
|
||||
entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
||||
}
|
||||
} else
|
||||
entropy->pub.encode_mcu = encode_mcu;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Allocate & initialize requested statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
tbl = compptr->dc_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->dc_stats[tbl] == NULL)
|
||||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
||||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
tbl = compptr->ac_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->ac_stats[tbl] == NULL)
|
||||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
||||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
|
||||
#ifdef CALCULATE_SPECTRAL_CONDITIONING
|
||||
if (cinfo->progressive_mode)
|
||||
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
|
||||
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize arithmetic encoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0x10000L;
|
||||
entropy->sc = 0;
|
||||
entropy->zc = 0;
|
||||
entropy->ct = 11;
|
||||
entropy->buffer = -1; /* empty */
|
||||
|
||||
/* Initialize restart stuff */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
entropy->next_restart_num = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy encoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_arith_encoder (j_compress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (arith_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(arith_entropy_encoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
||||
entropy->pub.start_pass = start_pass;
|
||||
entropy->pub.finish_pass = finish_pass;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
entropy->dc_stats[i] = NULL;
|
||||
entropy->ac_stats[i] = NULL;
|
||||
}
|
||||
}
|
||||
453
3rdparty/libjpeg/jccoefct.c
vendored
453
3rdparty/libjpeg/jccoefct.c
vendored
@@ -1,453 +0,0 @@
|
||||
/*
|
||||
* jccoefct.c
|
||||
*
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the coefficient buffer controller for compression.
|
||||
* This controller is the top level of the JPEG compressor proper.
|
||||
* The coefficient buffer lies between forward-DCT and entropy encoding steps.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* We use a full-image coefficient buffer when doing Huffman optimization,
|
||||
* and also for writing multiple-scan JPEG files. In all cases, the DCT
|
||||
* step is run during the first pass, and subsequent passes need only read
|
||||
* the buffered coefficients.
|
||||
*/
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
#define FULL_COEF_BUFFER_SUPPORTED
|
||||
#else
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
#define FULL_COEF_BUFFER_SUPPORTED
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_coef_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
||||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* For single-pass compression, it's sufficient to buffer just one MCU
|
||||
* (although this may prove a bit slow in practice). We allocate a
|
||||
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
|
||||
* MCU constructed and sent. (On 80x86, the workspace is FAR even though
|
||||
* it's not really very big; this is to keep the module interfaces unchanged
|
||||
* when a large coefficient buffer is necessary.)
|
||||
* In multi-pass modes, this array points to the current MCU's blocks
|
||||
* within the virtual arrays.
|
||||
*/
|
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
|
||||
/* In multi-pass modes, we need a virtual block array for each component. */
|
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller * my_coef_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(boolean) compress_data
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
METHODDEF(boolean) compress_first_pass
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||
METHODDEF(boolean) compress_output
|
||||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
start_iMCU_row (j_compress_ptr cinfo)
|
||||
/* Reset within-iMCU-row counters for a new row */
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||
* But at the bottom of the image, process only what's left.
|
||||
*/
|
||||
if (cinfo->comps_in_scan > 1) {
|
||||
coef->MCU_rows_per_iMCU_row = 1;
|
||||
} else {
|
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
else
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||
}
|
||||
|
||||
coef->mcu_ctr = 0;
|
||||
coef->MCU_vert_offset = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
coef->iMCU_row_num = 0;
|
||||
start_iMCU_row(cinfo);
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (coef->whole_image[0] != NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_data;
|
||||
break;
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_first_pass;
|
||||
break;
|
||||
case JBUF_CRANK_DEST:
|
||||
if (coef->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
coef->pub.compress_data = compress_output;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the single-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the image.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf contains a plane for each component in image,
|
||||
* which we index according to the component's SOF position.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
int blkn, bi, ci, yindex, yoffset, blockcnt;
|
||||
JDIMENSION ypos, xpos;
|
||||
jpeg_component_info *compptr;
|
||||
forward_DCT_ptr forward_DCT;
|
||||
|
||||
/* Loop to write as much as one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
|
||||
MCU_col_num++) {
|
||||
/* Determine where data comes from in input_buf and do the DCT thing.
|
||||
* Each call on forward_DCT processes a horizontal row of DCT blocks
|
||||
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
|
||||
* sequentially. Dummy blocks at the right or bottom edge are filled in
|
||||
* specially. The data in them does not matter for image reconstruction,
|
||||
* so we fill them with values that will encode to the smallest amount of
|
||||
* data, viz: all zeroes in the AC entries, DC entries equal to previous
|
||||
* block's DC value. (Thanks to Thomas Kinsman for this idea.)
|
||||
*/
|
||||
blkn = 0;
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];
|
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||
: compptr->last_col_width;
|
||||
xpos = MCU_col_num * compptr->MCU_sample_width;
|
||||
ypos = yoffset * compptr->DCT_v_scaled_size;
|
||||
/* ypos == (yoffset+yindex) * DCTSIZE */
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (coef->iMCU_row_num < last_iMCU_row ||
|
||||
yoffset+yindex < compptr->last_row_height) {
|
||||
(*forward_DCT) (cinfo, compptr,
|
||||
input_buf[compptr->component_index],
|
||||
coef->MCU_buffer[blkn],
|
||||
ypos, xpos, (JDIMENSION) blockcnt);
|
||||
if (blockcnt < compptr->MCU_width) {
|
||||
/* Create some dummy blocks at the right edge of the image. */
|
||||
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
|
||||
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
|
||||
for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
|
||||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* Create a row of dummy blocks at the bottom of the image. */
|
||||
jzero_far((void FAR *) coef->MCU_buffer[blkn],
|
||||
compptr->MCU_width * SIZEOF(JBLOCK));
|
||||
for (bi = 0; bi < compptr->MCU_width; bi++) {
|
||||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
|
||||
}
|
||||
}
|
||||
blkn += compptr->MCU_width;
|
||||
ypos += compptr->DCT_v_scaled_size;
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. In event of a suspension failure, we will
|
||||
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
|
||||
*/
|
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the first pass of a multi-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the image.
|
||||
* This amount of data is read from the source buffer, DCT'd and quantized,
|
||||
* and saved into the virtual arrays. We also generate suitable dummy blocks
|
||||
* as needed at the right and lower edges. (The dummy blocks are constructed
|
||||
* in the virtual arrays, which have been padded appropriately.) This makes
|
||||
* it possible for subsequent passes not to worry about real vs. dummy blocks.
|
||||
*
|
||||
* We must also emit the data to the entropy encoder. This is conveniently
|
||||
* done by calling compress_output() after we've loaded the current strip
|
||||
* of the virtual arrays.
|
||||
*
|
||||
* NB: input_buf contains a plane for each component in image. All
|
||||
* components are DCT'd and loaded into the virtual arrays in this pass.
|
||||
* However, it may be that only a subset of the components are emitted to
|
||||
* the entropy encoder during this first pass; be careful about looking
|
||||
* at the scan-dependent variables (MCU dimensions, etc).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION blocks_across, MCUs_across, MCUindex;
|
||||
int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
|
||||
JCOEF lastDC;
|
||||
jpeg_component_info *compptr;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW thisblockrow, lastblockrow;
|
||||
forward_DCT_ptr forward_DCT;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Align the virtual buffer for this component. */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (coef->iMCU_row_num < last_iMCU_row)
|
||||
block_rows = compptr->v_samp_factor;
|
||||
else {
|
||||
/* NB: can't use last_row_height here, since may not be set! */
|
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
}
|
||||
blocks_across = compptr->width_in_blocks;
|
||||
h_samp_factor = compptr->h_samp_factor;
|
||||
/* Count number of dummy blocks to be added at the right margin. */
|
||||
ndummy = (int) (blocks_across % h_samp_factor);
|
||||
if (ndummy > 0)
|
||||
ndummy = h_samp_factor - ndummy;
|
||||
forward_DCT = cinfo->fdct->forward_DCT[ci];
|
||||
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
|
||||
* on forward_DCT processes a complete horizontal row of DCT blocks.
|
||||
*/
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
thisblockrow = buffer[block_row];
|
||||
(*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow,
|
||||
(JDIMENSION) (block_row * compptr->DCT_v_scaled_size),
|
||||
(JDIMENSION) 0, blocks_across);
|
||||
if (ndummy > 0) {
|
||||
/* Create dummy blocks at the right edge of the image. */
|
||||
thisblockrow += blocks_across; /* => first dummy block */
|
||||
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
|
||||
lastDC = thisblockrow[-1][0];
|
||||
for (bi = 0; bi < ndummy; bi++) {
|
||||
thisblockrow[bi][0] = lastDC;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* If at end of image, create dummy block rows as needed.
|
||||
* The tricky part here is that within each MCU, we want the DC values
|
||||
* of the dummy blocks to match the last real block's DC value.
|
||||
* This squeezes a few more bytes out of the resulting file...
|
||||
*/
|
||||
if (coef->iMCU_row_num == last_iMCU_row) {
|
||||
blocks_across += ndummy; /* include lower right corner */
|
||||
MCUs_across = blocks_across / h_samp_factor;
|
||||
for (block_row = block_rows; block_row < compptr->v_samp_factor;
|
||||
block_row++) {
|
||||
thisblockrow = buffer[block_row];
|
||||
lastblockrow = buffer[block_row-1];
|
||||
jzero_far((void FAR *) thisblockrow,
|
||||
(size_t) (blocks_across * SIZEOF(JBLOCK)));
|
||||
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
|
||||
lastDC = lastblockrow[h_samp_factor-1][0];
|
||||
for (bi = 0; bi < h_samp_factor; bi++) {
|
||||
thisblockrow[bi][0] = lastDC;
|
||||
}
|
||||
thisblockrow += h_samp_factor; /* advance to next MCU in row */
|
||||
lastblockrow += h_samp_factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* NB: compress_output will increment iMCU_row_num if successful.
|
||||
* A suspension return will result in redoing all the work above next time.
|
||||
*/
|
||||
|
||||
/* Emit data to the entropy encoder, sharing code with subsequent passes */
|
||||
return compress_output(cinfo, input_buf);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in subsequent passes of a multi-pass case.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
int blkn, ci, xindex, yindex, yoffset;
|
||||
JDIMENSION start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan.
|
||||
* NB: during first pass, this is safe only because the buffers will
|
||||
* already be aligned properly, so jmemmgr.c won't need to do any I/O.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||
MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
||||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
||||
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. */
|
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
#endif /* FULL_COEF_BUFFER_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
||||
coef->pub.start_pass = start_pass_coef;
|
||||
|
||||
/* Create the coefficient buffer. */
|
||||
if (need_full_buffer) {
|
||||
#ifdef FULL_COEF_BUFFER_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component, */
|
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
||||
(long) compptr->h_samp_factor),
|
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
||||
(long) compptr->v_samp_factor),
|
||||
(JDIMENSION) compptr->v_samp_factor);
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
} else {
|
||||
/* We only need a single-MCU buffer. */
|
||||
JBLOCKROW buffer;
|
||||
int i;
|
||||
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->MCU_buffer[i] = buffer + i;
|
||||
}
|
||||
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||
}
|
||||
}
|
||||
459
3rdparty/libjpeg/jccolor.c
vendored
459
3rdparty/libjpeg/jccolor.c
vendored
@@ -1,459 +0,0 @@
|
||||
/*
|
||||
* jccolor.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains input colorspace conversion routines.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_converter pub; /* public fields */
|
||||
|
||||
/* Private state for RGB->YCC conversion */
|
||||
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
|
||||
} my_color_converter;
|
||||
|
||||
typedef my_color_converter * my_cconvert_ptr;
|
||||
|
||||
|
||||
/**************** RGB -> YCbCr conversion: most common case **************/
|
||||
|
||||
/*
|
||||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
|
||||
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
|
||||
* The conversion equations to be implemented are therefore
|
||||
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
|
||||
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
|
||||
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
|
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
|
||||
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
|
||||
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
|
||||
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
|
||||
* were not represented exactly. Now we sacrifice exact representation of
|
||||
* maximum red and maximum blue in order to get exact grayscales.
|
||||
*
|
||||
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||
*
|
||||
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||
* by precalculating the constants times R,G,B for all possible values.
|
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
|
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for
|
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing
|
||||
* colorspace anyway.
|
||||
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
|
||||
* in the tables to save adding them separately in the inner loop.
|
||||
*/
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
/* We allocate one big table and divide it up into eight parts, instead of
|
||||
* doing eight alloc_small requests. This lets us use a single table base
|
||||
* address, which can be held in a register in the inner loops on many
|
||||
* machines (more than can hold all eight addresses, anyway).
|
||||
*/
|
||||
|
||||
#define R_Y_OFF 0 /* offset to R => Y section */
|
||||
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
|
||||
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
|
||||
#define R_CB_OFF (3*(MAXJSAMPLE+1))
|
||||
#define G_CB_OFF (4*(MAXJSAMPLE+1))
|
||||
#define B_CB_OFF (5*(MAXJSAMPLE+1))
|
||||
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
|
||||
#define G_CR_OFF (6*(MAXJSAMPLE+1))
|
||||
#define B_CR_OFF (7*(MAXJSAMPLE+1))
|
||||
#define TABLE_SIZE (8*(MAXJSAMPLE+1))
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for RGB->YCC colorspace conversion.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_ycc_start (j_compress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
INT32 * rgb_ycc_tab;
|
||||
INT32 i;
|
||||
|
||||
/* Allocate and fill in the conversion tables. */
|
||||
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(TABLE_SIZE * SIZEOF(INT32)));
|
||||
|
||||
for (i = 0; i <= MAXJSAMPLE; i++) {
|
||||
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
|
||||
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
|
||||
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
|
||||
rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
|
||||
rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
|
||||
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
|
||||
* This ensures that the maximum output will round to MAXJSAMPLE
|
||||
* not MAXJSAMPLE+1, and thus that we don't have to range-limit.
|
||||
*/
|
||||
rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
|
||||
/* B=>Cb and R=>Cr tables are the same
|
||||
rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
|
||||
*/
|
||||
rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
|
||||
rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
*
|
||||
* Note that we change from the application's interleaved-pixel format
|
||||
* to our internal noninterleaved, one-plane-per-component format.
|
||||
* The input buffer is therefore three times as wide as the output buffer.
|
||||
*
|
||||
* A starting row offset is provided only for the output buffer. The caller
|
||||
* can easily adjust the passed input_buf value to accommodate any row
|
||||
* offset required on that side.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_ycc_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr0, outptr1, outptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = GETJSAMPLE(inptr[RGB_RED]);
|
||||
g = GETJSAMPLE(inptr[RGB_GREEN]);
|
||||
b = GETJSAMPLE(inptr[RGB_BLUE]);
|
||||
inptr += RGB_PIXELSIZE;
|
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation.
|
||||
* Hence the value being shifted is never negative, and we don't
|
||||
* need the general RIGHT_SHIFT macro.
|
||||
*/
|
||||
/* Y */
|
||||
outptr0[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cb */
|
||||
outptr1[col] = (JSAMPLE)
|
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cr */
|
||||
outptr2[col] = (JSAMPLE)
|
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**************** Cases other than RGB -> YCbCr **************/
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles RGB->grayscale conversion, which is the same
|
||||
* as the RGB->Y portion of RGB->YCbCr.
|
||||
* We assume rgb_ycc_start has been called (we only use the Y tables).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
rgb_gray_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr = output_buf[0][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = GETJSAMPLE(inptr[RGB_RED]);
|
||||
g = GETJSAMPLE(inptr[RGB_GREEN]);
|
||||
b = GETJSAMPLE(inptr[RGB_BLUE]);
|
||||
inptr += RGB_PIXELSIZE;
|
||||
/* Y */
|
||||
outptr[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles Adobe-style CMYK->YCCK conversion,
|
||||
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
|
||||
* conversion as above, while passing K (black) unchanged.
|
||||
* We assume rgb_ycc_start has been called.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
cmyk_ycck_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int r, g, b;
|
||||
register INT32 * ctab = cconvert->rgb_ycc_tab;
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr0, outptr1, outptr2, outptr3;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr0 = output_buf[0][output_row];
|
||||
outptr1 = output_buf[1][output_row];
|
||||
outptr2 = output_buf[2][output_row];
|
||||
outptr3 = output_buf[3][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
|
||||
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
|
||||
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
|
||||
/* K passes through as-is */
|
||||
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
|
||||
inptr += 4;
|
||||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
|
||||
* must be too; we do not need an explicit range-limiting operation.
|
||||
* Hence the value being shifted is never negative, and we don't
|
||||
* need the general RIGHT_SHIFT macro.
|
||||
*/
|
||||
/* Y */
|
||||
outptr0[col] = (JSAMPLE)
|
||||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cb */
|
||||
outptr1[col] = (JSAMPLE)
|
||||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
|
||||
>> SCALEBITS);
|
||||
/* Cr */
|
||||
outptr2[col] = (JSAMPLE)
|
||||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
|
||||
>> SCALEBITS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles grayscale output with no conversion.
|
||||
* The source can be either plain grayscale or YCbCr (since Y == gray).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
grayscale_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
int instride = cinfo->input_components;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = *input_buf++;
|
||||
outptr = output_buf[0][output_row];
|
||||
output_row++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
|
||||
inptr += instride;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the JPEG colorspace.
|
||||
* This version handles multi-component colorspaces without conversion.
|
||||
* We assume input_components == num_components.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_convert (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
|
||||
JDIMENSION output_row, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr;
|
||||
register JSAMPROW outptr;
|
||||
register JDIMENSION col;
|
||||
register int ci;
|
||||
int nc = cinfo->num_components;
|
||||
JDIMENSION num_cols = cinfo->image_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
/* It seems fastest to make a separate pass for each component. */
|
||||
for (ci = 0; ci < nc; ci++) {
|
||||
inptr = *input_buf;
|
||||
outptr = output_buf[ci][output_row];
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
|
||||
inptr += nc;
|
||||
}
|
||||
}
|
||||
input_buf++;
|
||||
output_row++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_method (j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for input colorspace conversion.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_color_converter (j_compress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert;
|
||||
|
||||
cconvert = (my_cconvert_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_color_converter));
|
||||
cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
|
||||
/* set start_pass to null method until we find out differently */
|
||||
cconvert->pub.start_pass = null_method;
|
||||
|
||||
/* Make sure input_components agrees with in_color_space */
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->input_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
#if RGB_PIXELSIZE != 3
|
||||
if (cinfo->input_components != RGB_PIXELSIZE)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
#endif /* else share code with YCbCr */
|
||||
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->input_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
if (cinfo->input_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
|
||||
default: /* JCS_UNKNOWN can be anything */
|
||||
if (cinfo->input_components < 1)
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Check num_components, set conversion method based on requested space */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->num_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_GRAYSCALE)
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
else if (cinfo->in_color_space == JCS_RGB) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = rgb_gray_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCbCr)
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_RGB) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = rgb_ycc_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCbCr)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_CMYK)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_YCCK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
if (cinfo->in_color_space == JCS_CMYK) {
|
||||
cconvert->pub.start_pass = rgb_ycc_start;
|
||||
cconvert->pub.color_convert = cmyk_ycck_convert;
|
||||
} else if (cinfo->in_color_space == JCS_YCCK)
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
default: /* allow null conversion of JCS_UNKNOWN */
|
||||
if (cinfo->jpeg_color_space != cinfo->in_color_space ||
|
||||
cinfo->num_components != cinfo->input_components)
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
break;
|
||||
}
|
||||
}
|
||||
482
3rdparty/libjpeg/jcdctmgr.c
vendored
482
3rdparty/libjpeg/jcdctmgr.c
vendored
@@ -1,482 +0,0 @@
|
||||
/*
|
||||
* jcdctmgr.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the forward-DCT management logic.
|
||||
* This code selects a particular DCT implementation to be used,
|
||||
* and it performs related housekeeping chores including coefficient
|
||||
* quantization.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
|
||||
/* Private subobject for this module */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_forward_dct pub; /* public fields */
|
||||
|
||||
/* Pointer to the DCT routine actually in use */
|
||||
forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
|
||||
|
||||
/* The actual post-DCT divisors --- not identical to the quant table
|
||||
* entries, because of scaling (especially for an unnormalized DCT).
|
||||
* Each table is given in normal array order.
|
||||
*/
|
||||
DCTELEM * divisors[NUM_QUANT_TBLS];
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
/* Same as above for the floating-point case. */
|
||||
float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
|
||||
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
|
||||
#endif
|
||||
} my_fdct_controller;
|
||||
|
||||
typedef my_fdct_controller * my_fdct_ptr;
|
||||
|
||||
|
||||
/* The current scaled-DCT routines require ISLOW-style divisor tables,
|
||||
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
||||
*/
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#else
|
||||
#ifdef DCT_SCALING_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform forward DCT on one or more blocks of a component.
|
||||
*
|
||||
* The input samples are taken from the sample_data[] array starting at
|
||||
* position start_row/start_col, and moving to the right for any additional
|
||||
* blocks. The quantized coefficients are returned in coef_blocks[].
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks)
|
||||
/* This version is used for integer DCT implementations. */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
|
||||
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
|
||||
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
||||
JDIMENSION bi;
|
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */
|
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
|
||||
/* Perform the DCT */
|
||||
(*do_dct) (workspace, sample_data, start_col);
|
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||
{ register DCTELEM temp, qval;
|
||||
register int i;
|
||||
register JCOEFPTR output_ptr = coef_blocks[bi];
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
qval = divisors[i];
|
||||
temp = workspace[i];
|
||||
/* Divide the coefficient value by qval, ensuring proper rounding.
|
||||
* Since C does not specify the direction of rounding for negative
|
||||
* quotients, we have to force the dividend positive for portability.
|
||||
*
|
||||
* In most files, at least half of the output values will be zero
|
||||
* (at default quantization settings, more like three-quarters...)
|
||||
* so we should ensure that this case is fast. On many machines,
|
||||
* a comparison is enough cheaper than a divide to make a special test
|
||||
* a win. Since both inputs will be nonnegative, we need only test
|
||||
* for a < b to discover whether a/b is 0.
|
||||
* If your machine's division is fast enough, define FAST_DIVIDE.
|
||||
*/
|
||||
#ifdef FAST_DIVIDE
|
||||
#define DIVIDE_BY(a,b) a /= b
|
||||
#else
|
||||
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
||||
#endif
|
||||
if (temp < 0) {
|
||||
temp = -temp;
|
||||
temp += qval>>1; /* for rounding */
|
||||
DIVIDE_BY(temp, qval);
|
||||
temp = -temp;
|
||||
} else {
|
||||
temp += qval>>1; /* for rounding */
|
||||
DIVIDE_BY(temp, qval);
|
||||
}
|
||||
output_ptr[i] = (JCOEF) temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
METHODDEF(void)
|
||||
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
||||
JDIMENSION start_row, JDIMENSION start_col,
|
||||
JDIMENSION num_blocks)
|
||||
/* This version is used for floating-point DCT implementations. */
|
||||
{
|
||||
/* This routine is heavily used, so it's worth coding it tightly. */
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
|
||||
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
||||
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
|
||||
JDIMENSION bi;
|
||||
|
||||
sample_data += start_row; /* fold in the vertical offset once */
|
||||
|
||||
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
|
||||
/* Perform the DCT */
|
||||
(*do_dct) (workspace, sample_data, start_col);
|
||||
|
||||
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
||||
{ register FAST_FLOAT temp;
|
||||
register int i;
|
||||
register JCOEFPTR output_ptr = coef_blocks[bi];
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
/* Apply the quantization and scaling factor */
|
||||
temp = workspace[i] * divisors[i];
|
||||
/* Round to nearest integer.
|
||||
* Since C does not specify the direction of rounding for negative
|
||||
* quotients, we have to force the dividend positive for portability.
|
||||
* The maximum coefficient size is +-16K (for 12-bit data), so this
|
||||
* code should work for either 16-bit or 32-bit ints.
|
||||
*/
|
||||
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
* Verify that all referenced Q-tables are present, and set up
|
||||
* the divisor table for each one.
|
||||
* In the current implementation, DCT of all components is done during
|
||||
* the first pass, even if only some components will be output in the
|
||||
* first scan. Hence all components should be examined here.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_fdctmgr (j_compress_ptr cinfo)
|
||||
{
|
||||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
||||
int ci, qtblno, i;
|
||||
jpeg_component_info *compptr;
|
||||
int method = 0;
|
||||
JQUANT_TBL * qtbl;
|
||||
DCTELEM * dtbl;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Select the proper DCT routine for this component's scaling */
|
||||
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
|
||||
#ifdef DCT_SCALING_SUPPORTED
|
||||
case ((1 << 8) + 1):
|
||||
fdct->do_dct[ci] = jpeg_fdct_1x1;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 2):
|
||||
fdct->do_dct[ci] = jpeg_fdct_2x2;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((3 << 8) + 3):
|
||||
fdct->do_dct[ci] = jpeg_fdct_3x3;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 4):
|
||||
fdct->do_dct[ci] = jpeg_fdct_4x4;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((5 << 8) + 5):
|
||||
fdct->do_dct[ci] = jpeg_fdct_5x5;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 6):
|
||||
fdct->do_dct[ci] = jpeg_fdct_6x6;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((7 << 8) + 7):
|
||||
fdct->do_dct[ci] = jpeg_fdct_7x7;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((9 << 8) + 9):
|
||||
fdct->do_dct[ci] = jpeg_fdct_9x9;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((10 << 8) + 10):
|
||||
fdct->do_dct[ci] = jpeg_fdct_10x10;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((11 << 8) + 11):
|
||||
fdct->do_dct[ci] = jpeg_fdct_11x11;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((12 << 8) + 12):
|
||||
fdct->do_dct[ci] = jpeg_fdct_12x12;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((13 << 8) + 13):
|
||||
fdct->do_dct[ci] = jpeg_fdct_13x13;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((14 << 8) + 14):
|
||||
fdct->do_dct[ci] = jpeg_fdct_14x14;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((15 << 8) + 15):
|
||||
fdct->do_dct[ci] = jpeg_fdct_15x15;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((16 << 8) + 16):
|
||||
fdct->do_dct[ci] = jpeg_fdct_16x16;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((16 << 8) + 8):
|
||||
fdct->do_dct[ci] = jpeg_fdct_16x8;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((14 << 8) + 7):
|
||||
fdct->do_dct[ci] = jpeg_fdct_14x7;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((12 << 8) + 6):
|
||||
fdct->do_dct[ci] = jpeg_fdct_12x6;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((10 << 8) + 5):
|
||||
fdct->do_dct[ci] = jpeg_fdct_10x5;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((8 << 8) + 4):
|
||||
fdct->do_dct[ci] = jpeg_fdct_8x4;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 3):
|
||||
fdct->do_dct[ci] = jpeg_fdct_6x3;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 2):
|
||||
fdct->do_dct[ci] = jpeg_fdct_4x2;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 1):
|
||||
fdct->do_dct[ci] = jpeg_fdct_2x1;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((8 << 8) + 16):
|
||||
fdct->do_dct[ci] = jpeg_fdct_8x16;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((7 << 8) + 14):
|
||||
fdct->do_dct[ci] = jpeg_fdct_7x14;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 12):
|
||||
fdct->do_dct[ci] = jpeg_fdct_6x12;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((5 << 8) + 10):
|
||||
fdct->do_dct[ci] = jpeg_fdct_5x10;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 8):
|
||||
fdct->do_dct[ci] = jpeg_fdct_4x8;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((3 << 8) + 6):
|
||||
fdct->do_dct[ci] = jpeg_fdct_3x6;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 4):
|
||||
fdct->do_dct[ci] = jpeg_fdct_2x4;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
case ((1 << 8) + 2):
|
||||
fdct->do_dct[ci] = jpeg_fdct_1x2;
|
||||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
|
||||
break;
|
||||
#endif
|
||||
case ((DCTSIZE << 8) + DCTSIZE):
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
fdct->do_dct[ci] = jpeg_fdct_islow;
|
||||
method = JDCT_ISLOW;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
fdct->do_dct[ci] = jpeg_fdct_ifast;
|
||||
method = JDCT_IFAST;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
fdct->do_float_dct[ci] = jpeg_fdct_float;
|
||||
method = JDCT_FLOAT;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
|
||||
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
|
||||
break;
|
||||
}
|
||||
qtblno = compptr->quant_tbl_no;
|
||||
/* Make sure specified quantization table is present */
|
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||
qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
||||
/* Compute divisors for this quant table */
|
||||
/* We may do this more than once for same table, but it's not a big deal */
|
||||
switch (method) {
|
||||
#ifdef PROVIDE_ISLOW_TABLES
|
||||
case JDCT_ISLOW:
|
||||
/* For LL&M IDCT method, divisors are equal to raw quantization
|
||||
* coefficients multiplied by 8 (to counteract scaling).
|
||||
*/
|
||||
if (fdct->divisors[qtblno] == NULL) {
|
||||
fdct->divisors[qtblno] = (DCTELEM *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(DCTELEM));
|
||||
}
|
||||
dtbl = fdct->divisors[qtblno];
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
||||
}
|
||||
fdct->pub.forward_DCT[ci] = forward_DCT;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
{
|
||||
/* For AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* We apply a further scale factor of 8.
|
||||
*/
|
||||
#define CONST_BITS 14
|
||||
static const INT16 aanscales[DCTSIZE2] = {
|
||||
/* precomputed values scaled up by 14 bits */
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||
};
|
||||
SHIFT_TEMPS
|
||||
|
||||
if (fdct->divisors[qtblno] == NULL) {
|
||||
fdct->divisors[qtblno] = (DCTELEM *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(DCTELEM));
|
||||
}
|
||||
dtbl = fdct->divisors[qtblno];
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
dtbl[i] = (DCTELEM)
|
||||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
||||
(INT32) aanscales[i]),
|
||||
CONST_BITS-3);
|
||||
}
|
||||
}
|
||||
fdct->pub.forward_DCT[ci] = forward_DCT;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
{
|
||||
/* For float AA&N IDCT method, divisors are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* We apply a further scale factor of 8.
|
||||
* What's actually stored is 1/divisor so that the inner loop can
|
||||
* use a multiplication rather than a division.
|
||||
*/
|
||||
FAST_FLOAT * fdtbl;
|
||||
int row, col;
|
||||
static const double aanscalefactor[DCTSIZE] = {
|
||||
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||
};
|
||||
|
||||
if (fdct->float_divisors[qtblno] == NULL) {
|
||||
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
DCTSIZE2 * SIZEOF(FAST_FLOAT));
|
||||
}
|
||||
fdtbl = fdct->float_divisors[qtblno];
|
||||
i = 0;
|
||||
for (row = 0; row < DCTSIZE; row++) {
|
||||
for (col = 0; col < DCTSIZE; col++) {
|
||||
fdtbl[i] = (FAST_FLOAT)
|
||||
(1.0 / (((double) qtbl->quantval[i] *
|
||||
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
fdct->pub.forward_DCT[ci] = forward_DCT_float;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize FDCT manager.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_forward_dct (j_compress_ptr cinfo)
|
||||
{
|
||||
my_fdct_ptr fdct;
|
||||
int i;
|
||||
|
||||
fdct = (my_fdct_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_fdct_controller));
|
||||
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
||||
fdct->pub.start_pass = start_pass_fdctmgr;
|
||||
|
||||
/* Mark divisor tables unallocated */
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
fdct->divisors[i] = NULL;
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
fdct->float_divisors[i] = NULL;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
1612
3rdparty/libjpeg/jchuff.c
vendored
1612
3rdparty/libjpeg/jchuff.c
vendored
File diff suppressed because it is too large
Load Diff
65
3rdparty/libjpeg/jcinit.c
vendored
65
3rdparty/libjpeg/jcinit.c
vendored
@@ -1,65 +0,0 @@
|
||||
/*
|
||||
* jcinit.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains initialization logic for the JPEG compressor.
|
||||
* This routine is in charge of selecting the modules to be executed and
|
||||
* making an initialization call to each one.
|
||||
*
|
||||
* Logically, this code belongs in jcmaster.c. It's split out because
|
||||
* linking this routine implies linking the entire compression library.
|
||||
* For a transcoding-only application, we want to be able to use jcmaster.c
|
||||
* without linking in the whole library.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules.
|
||||
* This is done once at the start of processing an image. We determine
|
||||
* which modules will be used and give them appropriate initialization calls.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_compress_master (j_compress_ptr cinfo)
|
||||
{
|
||||
/* Initialize master control (includes parameter checking/processing) */
|
||||
jinit_c_master_control(cinfo, FALSE /* full compression */);
|
||||
|
||||
/* Preprocessing */
|
||||
if (! cinfo->raw_data_in) {
|
||||
jinit_color_converter(cinfo);
|
||||
jinit_downsampler(cinfo);
|
||||
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
}
|
||||
/* Forward DCT */
|
||||
jinit_forward_dct(cinfo);
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code)
|
||||
jinit_arith_encoder(cinfo);
|
||||
else {
|
||||
jinit_huff_encoder(cinfo);
|
||||
}
|
||||
|
||||
/* Need a full-image coefficient buffer in any multi-pass mode. */
|
||||
jinit_c_coef_controller(cinfo,
|
||||
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
|
||||
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
|
||||
jinit_marker_writer(cinfo);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Write the datastream header (SOI) immediately.
|
||||
* Frame and scan headers are postponed till later.
|
||||
* This lets application insert special markers after the SOI.
|
||||
*/
|
||||
(*cinfo->marker->write_file_header) (cinfo);
|
||||
}
|
||||
293
3rdparty/libjpeg/jcmainct.c
vendored
293
3rdparty/libjpeg/jcmainct.c
vendored
@@ -1,293 +0,0 @@
|
||||
/*
|
||||
* jcmainct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the main buffer controller for compression.
|
||||
* The main buffer lies between the pre-processor and the JPEG
|
||||
* compressor proper; it holds downsampled data in the JPEG colorspace.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Note: currently, there is no operating mode in which a full-image buffer
|
||||
* is needed at this step. If there were, that mode could not be used with
|
||||
* "raw data" input, since this module is bypassed in that case. However,
|
||||
* we've left the code here for possible use in special applications.
|
||||
*/
|
||||
#undef FULL_MAIN_BUFFER_SUPPORTED
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_main_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION cur_iMCU_row; /* number of current iMCU row */
|
||||
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
|
||||
boolean suspended; /* remember if we suspended output */
|
||||
J_BUF_MODE pass_mode; /* current operating mode */
|
||||
|
||||
/* If using just a strip buffer, this points to the entire set of buffers
|
||||
* (we allocate one for each component). In the full-image case, this
|
||||
* points to the currently accessible strips of the virtual arrays.
|
||||
*/
|
||||
JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
/* If using full-image storage, this array holds pointers to virtual-array
|
||||
* control blocks for each component. Unused if not full-image storage.
|
||||
*/
|
||||
jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
|
||||
#endif
|
||||
} my_main_controller;
|
||||
|
||||
typedef my_main_controller * my_main_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(void) process_data_simple_main
|
||||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
METHODDEF(void) process_data_buffer_main
|
||||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
|
||||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
/* Do nothing in raw-data mode. */
|
||||
if (cinfo->raw_data_in)
|
||||
return;
|
||||
|
||||
main->cur_iMCU_row = 0; /* initialize counters */
|
||||
main->rowgroup_ctr = 0;
|
||||
main->suspended = FALSE;
|
||||
main->pass_mode = pass_mode; /* save mode for use by process_data */
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
if (main->whole_image[0] != NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
main->pub.process_data = process_data_simple_main;
|
||||
break;
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
case JBUF_SAVE_SOURCE:
|
||||
case JBUF_CRANK_DEST:
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
if (main->whole_image[0] == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
main->pub.process_data = process_data_buffer_main;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This routine handles the simple pass-through mode,
|
||||
* where we have only a strip buffer.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_simple_main (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (main->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size)
|
||||
(*cinfo->prep->pre_process_data) (cinfo,
|
||||
input_buf, in_row_ctr, in_rows_avail,
|
||||
main->buffer, &main->rowgroup_ctr,
|
||||
(JDIMENSION) cinfo->min_DCT_v_scaled_size);
|
||||
|
||||
/* If we don't have a full iMCU row buffered, return to application for
|
||||
* more data. Note that preprocessor will always pad to fill the iMCU row
|
||||
* at the bottom of the image.
|
||||
*/
|
||||
if (main->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size)
|
||||
return;
|
||||
|
||||
/* Send the completed row to the compressor */
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
|
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation
|
||||
* we pretend we didn't yet consume the last input row; otherwise, if
|
||||
* it happened to be the last row of the image, the application would
|
||||
* think we were done.
|
||||
*/
|
||||
if (! main->suspended) {
|
||||
(*in_row_ctr)--;
|
||||
main->suspended = TRUE;
|
||||
}
|
||||
return;
|
||||
}
|
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty.
|
||||
*/
|
||||
if (main->suspended) {
|
||||
(*in_row_ctr)++;
|
||||
main->suspended = FALSE;
|
||||
}
|
||||
main->rowgroup_ctr = 0;
|
||||
main->cur_iMCU_row++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This routine handles all of the modes that use a full-size buffer.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_buffer_main (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
boolean writing = (main->pass_mode != JBUF_CRANK_DEST);
|
||||
|
||||
while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
|
||||
/* Realign the virtual buffers if at the start of an iMCU row. */
|
||||
if (main->rowgroup_ctr == 0) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, main->whole_image[ci],
|
||||
main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
|
||||
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
|
||||
}
|
||||
/* In a read pass, pretend we just read some source data. */
|
||||
if (! writing) {
|
||||
*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
|
||||
main->rowgroup_ctr = DCTSIZE;
|
||||
}
|
||||
}
|
||||
|
||||
/* If a write pass, read input data until the current iMCU row is full. */
|
||||
/* Note: preprocessor will pad if necessary to fill the last iMCU row. */
|
||||
if (writing) {
|
||||
(*cinfo->prep->pre_process_data) (cinfo,
|
||||
input_buf, in_row_ctr, in_rows_avail,
|
||||
main->buffer, &main->rowgroup_ctr,
|
||||
(JDIMENSION) DCTSIZE);
|
||||
/* Return to application if we need more data to fill the iMCU row. */
|
||||
if (main->rowgroup_ctr < DCTSIZE)
|
||||
return;
|
||||
}
|
||||
|
||||
/* Emit data, unless this is a sink-only pass. */
|
||||
if (main->pass_mode != JBUF_SAVE_SOURCE) {
|
||||
if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
|
||||
/* If compressor did not consume the whole row, then we must need to
|
||||
* suspend processing and return to the application. In this situation
|
||||
* we pretend we didn't yet consume the last input row; otherwise, if
|
||||
* it happened to be the last row of the image, the application would
|
||||
* think we were done.
|
||||
*/
|
||||
if (! main->suspended) {
|
||||
(*in_row_ctr)--;
|
||||
main->suspended = TRUE;
|
||||
}
|
||||
return;
|
||||
}
|
||||
/* We did finish the row. Undo our little suspension hack if a previous
|
||||
* call suspended; then mark the main buffer empty.
|
||||
*/
|
||||
if (main->suspended) {
|
||||
(*in_row_ctr)++;
|
||||
main->suspended = FALSE;
|
||||
}
|
||||
}
|
||||
|
||||
/* If get here, we are done with this iMCU row. Mark buffer empty. */
|
||||
main->rowgroup_ctr = 0;
|
||||
main->cur_iMCU_row++;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* FULL_MAIN_BUFFER_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_main_ptr main;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
main = (my_main_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_main_controller));
|
||||
cinfo->main = (struct jpeg_c_main_controller *) main;
|
||||
main->pub.start_pass = start_pass_main;
|
||||
|
||||
/* We don't need to create a buffer in raw-data mode. */
|
||||
if (cinfo->raw_data_in)
|
||||
return;
|
||||
|
||||
/* Create the buffer. It holds downsampled data, so each component
|
||||
* may be of a different size.
|
||||
*/
|
||||
if (need_full_buffer) {
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component */
|
||||
/* Note we pad the bottom to a multiple of the iMCU height */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size,
|
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
||||
(long) compptr->v_samp_factor) * DCTSIZE,
|
||||
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif
|
||||
} else {
|
||||
#ifdef FULL_MAIN_BUFFER_SUPPORTED
|
||||
main->whole_image[0] = NULL; /* flag for no virtual arrays */
|
||||
#endif
|
||||
/* Allocate a strip buffer for each component */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
main->buffer[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size,
|
||||
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
|
||||
}
|
||||
}
|
||||
}
|
||||
667
3rdparty/libjpeg/jcmarker.c
vendored
667
3rdparty/libjpeg/jcmarker.c
vendored
@@ -1,667 +0,0 @@
|
||||
/*
|
||||
* jcmarker.c
|
||||
*
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains routines to write JPEG datastream markers.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
typedef enum { /* JPEG marker codes */
|
||||
M_SOF0 = 0xc0,
|
||||
M_SOF1 = 0xc1,
|
||||
M_SOF2 = 0xc2,
|
||||
M_SOF3 = 0xc3,
|
||||
|
||||
M_SOF5 = 0xc5,
|
||||
M_SOF6 = 0xc6,
|
||||
M_SOF7 = 0xc7,
|
||||
|
||||
M_JPG = 0xc8,
|
||||
M_SOF9 = 0xc9,
|
||||
M_SOF10 = 0xca,
|
||||
M_SOF11 = 0xcb,
|
||||
|
||||
M_SOF13 = 0xcd,
|
||||
M_SOF14 = 0xce,
|
||||
M_SOF15 = 0xcf,
|
||||
|
||||
M_DHT = 0xc4,
|
||||
|
||||
M_DAC = 0xcc,
|
||||
|
||||
M_RST0 = 0xd0,
|
||||
M_RST1 = 0xd1,
|
||||
M_RST2 = 0xd2,
|
||||
M_RST3 = 0xd3,
|
||||
M_RST4 = 0xd4,
|
||||
M_RST5 = 0xd5,
|
||||
M_RST6 = 0xd6,
|
||||
M_RST7 = 0xd7,
|
||||
|
||||
M_SOI = 0xd8,
|
||||
M_EOI = 0xd9,
|
||||
M_SOS = 0xda,
|
||||
M_DQT = 0xdb,
|
||||
M_DNL = 0xdc,
|
||||
M_DRI = 0xdd,
|
||||
M_DHP = 0xde,
|
||||
M_EXP = 0xdf,
|
||||
|
||||
M_APP0 = 0xe0,
|
||||
M_APP1 = 0xe1,
|
||||
M_APP2 = 0xe2,
|
||||
M_APP3 = 0xe3,
|
||||
M_APP4 = 0xe4,
|
||||
M_APP5 = 0xe5,
|
||||
M_APP6 = 0xe6,
|
||||
M_APP7 = 0xe7,
|
||||
M_APP8 = 0xe8,
|
||||
M_APP9 = 0xe9,
|
||||
M_APP10 = 0xea,
|
||||
M_APP11 = 0xeb,
|
||||
M_APP12 = 0xec,
|
||||
M_APP13 = 0xed,
|
||||
M_APP14 = 0xee,
|
||||
M_APP15 = 0xef,
|
||||
|
||||
M_JPG0 = 0xf0,
|
||||
M_JPG13 = 0xfd,
|
||||
M_COM = 0xfe,
|
||||
|
||||
M_TEM = 0x01,
|
||||
|
||||
M_ERROR = 0x100
|
||||
} JPEG_MARKER;
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_marker_writer pub; /* public fields */
|
||||
|
||||
unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
|
||||
} my_marker_writer;
|
||||
|
||||
typedef my_marker_writer * my_marker_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Basic output routines.
|
||||
*
|
||||
* Note that we do not support suspension while writing a marker.
|
||||
* Therefore, an application using suspension must ensure that there is
|
||||
* enough buffer space for the initial markers (typ. 600-700 bytes) before
|
||||
* calling jpeg_start_compress, and enough space to write the trailing EOI
|
||||
* (a few bytes) before calling jpeg_finish_compress. Multipass compression
|
||||
* modes are not supported at all with suspension, so those two are the only
|
||||
* points where markers will be written.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
emit_byte (j_compress_ptr cinfo, int val)
|
||||
/* Emit a byte */
|
||||
{
|
||||
struct jpeg_destination_mgr * dest = cinfo->dest;
|
||||
|
||||
*(dest->next_output_byte)++ = (JOCTET) val;
|
||||
if (--dest->free_in_buffer == 0) {
|
||||
if (! (*dest->empty_output_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
|
||||
/* Emit a marker code */
|
||||
{
|
||||
emit_byte(cinfo, 0xFF);
|
||||
emit_byte(cinfo, (int) mark);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_2bytes (j_compress_ptr cinfo, int value)
|
||||
/* Emit a 2-byte integer; these are always MSB first in JPEG files */
|
||||
{
|
||||
emit_byte(cinfo, (value >> 8) & 0xFF);
|
||||
emit_byte(cinfo, value & 0xFF);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Routines to write specific marker types.
|
||||
*/
|
||||
|
||||
LOCAL(int)
|
||||
emit_dqt (j_compress_ptr cinfo, int index)
|
||||
/* Emit a DQT marker */
|
||||
/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
|
||||
{
|
||||
JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
|
||||
int prec;
|
||||
int i;
|
||||
|
||||
if (qtbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
|
||||
|
||||
prec = 0;
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
if (qtbl->quantval[i] > 255)
|
||||
prec = 1;
|
||||
}
|
||||
|
||||
if (! qtbl->sent_table) {
|
||||
emit_marker(cinfo, M_DQT);
|
||||
|
||||
emit_2bytes(cinfo, prec ? DCTSIZE2*2 + 1 + 2 : DCTSIZE2 + 1 + 2);
|
||||
|
||||
emit_byte(cinfo, index + (prec<<4));
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
/* The table entries must be emitted in zigzag order. */
|
||||
unsigned int qval = qtbl->quantval[jpeg_natural_order[i]];
|
||||
if (prec)
|
||||
emit_byte(cinfo, (int) (qval >> 8));
|
||||
emit_byte(cinfo, (int) (qval & 0xFF));
|
||||
}
|
||||
|
||||
qtbl->sent_table = TRUE;
|
||||
}
|
||||
|
||||
return prec;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
|
||||
/* Emit a DHT marker */
|
||||
{
|
||||
JHUFF_TBL * htbl;
|
||||
int length, i;
|
||||
|
||||
if (is_ac) {
|
||||
htbl = cinfo->ac_huff_tbl_ptrs[index];
|
||||
index += 0x10; /* output index has AC bit set */
|
||||
} else {
|
||||
htbl = cinfo->dc_huff_tbl_ptrs[index];
|
||||
}
|
||||
|
||||
if (htbl == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
|
||||
|
||||
if (! htbl->sent_table) {
|
||||
emit_marker(cinfo, M_DHT);
|
||||
|
||||
length = 0;
|
||||
for (i = 1; i <= 16; i++)
|
||||
length += htbl->bits[i];
|
||||
|
||||
emit_2bytes(cinfo, length + 2 + 1 + 16);
|
||||
emit_byte(cinfo, index);
|
||||
|
||||
for (i = 1; i <= 16; i++)
|
||||
emit_byte(cinfo, htbl->bits[i]);
|
||||
|
||||
for (i = 0; i < length; i++)
|
||||
emit_byte(cinfo, htbl->huffval[i]);
|
||||
|
||||
htbl->sent_table = TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dac (j_compress_ptr cinfo)
|
||||
/* Emit a DAC marker */
|
||||
/* Since the useful info is so small, we want to emit all the tables in */
|
||||
/* one DAC marker. Therefore this routine does its own scan of the table. */
|
||||
{
|
||||
#ifdef C_ARITH_CODING_SUPPORTED
|
||||
char dc_in_use[NUM_ARITH_TBLS];
|
||||
char ac_in_use[NUM_ARITH_TBLS];
|
||||
int length, i;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||
dc_in_use[i] = ac_in_use[i] = 0;
|
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
dc_in_use[compptr->dc_tbl_no] = 1;
|
||||
ac_in_use[compptr->ac_tbl_no] = 1;
|
||||
}
|
||||
|
||||
length = 0;
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++)
|
||||
length += dc_in_use[i] + ac_in_use[i];
|
||||
|
||||
emit_marker(cinfo, M_DAC);
|
||||
|
||||
emit_2bytes(cinfo, length*2 + 2);
|
||||
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
if (dc_in_use[i]) {
|
||||
emit_byte(cinfo, i);
|
||||
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
|
||||
}
|
||||
if (ac_in_use[i]) {
|
||||
emit_byte(cinfo, i + 0x10);
|
||||
emit_byte(cinfo, cinfo->arith_ac_K[i]);
|
||||
}
|
||||
}
|
||||
#endif /* C_ARITH_CODING_SUPPORTED */
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_dri (j_compress_ptr cinfo)
|
||||
/* Emit a DRI marker */
|
||||
{
|
||||
emit_marker(cinfo, M_DRI);
|
||||
|
||||
emit_2bytes(cinfo, 4); /* fixed length */
|
||||
|
||||
emit_2bytes(cinfo, (int) cinfo->restart_interval);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
|
||||
/* Emit a SOF marker */
|
||||
{
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
emit_marker(cinfo, code);
|
||||
|
||||
emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
|
||||
|
||||
/* Make sure image isn't bigger than SOF field can handle */
|
||||
if ((long) cinfo->jpeg_height > 65535L ||
|
||||
(long) cinfo->jpeg_width > 65535L)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
|
||||
|
||||
emit_byte(cinfo, cinfo->data_precision);
|
||||
emit_2bytes(cinfo, (int) cinfo->jpeg_height);
|
||||
emit_2bytes(cinfo, (int) cinfo->jpeg_width);
|
||||
|
||||
emit_byte(cinfo, cinfo->num_components);
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
emit_byte(cinfo, compptr->component_id);
|
||||
emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
|
||||
emit_byte(cinfo, compptr->quant_tbl_no);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_sos (j_compress_ptr cinfo)
|
||||
/* Emit a SOS marker */
|
||||
{
|
||||
int i, td, ta;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
emit_marker(cinfo, M_SOS);
|
||||
|
||||
emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
|
||||
|
||||
emit_byte(cinfo, cinfo->comps_in_scan);
|
||||
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
emit_byte(cinfo, compptr->component_id);
|
||||
td = compptr->dc_tbl_no;
|
||||
ta = compptr->ac_tbl_no;
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Progressive mode: only DC or only AC tables are used in one scan;
|
||||
* furthermore, Huffman coding of DC refinement uses no table at all.
|
||||
* We emit 0 for unused field(s); this is recommended by the P&M text
|
||||
* but does not seem to be specified in the standard.
|
||||
*/
|
||||
if (cinfo->Ss == 0) {
|
||||
ta = 0; /* DC scan */
|
||||
if (cinfo->Ah != 0 && !cinfo->arith_code)
|
||||
td = 0; /* no DC table either */
|
||||
} else {
|
||||
td = 0; /* AC scan */
|
||||
}
|
||||
}
|
||||
emit_byte(cinfo, (td << 4) + ta);
|
||||
}
|
||||
|
||||
emit_byte(cinfo, cinfo->Ss);
|
||||
emit_byte(cinfo, cinfo->Se);
|
||||
emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_jfif_app0 (j_compress_ptr cinfo)
|
||||
/* Emit a JFIF-compliant APP0 marker */
|
||||
{
|
||||
/*
|
||||
* Length of APP0 block (2 bytes)
|
||||
* Block ID (4 bytes - ASCII "JFIF")
|
||||
* Zero byte (1 byte to terminate the ID string)
|
||||
* Version Major, Minor (2 bytes - major first)
|
||||
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
|
||||
* Xdpu (2 bytes - dots per unit horizontal)
|
||||
* Ydpu (2 bytes - dots per unit vertical)
|
||||
* Thumbnail X size (1 byte)
|
||||
* Thumbnail Y size (1 byte)
|
||||
*/
|
||||
|
||||
emit_marker(cinfo, M_APP0);
|
||||
|
||||
emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
|
||||
|
||||
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
|
||||
emit_byte(cinfo, 0x46);
|
||||
emit_byte(cinfo, 0x49);
|
||||
emit_byte(cinfo, 0x46);
|
||||
emit_byte(cinfo, 0);
|
||||
emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
|
||||
emit_byte(cinfo, cinfo->JFIF_minor_version);
|
||||
emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
|
||||
emit_2bytes(cinfo, (int) cinfo->X_density);
|
||||
emit_2bytes(cinfo, (int) cinfo->Y_density);
|
||||
emit_byte(cinfo, 0); /* No thumbnail image */
|
||||
emit_byte(cinfo, 0);
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
emit_adobe_app14 (j_compress_ptr cinfo)
|
||||
/* Emit an Adobe APP14 marker */
|
||||
{
|
||||
/*
|
||||
* Length of APP14 block (2 bytes)
|
||||
* Block ID (5 bytes - ASCII "Adobe")
|
||||
* Version Number (2 bytes - currently 100)
|
||||
* Flags0 (2 bytes - currently 0)
|
||||
* Flags1 (2 bytes - currently 0)
|
||||
* Color transform (1 byte)
|
||||
*
|
||||
* Although Adobe TN 5116 mentions Version = 101, all the Adobe files
|
||||
* now in circulation seem to use Version = 100, so that's what we write.
|
||||
*
|
||||
* We write the color transform byte as 1 if the JPEG color space is
|
||||
* YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
|
||||
* whether the encoder performed a transformation, which is pretty useless.
|
||||
*/
|
||||
|
||||
emit_marker(cinfo, M_APP14);
|
||||
|
||||
emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
|
||||
|
||||
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
|
||||
emit_byte(cinfo, 0x64);
|
||||
emit_byte(cinfo, 0x6F);
|
||||
emit_byte(cinfo, 0x62);
|
||||
emit_byte(cinfo, 0x65);
|
||||
emit_2bytes(cinfo, 100); /* Version */
|
||||
emit_2bytes(cinfo, 0); /* Flags0 */
|
||||
emit_2bytes(cinfo, 0); /* Flags1 */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_YCbCr:
|
||||
emit_byte(cinfo, 1); /* Color transform = 1 */
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
emit_byte(cinfo, 2); /* Color transform = 2 */
|
||||
break;
|
||||
default:
|
||||
emit_byte(cinfo, 0); /* Color transform = 0 */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines allow writing an arbitrary marker with parameters.
|
||||
* The only intended use is to emit COM or APPn markers after calling
|
||||
* write_file_header and before calling write_frame_header.
|
||||
* Other uses are not guaranteed to produce desirable results.
|
||||
* Counting the parameter bytes properly is the caller's responsibility.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
|
||||
/* Emit an arbitrary marker header */
|
||||
{
|
||||
if (datalen > (unsigned int) 65533) /* safety check */
|
||||
ERREXIT(cinfo, JERR_BAD_LENGTH);
|
||||
|
||||
emit_marker(cinfo, (JPEG_MARKER) marker);
|
||||
|
||||
emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
|
||||
}
|
||||
|
||||
METHODDEF(void)
|
||||
write_marker_byte (j_compress_ptr cinfo, int val)
|
||||
/* Emit one byte of marker parameters following write_marker_header */
|
||||
{
|
||||
emit_byte(cinfo, val);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write datastream header.
|
||||
* This consists of an SOI and optional APPn markers.
|
||||
* We recommend use of the JFIF marker, but not the Adobe marker,
|
||||
* when using YCbCr or grayscale data. The JFIF marker should NOT
|
||||
* be used for any other JPEG colorspace. The Adobe marker is helpful
|
||||
* to distinguish RGB, CMYK, and YCCK colorspaces.
|
||||
* Note that an application can write additional header markers after
|
||||
* jpeg_start_compress returns.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_file_header (j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
|
||||
|
||||
emit_marker(cinfo, M_SOI); /* first the SOI */
|
||||
|
||||
/* SOI is defined to reset restart interval to 0 */
|
||||
marker->last_restart_interval = 0;
|
||||
|
||||
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
|
||||
emit_jfif_app0(cinfo);
|
||||
if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
|
||||
emit_adobe_app14(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write frame header.
|
||||
* This consists of DQT and SOFn markers.
|
||||
* Note that we do not emit the SOF until we have emitted the DQT(s).
|
||||
* This avoids compatibility problems with incorrect implementations that
|
||||
* try to error-check the quant table numbers as soon as they see the SOF.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_frame_header (j_compress_ptr cinfo)
|
||||
{
|
||||
int ci, prec;
|
||||
boolean is_baseline;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Emit DQT for each quantization table.
|
||||
* Note that emit_dqt() suppresses any duplicate tables.
|
||||
*/
|
||||
prec = 0;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
prec += emit_dqt(cinfo, compptr->quant_tbl_no);
|
||||
}
|
||||
/* now prec is nonzero iff there are any 16-bit quant tables. */
|
||||
|
||||
/* Check for a non-baseline specification.
|
||||
* Note we assume that Huffman table numbers won't be changed later.
|
||||
*/
|
||||
if (cinfo->arith_code || cinfo->progressive_mode ||
|
||||
cinfo->data_precision != 8) {
|
||||
is_baseline = FALSE;
|
||||
} else {
|
||||
is_baseline = TRUE;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
|
||||
is_baseline = FALSE;
|
||||
}
|
||||
if (prec && is_baseline) {
|
||||
is_baseline = FALSE;
|
||||
/* If it's baseline except for quantizer size, warn the user */
|
||||
TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
|
||||
}
|
||||
}
|
||||
|
||||
/* Emit the proper SOF marker */
|
||||
if (cinfo->arith_code) {
|
||||
if (cinfo->progressive_mode)
|
||||
emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */
|
||||
else
|
||||
emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */
|
||||
} else {
|
||||
if (cinfo->progressive_mode)
|
||||
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
|
||||
else if (is_baseline)
|
||||
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
|
||||
else
|
||||
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write scan header.
|
||||
* This consists of DHT or DAC markers, optional DRI, and SOS.
|
||||
* Compressed data will be written following the SOS.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_scan_header (j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
|
||||
int i;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->arith_code) {
|
||||
/* Emit arith conditioning info. We may have some duplication
|
||||
* if the file has multiple scans, but it's so small it's hardly
|
||||
* worth worrying about.
|
||||
*/
|
||||
emit_dac(cinfo);
|
||||
} else {
|
||||
/* Emit Huffman tables.
|
||||
* Note that emit_dht() suppresses any duplicate tables.
|
||||
*/
|
||||
for (i = 0; i < cinfo->comps_in_scan; i++) {
|
||||
compptr = cinfo->cur_comp_info[i];
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Progressive mode: only DC or only AC tables are used in one scan */
|
||||
if (cinfo->Ss == 0) {
|
||||
if (cinfo->Ah == 0) /* DC needs no table for refinement scan */
|
||||
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
|
||||
} else {
|
||||
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
|
||||
}
|
||||
} else {
|
||||
/* Sequential mode: need both DC and AC tables */
|
||||
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
|
||||
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Emit DRI if required --- note that DRI value could change for each scan.
|
||||
* We avoid wasting space with unnecessary DRIs, however.
|
||||
*/
|
||||
if (cinfo->restart_interval != marker->last_restart_interval) {
|
||||
emit_dri(cinfo);
|
||||
marker->last_restart_interval = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
emit_sos(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write datastream trailer.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_file_trailer (j_compress_ptr cinfo)
|
||||
{
|
||||
emit_marker(cinfo, M_EOI);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Write an abbreviated table-specification datastream.
|
||||
* This consists of SOI, DQT and DHT tables, and EOI.
|
||||
* Any table that is defined and not marked sent_table = TRUE will be
|
||||
* emitted. Note that all tables will be marked sent_table = TRUE at exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
write_tables_only (j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
emit_marker(cinfo, M_SOI);
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
||||
if (cinfo->quant_tbl_ptrs[i] != NULL)
|
||||
(void) emit_dqt(cinfo, i);
|
||||
}
|
||||
|
||||
if (! cinfo->arith_code) {
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
|
||||
emit_dht(cinfo, i, FALSE);
|
||||
if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
|
||||
emit_dht(cinfo, i, TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
emit_marker(cinfo, M_EOI);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the marker writer module.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_marker_writer (j_compress_ptr cinfo)
|
||||
{
|
||||
my_marker_ptr marker;
|
||||
|
||||
/* Create the subobject */
|
||||
marker = (my_marker_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_marker_writer));
|
||||
cinfo->marker = (struct jpeg_marker_writer *) marker;
|
||||
/* Initialize method pointers */
|
||||
marker->pub.write_file_header = write_file_header;
|
||||
marker->pub.write_frame_header = write_frame_header;
|
||||
marker->pub.write_scan_header = write_scan_header;
|
||||
marker->pub.write_file_trailer = write_file_trailer;
|
||||
marker->pub.write_tables_only = write_tables_only;
|
||||
marker->pub.write_marker_header = write_marker_header;
|
||||
marker->pub.write_marker_byte = write_marker_byte;
|
||||
/* Initialize private state */
|
||||
marker->last_restart_interval = 0;
|
||||
}
|
||||
770
3rdparty/libjpeg/jcmaster.c
vendored
770
3rdparty/libjpeg/jcmaster.c
vendored
@@ -1,770 +0,0 @@
|
||||
/*
|
||||
* jcmaster.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 2003-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains master control logic for the JPEG compressor.
|
||||
* These routines are concerned with parameter validation, initial setup,
|
||||
* and inter-pass control (determining the number of passes and the work
|
||||
* to be done in each pass).
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef enum {
|
||||
main_pass, /* input data, also do first output step */
|
||||
huff_opt_pass, /* Huffman code optimization pass */
|
||||
output_pass /* data output pass */
|
||||
} c_pass_type;
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_comp_master pub; /* public fields */
|
||||
|
||||
c_pass_type pass_type; /* the type of the current pass */
|
||||
|
||||
int pass_number; /* # of passes completed */
|
||||
int total_passes; /* total # of passes needed */
|
||||
|
||||
int scan_number; /* current index in scan_info[] */
|
||||
} my_comp_master;
|
||||
|
||||
typedef my_comp_master * my_master_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Support routines that do various essential calculations.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Compute JPEG image dimensions and related values.
|
||||
* NOTE: this is exported for possible use by application.
|
||||
* Hence it mustn't do anything that can't be done twice.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
#ifdef DCT_SCALING_SUPPORTED
|
||||
|
||||
/* Compute actual JPEG image dimensions and DCT scaling choices. */
|
||||
if (cinfo->scale_num >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/1 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width << 3;
|
||||
cinfo->jpeg_height = cinfo->image_height << 3;
|
||||
cinfo->min_DCT_h_scaled_size = 1;
|
||||
cinfo->min_DCT_v_scaled_size = 1;
|
||||
} else if (cinfo->scale_num >= cinfo->scale_denom * 4) {
|
||||
/* Provide 4/1 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width << 2;
|
||||
cinfo->jpeg_height = cinfo->image_height << 2;
|
||||
cinfo->min_DCT_h_scaled_size = 2;
|
||||
cinfo->min_DCT_v_scaled_size = 2;
|
||||
} else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/3 scaling */
|
||||
cinfo->jpeg_width = (cinfo->image_width << 1) + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 2, 3L);
|
||||
cinfo->jpeg_height = (cinfo->image_height << 1) + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 2, 3L);
|
||||
cinfo->min_DCT_h_scaled_size = 3;
|
||||
cinfo->min_DCT_v_scaled_size = 3;
|
||||
} else if (cinfo->scale_num >= cinfo->scale_denom * 2) {
|
||||
/* Provide 2/1 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width << 1;
|
||||
cinfo->jpeg_height = cinfo->image_height << 1;
|
||||
cinfo->min_DCT_h_scaled_size = 4;
|
||||
cinfo->min_DCT_v_scaled_size = 4;
|
||||
} else if (cinfo->scale_num * 5 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/5 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 3, 5L);
|
||||
cinfo->jpeg_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 3, 5L);
|
||||
cinfo->min_DCT_h_scaled_size = 5;
|
||||
cinfo->min_DCT_v_scaled_size = 5;
|
||||
} else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 4) {
|
||||
/* Provide 4/3 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 3L);
|
||||
cinfo->jpeg_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 3L);
|
||||
cinfo->min_DCT_h_scaled_size = 6;
|
||||
cinfo->min_DCT_v_scaled_size = 6;
|
||||
} else if (cinfo->scale_num * 7 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/7 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 7L);
|
||||
cinfo->jpeg_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 7L);
|
||||
cinfo->min_DCT_h_scaled_size = 7;
|
||||
cinfo->min_DCT_v_scaled_size = 7;
|
||||
} else if (cinfo->scale_num >= cinfo->scale_denom) {
|
||||
/* Provide 1/1 scaling */
|
||||
cinfo->jpeg_width = cinfo->image_width;
|
||||
cinfo->jpeg_height = cinfo->image_height;
|
||||
cinfo->min_DCT_h_scaled_size = DCTSIZE;
|
||||
cinfo->min_DCT_v_scaled_size = DCTSIZE;
|
||||
} else if (cinfo->scale_num * 9 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/9 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 8, 9L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 8, 9L);
|
||||
cinfo->min_DCT_h_scaled_size = 9;
|
||||
cinfo->min_DCT_v_scaled_size = 9;
|
||||
} else if (cinfo->scale_num * 5 >= cinfo->scale_denom * 4) {
|
||||
/* Provide 4/5 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 4, 5L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 4, 5L);
|
||||
cinfo->min_DCT_h_scaled_size = 10;
|
||||
cinfo->min_DCT_v_scaled_size = 10;
|
||||
} else if (cinfo->scale_num * 11 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/11 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 8, 11L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 8, 11L);
|
||||
cinfo->min_DCT_h_scaled_size = 11;
|
||||
cinfo->min_DCT_v_scaled_size = 11;
|
||||
} else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 2) {
|
||||
/* Provide 2/3 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 2, 3L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 2, 3L);
|
||||
cinfo->min_DCT_h_scaled_size = 12;
|
||||
cinfo->min_DCT_v_scaled_size = 12;
|
||||
} else if (cinfo->scale_num * 13 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/13 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 8, 13L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 8, 13L);
|
||||
cinfo->min_DCT_h_scaled_size = 13;
|
||||
cinfo->min_DCT_v_scaled_size = 13;
|
||||
} else if (cinfo->scale_num * 7 >= cinfo->scale_denom * 4) {
|
||||
/* Provide 4/7 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 4, 7L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 4, 7L);
|
||||
cinfo->min_DCT_h_scaled_size = 14;
|
||||
cinfo->min_DCT_v_scaled_size = 14;
|
||||
} else if (cinfo->scale_num * 15 >= cinfo->scale_denom * 8) {
|
||||
/* Provide 8/15 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 8, 15L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 8, 15L);
|
||||
cinfo->min_DCT_h_scaled_size = 15;
|
||||
cinfo->min_DCT_v_scaled_size = 15;
|
||||
} else {
|
||||
/* Provide 1/2 scaling */
|
||||
cinfo->jpeg_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 2L);
|
||||
cinfo->jpeg_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 2L);
|
||||
cinfo->min_DCT_h_scaled_size = 16;
|
||||
cinfo->min_DCT_v_scaled_size = 16;
|
||||
}
|
||||
|
||||
#else /* !DCT_SCALING_SUPPORTED */
|
||||
|
||||
/* Hardwire it to "no scaling" */
|
||||
cinfo->jpeg_width = cinfo->image_width;
|
||||
cinfo->jpeg_height = cinfo->image_height;
|
||||
cinfo->min_DCT_h_scaled_size = DCTSIZE;
|
||||
cinfo->min_DCT_v_scaled_size = DCTSIZE;
|
||||
|
||||
#endif /* DCT_SCALING_SUPPORTED */
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
initial_setup (j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
int ci, ssize;
|
||||
jpeg_component_info *compptr;
|
||||
long samplesperrow;
|
||||
JDIMENSION jd_samplesperrow;
|
||||
|
||||
jpeg_calc_jpeg_dimensions(cinfo);
|
||||
|
||||
/* Sanity check on image dimensions */
|
||||
if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0
|
||||
|| cinfo->num_components <= 0 || cinfo->input_components <= 0)
|
||||
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
|
||||
|
||||
/* Make sure image isn't bigger than I can handle */
|
||||
if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION ||
|
||||
(long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
|
||||
|
||||
/* Width of an input scanline must be representable as JDIMENSION. */
|
||||
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
|
||||
jd_samplesperrow = (JDIMENSION) samplesperrow;
|
||||
if ((long) jd_samplesperrow != samplesperrow)
|
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||
|
||||
/* For now, precision must match compiled-in value... */
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
/* Check that number of components won't exceed internal array sizes */
|
||||
if (cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
|
||||
/* Compute maximum sampling factors; check factor validity */
|
||||
cinfo->max_h_samp_factor = 1;
|
||||
cinfo->max_v_samp_factor = 1;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
|
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
|
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||
compptr->h_samp_factor);
|
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||
compptr->v_samp_factor);
|
||||
}
|
||||
|
||||
/* Compute dimensions of components */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Fill in the correct component_index value; don't rely on application */
|
||||
compptr->component_index = ci;
|
||||
/* In selecting the actual DCT scaling for each component, we try to
|
||||
* scale down the chroma components via DCT scaling rather than downsampling.
|
||||
* This saves time if the downsampler gets to use 1:1 scaling.
|
||||
* Note this code adapts subsampling ratios which are powers of 2.
|
||||
*/
|
||||
ssize = 1;
|
||||
#ifdef DCT_SCALING_SUPPORTED
|
||||
while (cinfo->min_DCT_h_scaled_size * ssize <=
|
||||
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) {
|
||||
ssize = ssize * 2;
|
||||
}
|
||||
#endif
|
||||
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
|
||||
ssize = 1;
|
||||
#ifdef DCT_SCALING_SUPPORTED
|
||||
while (cinfo->min_DCT_v_scaled_size * ssize <=
|
||||
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) {
|
||||
ssize = ssize * 2;
|
||||
}
|
||||
#endif
|
||||
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
|
||||
|
||||
/* We don't support DCT ratios larger than 2. */
|
||||
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
|
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
|
||||
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
|
||||
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
|
||||
|
||||
/* Size in DCT blocks */
|
||||
compptr->width_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor,
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->height_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor,
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
/* Size in samples */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_width *
|
||||
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_height *
|
||||
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
/* Mark component needed (this flag isn't actually used for compression) */
|
||||
compptr->component_needed = TRUE;
|
||||
}
|
||||
|
||||
/* Compute number of fully interleaved MCU rows (number of times that
|
||||
* main controller will call coefficient controller).
|
||||
*/
|
||||
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
}
|
||||
|
||||
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
LOCAL(void)
|
||||
validate_script (j_compress_ptr cinfo)
|
||||
/* Verify that the scan script in cinfo->scan_info[] is valid; also
|
||||
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
|
||||
*/
|
||||
{
|
||||
const jpeg_scan_info * scanptr;
|
||||
int scanno, ncomps, ci, coefi, thisi;
|
||||
int Ss, Se, Ah, Al;
|
||||
boolean component_sent[MAX_COMPONENTS];
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
int * last_bitpos_ptr;
|
||||
int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
|
||||
/* -1 until that coefficient has been seen; then last Al for it */
|
||||
#endif
|
||||
|
||||
if (cinfo->num_scans <= 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
|
||||
|
||||
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
|
||||
* for progressive JPEG, no scan can have this.
|
||||
*/
|
||||
scanptr = cinfo->scan_info;
|
||||
if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
cinfo->progressive_mode = TRUE;
|
||||
last_bitpos_ptr = & last_bitpos[0][0];
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++)
|
||||
*last_bitpos_ptr++ = -1;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
cinfo->progressive_mode = FALSE;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
component_sent[ci] = FALSE;
|
||||
}
|
||||
|
||||
for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
|
||||
/* Validate component indexes */
|
||||
ncomps = scanptr->comps_in_scan;
|
||||
if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
thisi = scanptr->component_index[ci];
|
||||
if (thisi < 0 || thisi >= cinfo->num_components)
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
/* Components must appear in SOF order within each scan */
|
||||
if (ci > 0 && thisi <= scanptr->component_index[ci-1])
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
}
|
||||
/* Validate progression parameters */
|
||||
Ss = scanptr->Ss;
|
||||
Se = scanptr->Se;
|
||||
Ah = scanptr->Ah;
|
||||
Al = scanptr->Al;
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
/* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
|
||||
* seems wrong: the upper bound ought to depend on data precision.
|
||||
* Perhaps they really meant 0..N+1 for N-bit precision.
|
||||
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in
|
||||
* out-of-range reconstructed DC values during the first DC scan,
|
||||
* which might cause problems for some decoders.
|
||||
*/
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define MAX_AH_AL 10
|
||||
#else
|
||||
#define MAX_AH_AL 13
|
||||
#endif
|
||||
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
|
||||
Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
if (Ss == 0) {
|
||||
if (Se != 0) /* DC and AC together not OK */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
} else {
|
||||
if (ncomps != 1) /* AC scans must be for only one component */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
}
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
|
||||
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
for (coefi = Ss; coefi <= Se; coefi++) {
|
||||
if (last_bitpos_ptr[coefi] < 0) {
|
||||
/* first scan of this coefficient */
|
||||
if (Ah != 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
} else {
|
||||
/* not first scan */
|
||||
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
}
|
||||
last_bitpos_ptr[coefi] = Al;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
/* For sequential JPEG, all progression parameters must be these: */
|
||||
if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
|
||||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
|
||||
/* Make sure components are not sent twice */
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
thisi = scanptr->component_index[ci];
|
||||
if (component_sent[thisi])
|
||||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
|
||||
component_sent[thisi] = TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Now verify that everything got sent. */
|
||||
if (cinfo->progressive_mode) {
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
/* For progressive mode, we only check that at least some DC data
|
||||
* got sent for each component; the spec does not require that all bits
|
||||
* of all coefficients be transmitted. Would it be wiser to enforce
|
||||
* transmission of all coefficient bits??
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
if (last_bitpos[ci][0] < 0)
|
||||
ERREXIT(cinfo, JERR_MISSING_DATA);
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
if (! component_sent[ci])
|
||||
ERREXIT(cinfo, JERR_MISSING_DATA);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* C_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
select_scan_parameters (j_compress_ptr cinfo)
|
||||
/* Set up the scan parameters for the current scan */
|
||||
{
|
||||
int ci;
|
||||
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
if (cinfo->scan_info != NULL) {
|
||||
/* Prepare for current scan --- the script is already validated */
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
|
||||
|
||||
cinfo->comps_in_scan = scanptr->comps_in_scan;
|
||||
for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
|
||||
cinfo->cur_comp_info[ci] =
|
||||
&cinfo->comp_info[scanptr->component_index[ci]];
|
||||
}
|
||||
cinfo->Ss = scanptr->Ss;
|
||||
cinfo->Se = scanptr->Se;
|
||||
cinfo->Ah = scanptr->Ah;
|
||||
cinfo->Al = scanptr->Al;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
/* Prepare for single sequential-JPEG scan containing all components */
|
||||
if (cinfo->num_components > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
cinfo->comps_in_scan = cinfo->num_components;
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
|
||||
}
|
||||
cinfo->Ss = 0;
|
||||
cinfo->Se = DCTSIZE2-1;
|
||||
cinfo->Ah = 0;
|
||||
cinfo->Al = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
per_scan_setup (j_compress_ptr cinfo)
|
||||
/* Do computations that are needed before processing a JPEG scan */
|
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
|
||||
{
|
||||
int ci, mcublks, tmp;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
|
||||
/* Noninterleaved (single-component) scan */
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||
|
||||
/* For noninterleaved scan, always one block per MCU */
|
||||
compptr->MCU_width = 1;
|
||||
compptr->MCU_height = 1;
|
||||
compptr->MCU_blocks = 1;
|
||||
compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
|
||||
compptr->last_col_width = 1;
|
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of block rows present in the last iMCU row.
|
||||
*/
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (tmp == 0) tmp = compptr->v_samp_factor;
|
||||
compptr->last_row_height = tmp;
|
||||
|
||||
/* Prepare array describing MCU composition */
|
||||
cinfo->blocks_in_MCU = 1;
|
||||
cinfo->MCU_membership[0] = 0;
|
||||
|
||||
} else {
|
||||
|
||||
/* Interleaved (multi-component) scan */
|
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_width,
|
||||
(long) (cinfo->max_h_samp_factor*DCTSIZE));
|
||||
cinfo->MCU_rows_in_scan = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->jpeg_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
|
||||
cinfo->blocks_in_MCU = 0;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Sampling factors give # of blocks of component in each MCU */
|
||||
compptr->MCU_width = compptr->h_samp_factor;
|
||||
compptr->MCU_height = compptr->v_samp_factor;
|
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
|
||||
/* Figure number of non-dummy blocks in last MCU column & row */
|
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
|
||||
if (tmp == 0) tmp = compptr->MCU_width;
|
||||
compptr->last_col_width = tmp;
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
|
||||
if (tmp == 0) tmp = compptr->MCU_height;
|
||||
compptr->last_row_height = tmp;
|
||||
/* Prepare array describing MCU composition */
|
||||
mcublks = compptr->MCU_blocks;
|
||||
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
|
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||
while (mcublks-- > 0) {
|
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Convert restart specified in rows to actual MCU count. */
|
||||
/* Note that count must fit in 16 bits, so we provide limiting. */
|
||||
if (cinfo->restart_in_rows > 0) {
|
||||
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
|
||||
cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup.
|
||||
* This is called at the beginning of each pass. We determine which modules
|
||||
* will be active during this pass and give them appropriate start_pass calls.
|
||||
* We also set is_last_pass to indicate whether any more passes will be
|
||||
* required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
prepare_for_pass (j_compress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
switch (master->pass_type) {
|
||||
case main_pass:
|
||||
/* Initial pass: will collect input data, and do either Huffman
|
||||
* optimization or data output for the first scan.
|
||||
*/
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
if (! cinfo->raw_data_in) {
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->downsample->start_pass) (cinfo);
|
||||
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
}
|
||||
(*cinfo->fdct->start_pass) (cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
|
||||
(*cinfo->coef->start_pass) (cinfo,
|
||||
(master->total_passes > 1 ?
|
||||
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
if (cinfo->optimize_coding) {
|
||||
/* No immediate data output; postpone writing frame/scan headers */
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
} else {
|
||||
/* Will write frame/scan headers at first jpeg_write_scanlines call */
|
||||
master->pub.call_pass_startup = TRUE;
|
||||
}
|
||||
break;
|
||||
#ifdef ENTROPY_OPT_SUPPORTED
|
||||
case huff_opt_pass:
|
||||
/* Do Huffman optimization for a scan after the first one. */
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
if (cinfo->Ss != 0 || cinfo->Ah == 0) {
|
||||
(*cinfo->entropy->start_pass) (cinfo, TRUE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
break;
|
||||
}
|
||||
/* Special case: Huffman DC refinement scans need no Huffman table
|
||||
* and therefore we can skip the optimization pass for them.
|
||||
*/
|
||||
master->pass_type = output_pass;
|
||||
master->pass_number++;
|
||||
/*FALLTHROUGH*/
|
||||
#endif
|
||||
case output_pass:
|
||||
/* Do a data-output pass. */
|
||||
/* We need not repeat per-scan setup if prior optimization pass did it. */
|
||||
if (! cinfo->optimize_coding) {
|
||||
select_scan_parameters(cinfo);
|
||||
per_scan_setup(cinfo);
|
||||
}
|
||||
(*cinfo->entropy->start_pass) (cinfo, FALSE);
|
||||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
/* We emit frame/scan headers now */
|
||||
if (master->scan_number == 0)
|
||||
(*cinfo->marker->write_frame_header) (cinfo);
|
||||
(*cinfo->marker->write_scan_header) (cinfo);
|
||||
master->pub.call_pass_startup = FALSE;
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
}
|
||||
|
||||
master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
|
||||
|
||||
/* Set up progress monitor's pass info if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->completed_passes = master->pass_number;
|
||||
cinfo->progress->total_passes = master->total_passes;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Special start-of-pass hook.
|
||||
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
|
||||
* In single-pass processing, we need this hook because we don't want to
|
||||
* write frame/scan headers during jpeg_start_compress; we want to let the
|
||||
* application write COM markers etc. between jpeg_start_compress and the
|
||||
* jpeg_write_scanlines loop.
|
||||
* In multi-pass processing, this routine is not used.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pass_startup (j_compress_ptr cinfo)
|
||||
{
|
||||
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
|
||||
|
||||
(*cinfo->marker->write_frame_header) (cinfo);
|
||||
(*cinfo->marker->write_scan_header) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_pass_master (j_compress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
/* The entropy coder always needs an end-of-pass call,
|
||||
* either to analyze statistics or to flush its output buffer.
|
||||
*/
|
||||
(*cinfo->entropy->finish_pass) (cinfo);
|
||||
|
||||
/* Update state for next pass */
|
||||
switch (master->pass_type) {
|
||||
case main_pass:
|
||||
/* next pass is either output of scan 0 (after optimization)
|
||||
* or output of scan 1 (if no optimization).
|
||||
*/
|
||||
master->pass_type = output_pass;
|
||||
if (! cinfo->optimize_coding)
|
||||
master->scan_number++;
|
||||
break;
|
||||
case huff_opt_pass:
|
||||
/* next pass is always output of current scan */
|
||||
master->pass_type = output_pass;
|
||||
break;
|
||||
case output_pass:
|
||||
/* next pass is either optimization or output of next scan */
|
||||
if (cinfo->optimize_coding)
|
||||
master->pass_type = huff_opt_pass;
|
||||
master->scan_number++;
|
||||
break;
|
||||
}
|
||||
|
||||
master->pass_number++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize master compression control.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
|
||||
{
|
||||
my_master_ptr master;
|
||||
|
||||
master = (my_master_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_comp_master));
|
||||
cinfo->master = (struct jpeg_comp_master *) master;
|
||||
master->pub.prepare_for_pass = prepare_for_pass;
|
||||
master->pub.pass_startup = pass_startup;
|
||||
master->pub.finish_pass = finish_pass_master;
|
||||
master->pub.is_last_pass = FALSE;
|
||||
|
||||
/* Validate parameters, determine derived values */
|
||||
initial_setup(cinfo);
|
||||
|
||||
if (cinfo->scan_info != NULL) {
|
||||
#ifdef C_MULTISCAN_FILES_SUPPORTED
|
||||
validate_script(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
cinfo->progressive_mode = FALSE;
|
||||
cinfo->num_scans = 1;
|
||||
}
|
||||
|
||||
if (cinfo->progressive_mode && cinfo->arith_code == 0) /* TEMPORARY HACK ??? */
|
||||
cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */
|
||||
|
||||
/* Initialize my private state */
|
||||
if (transcode_only) {
|
||||
/* no main pass in transcoding */
|
||||
if (cinfo->optimize_coding)
|
||||
master->pass_type = huff_opt_pass;
|
||||
else
|
||||
master->pass_type = output_pass;
|
||||
} else {
|
||||
/* for normal compression, first pass is always this type: */
|
||||
master->pass_type = main_pass;
|
||||
}
|
||||
master->scan_number = 0;
|
||||
master->pass_number = 0;
|
||||
if (cinfo->optimize_coding)
|
||||
master->total_passes = cinfo->num_scans * 2;
|
||||
else
|
||||
master->total_passes = cinfo->num_scans;
|
||||
}
|
||||
106
3rdparty/libjpeg/jcomapi.c
vendored
106
3rdparty/libjpeg/jcomapi.c
vendored
@@ -1,106 +0,0 @@
|
||||
/*
|
||||
* jcomapi.c
|
||||
*
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface routines that are used for both
|
||||
* compression and decompression.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG compression or decompression operation,
|
||||
* but don't destroy the object itself.
|
||||
*
|
||||
* For this, we merely clean up all the nonpermanent memory pools.
|
||||
* Note that temp files (virtual arrays) are not allowed to belong to
|
||||
* the permanent pool, so we will be able to close all temp files here.
|
||||
* Closing a data source or destination, if necessary, is the application's
|
||||
* responsibility.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort (j_common_ptr cinfo)
|
||||
{
|
||||
int pool;
|
||||
|
||||
/* Do nothing if called on a not-initialized or destroyed JPEG object. */
|
||||
if (cinfo->mem == NULL)
|
||||
return;
|
||||
|
||||
/* Releasing pools in reverse order might help avoid fragmentation
|
||||
* with some (brain-damaged) malloc libraries.
|
||||
*/
|
||||
for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
|
||||
(*cinfo->mem->free_pool) (cinfo, pool);
|
||||
}
|
||||
|
||||
/* Reset overall state for possible reuse of object */
|
||||
if (cinfo->is_decompressor) {
|
||||
cinfo->global_state = DSTATE_START;
|
||||
/* Try to keep application from accessing now-deleted marker list.
|
||||
* A bit kludgy to do it here, but this is the most central place.
|
||||
*/
|
||||
((j_decompress_ptr) cinfo)->marker_list = NULL;
|
||||
} else {
|
||||
cinfo->global_state = CSTATE_START;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG object.
|
||||
*
|
||||
* Everything gets deallocated except the master jpeg_compress_struct itself
|
||||
* and the error manager struct. Both of these are supplied by the application
|
||||
* and must be freed, if necessary, by the application. (Often they are on
|
||||
* the stack and so don't need to be freed anyway.)
|
||||
* Closing a data source or destination, if necessary, is the application's
|
||||
* responsibility.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy (j_common_ptr cinfo)
|
||||
{
|
||||
/* We need only tell the memory manager to release everything. */
|
||||
/* NB: mem pointer is NULL if memory mgr failed to initialize. */
|
||||
if (cinfo->mem != NULL)
|
||||
(*cinfo->mem->self_destruct) (cinfo);
|
||||
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
|
||||
cinfo->global_state = 0; /* mark it destroyed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convenience routines for allocating quantization and Huffman tables.
|
||||
* (Would jutils.c be a more reasonable place to put these?)
|
||||
*/
|
||||
|
||||
GLOBAL(JQUANT_TBL *)
|
||||
jpeg_alloc_quant_table (j_common_ptr cinfo)
|
||||
{
|
||||
JQUANT_TBL *tbl;
|
||||
|
||||
tbl = (JQUANT_TBL *)
|
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
|
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||
return tbl;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(JHUFF_TBL *)
|
||||
jpeg_alloc_huff_table (j_common_ptr cinfo)
|
||||
{
|
||||
JHUFF_TBL *tbl;
|
||||
|
||||
tbl = (JHUFF_TBL *)
|
||||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
|
||||
tbl->sent_table = FALSE; /* make sure this is false in any new table */
|
||||
return tbl;
|
||||
}
|
||||
45
3rdparty/libjpeg/jconfig.h
vendored
45
3rdparty/libjpeg/jconfig.h
vendored
@@ -1,45 +0,0 @@
|
||||
/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 95 or NT. */
|
||||
/* see jconfig.txt for explanations */
|
||||
|
||||
#define HAVE_PROTOTYPES
|
||||
#define HAVE_UNSIGNED_CHAR
|
||||
#define HAVE_UNSIGNED_SHORT
|
||||
/* #define void char */
|
||||
/* #define const */
|
||||
#undef CHAR_IS_UNSIGNED
|
||||
#define HAVE_STDDEF_H
|
||||
#define HAVE_STDLIB_H
|
||||
#undef NEED_BSD_STRINGS
|
||||
#undef NEED_SYS_TYPES_H
|
||||
#undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */
|
||||
#undef NEED_SHORT_EXTERNAL_NAMES
|
||||
#undef INCOMPLETE_TYPES_BROKEN
|
||||
|
||||
/* Define "boolean" as unsigned char, not int, per Windows custom */
|
||||
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
|
||||
typedef unsigned char boolean;
|
||||
#endif
|
||||
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
|
||||
|
||||
|
||||
#ifdef JPEG_INTERNALS
|
||||
|
||||
#undef RIGHT_SHIFT_IS_UNSIGNED
|
||||
|
||||
#endif /* JPEG_INTERNALS */
|
||||
|
||||
#ifdef JPEG_CJPEG_DJPEG
|
||||
|
||||
#define BMP_SUPPORTED /* BMP image file format */
|
||||
#define GIF_SUPPORTED /* GIF image file format */
|
||||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
|
||||
#undef RLE_SUPPORTED /* Utah RLE image file format */
|
||||
#define TARGA_SUPPORTED /* Targa image file format */
|
||||
|
||||
#define TWO_FILE_COMMANDLINE /* optional */
|
||||
#define USE_SETMODE /* Microsoft has setmode() */
|
||||
#undef NEED_SIGNAL_CATCHER
|
||||
#undef DONT_USE_B_MODE
|
||||
#undef PROGRESS_REPORT /* optional */
|
||||
|
||||
#endif /* JPEG_CJPEG_DJPEG */
|
||||
632
3rdparty/libjpeg/jcparam.c
vendored
632
3rdparty/libjpeg/jcparam.c
vendored
@@ -1,632 +0,0 @@
|
||||
/*
|
||||
* jcparam.c
|
||||
*
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* Modified 2003-2008 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains optional default-setting code for the JPEG compressor.
|
||||
* Applications do not have to use this file, but those that don't use it
|
||||
* must know a lot more about the innards of the JPEG code.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Quantization table setup routines
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
|
||||
const unsigned int *basic_table,
|
||||
int scale_factor, boolean force_baseline)
|
||||
/* Define a quantization table equal to the basic_table times
|
||||
* a scale factor (given as a percentage).
|
||||
* If force_baseline is TRUE, the computed quantization table entries
|
||||
* are limited to 1..255 for JPEG baseline compatibility.
|
||||
*/
|
||||
{
|
||||
JQUANT_TBL ** qtblptr;
|
||||
int i;
|
||||
long temp;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
|
||||
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
|
||||
|
||||
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
|
||||
|
||||
if (*qtblptr == NULL)
|
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
|
||||
/* limit the values to the valid range */
|
||||
if (temp <= 0L) temp = 1L;
|
||||
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
|
||||
if (force_baseline && temp > 255L)
|
||||
temp = 255L; /* limit to baseline range if requested */
|
||||
(*qtblptr)->quantval[i] = (UINT16) temp;
|
||||
}
|
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||
(*qtblptr)->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
/* These are the sample quantization tables given in JPEG spec section K.1.
|
||||
* The spec says that the values given produce "good" quality, and
|
||||
* when divided by 2, "very good" quality.
|
||||
*/
|
||||
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
|
||||
16, 11, 10, 16, 24, 40, 51, 61,
|
||||
12, 12, 14, 19, 26, 58, 60, 55,
|
||||
14, 13, 16, 24, 40, 57, 69, 56,
|
||||
14, 17, 22, 29, 51, 87, 80, 62,
|
||||
18, 22, 37, 56, 68, 109, 103, 77,
|
||||
24, 35, 55, 64, 81, 104, 113, 92,
|
||||
49, 64, 78, 87, 103, 121, 120, 101,
|
||||
72, 92, 95, 98, 112, 100, 103, 99
|
||||
};
|
||||
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
|
||||
17, 18, 24, 47, 99, 99, 99, 99,
|
||||
18, 21, 26, 66, 99, 99, 99, 99,
|
||||
24, 26, 56, 99, 99, 99, 99, 99,
|
||||
47, 66, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99,
|
||||
99, 99, 99, 99, 99, 99, 99, 99
|
||||
};
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and straight percentage-scaling quality scales.
|
||||
* This entry point allows different scalings for luminance and chrominance.
|
||||
*/
|
||||
{
|
||||
/* Set up two quantization tables using the specified scaling */
|
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
|
||||
cinfo->q_scale_factor[0], force_baseline);
|
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
|
||||
cinfo->q_scale_factor[1], force_baseline);
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
|
||||
boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables
|
||||
* and a straight percentage-scaling quality scale. In most cases it's better
|
||||
* to use jpeg_set_quality (below); this entry point is provided for
|
||||
* applications that insist on a linear percentage scaling.
|
||||
*/
|
||||
{
|
||||
/* Set up two quantization tables using the specified scaling */
|
||||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
|
||||
scale_factor, force_baseline);
|
||||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
|
||||
scale_factor, force_baseline);
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_quality_scaling (int quality)
|
||||
/* Convert a user-specified quality rating to a percentage scaling factor
|
||||
* for an underlying quantization table, using our recommended scaling curve.
|
||||
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
|
||||
*/
|
||||
{
|
||||
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
|
||||
if (quality <= 0) quality = 1;
|
||||
if (quality > 100) quality = 100;
|
||||
|
||||
/* The basic table is used as-is (scaling 100) for a quality of 50.
|
||||
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
|
||||
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
|
||||
* to make all the table entries 1 (hence, minimum quantization loss).
|
||||
* Qualities 1..50 are converted to scaling percentage 5000/Q.
|
||||
*/
|
||||
if (quality < 50)
|
||||
quality = 5000 / quality;
|
||||
else
|
||||
quality = 200 - quality*2;
|
||||
|
||||
return quality;
|
||||
}
|
||||
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
|
||||
/* Set or change the 'quality' (quantization) setting, using default tables.
|
||||
* This is the standard quality-adjusting entry point for typical user
|
||||
* interfaces; only those who want detailed control over quantization tables
|
||||
* would use the preceding three routines directly.
|
||||
*/
|
||||
{
|
||||
/* Convert user 0-100 rating to percentage scaling */
|
||||
quality = jpeg_quality_scaling(quality);
|
||||
|
||||
/* Set up standard quality tables */
|
||||
jpeg_set_linear_quality(cinfo, quality, force_baseline);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Huffman table setup routines
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
add_huff_table (j_compress_ptr cinfo,
|
||||
JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
|
||||
/* Define a Huffman table */
|
||||
{
|
||||
int nsymbols, len;
|
||||
|
||||
if (*htblptr == NULL)
|
||||
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
||||
|
||||
/* Copy the number-of-symbols-of-each-code-length counts */
|
||||
MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
|
||||
|
||||
/* Validate the counts. We do this here mainly so we can copy the right
|
||||
* number of symbols from the val[] array, without risking marching off
|
||||
* the end of memory. jchuff.c will do a more thorough test later.
|
||||
*/
|
||||
nsymbols = 0;
|
||||
for (len = 1; len <= 16; len++)
|
||||
nsymbols += bits[len];
|
||||
if (nsymbols < 1 || nsymbols > 256)
|
||||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
||||
|
||||
MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
|
||||
|
||||
/* Initialize sent_table FALSE so table will be written to JPEG file. */
|
||||
(*htblptr)->sent_table = FALSE;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
std_huff_tables (j_compress_ptr cinfo)
|
||||
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
|
||||
/* IMPORTANT: these are only valid for 8-bit data precision! */
|
||||
{
|
||||
static const UINT8 bits_dc_luminance[17] =
|
||||
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
|
||||
static const UINT8 val_dc_luminance[] =
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||
|
||||
static const UINT8 bits_dc_chrominance[17] =
|
||||
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
|
||||
static const UINT8 val_dc_chrominance[] =
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
|
||||
|
||||
static const UINT8 bits_ac_luminance[17] =
|
||||
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
|
||||
static const UINT8 val_ac_luminance[] =
|
||||
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
|
||||
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
|
||||
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
|
||||
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
|
||||
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
|
||||
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
|
||||
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
|
||||
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
|
||||
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
|
||||
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
|
||||
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
|
||||
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
|
||||
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
|
||||
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
||||
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
|
||||
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
|
||||
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
|
||||
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
|
||||
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
|
||||
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa };
|
||||
|
||||
static const UINT8 bits_ac_chrominance[17] =
|
||||
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
|
||||
static const UINT8 val_ac_chrominance[] =
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
|
||||
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
|
||||
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
|
||||
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
|
||||
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
|
||||
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
|
||||
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
|
||||
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
|
||||
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
|
||||
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
|
||||
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
|
||||
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
||||
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
|
||||
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
|
||||
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
|
||||
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
|
||||
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
|
||||
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
|
||||
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
|
||||
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
|
||||
0xf9, 0xfa };
|
||||
|
||||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
|
||||
bits_dc_luminance, val_dc_luminance);
|
||||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
|
||||
bits_ac_luminance, val_ac_luminance);
|
||||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
|
||||
bits_dc_chrominance, val_dc_chrominance);
|
||||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
|
||||
bits_ac_chrominance, val_ac_chrominance);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Default parameter setup for compression.
|
||||
*
|
||||
* Applications that don't choose to use this routine must do their
|
||||
* own setup of all these parameters. Alternately, you can call this
|
||||
* to establish defaults and then alter parameters selectively. This
|
||||
* is the recommended approach since, if we add any new parameters,
|
||||
* your code will still work (they'll be set to reasonable defaults).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_defaults (j_compress_ptr cinfo)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Allocate comp_info array large enough for maximum component count.
|
||||
* Array is made permanent in case application wants to compress
|
||||
* multiple images at same param settings.
|
||||
*/
|
||||
if (cinfo->comp_info == NULL)
|
||||
cinfo->comp_info = (jpeg_component_info *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
MAX_COMPONENTS * SIZEOF(jpeg_component_info));
|
||||
|
||||
/* Initialize everything not dependent on the color space */
|
||||
|
||||
cinfo->scale_num = 1; /* 1:1 scaling */
|
||||
cinfo->scale_denom = 1;
|
||||
cinfo->data_precision = BITS_IN_JSAMPLE;
|
||||
/* Set up two quantization tables using default quality of 75 */
|
||||
jpeg_set_quality(cinfo, 75, TRUE);
|
||||
/* Set up two Huffman tables */
|
||||
std_huff_tables(cinfo);
|
||||
|
||||
/* Initialize default arithmetic coding conditioning */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
cinfo->arith_dc_L[i] = 0;
|
||||
cinfo->arith_dc_U[i] = 1;
|
||||
cinfo->arith_ac_K[i] = 5;
|
||||
}
|
||||
|
||||
/* Default is no multiple-scan output */
|
||||
cinfo->scan_info = NULL;
|
||||
cinfo->num_scans = 0;
|
||||
|
||||
/* Expect normal source image, not raw downsampled data */
|
||||
cinfo->raw_data_in = FALSE;
|
||||
|
||||
/* Use Huffman coding, not arithmetic coding, by default */
|
||||
cinfo->arith_code = FALSE;
|
||||
|
||||
/* By default, don't do extra passes to optimize entropy coding */
|
||||
cinfo->optimize_coding = FALSE;
|
||||
/* The standard Huffman tables are only valid for 8-bit data precision.
|
||||
* If the precision is higher, force optimization on so that usable
|
||||
* tables will be computed. This test can be removed if default tables
|
||||
* are supplied that are valid for the desired precision.
|
||||
*/
|
||||
if (cinfo->data_precision > 8)
|
||||
cinfo->optimize_coding = TRUE;
|
||||
|
||||
/* By default, use the simpler non-cosited sampling alignment */
|
||||
cinfo->CCIR601_sampling = FALSE;
|
||||
|
||||
/* By default, apply fancy downsampling */
|
||||
cinfo->do_fancy_downsampling = TRUE;
|
||||
|
||||
/* No input smoothing */
|
||||
cinfo->smoothing_factor = 0;
|
||||
|
||||
/* DCT algorithm preference */
|
||||
cinfo->dct_method = JDCT_DEFAULT;
|
||||
|
||||
/* No restart markers */
|
||||
cinfo->restart_interval = 0;
|
||||
cinfo->restart_in_rows = 0;
|
||||
|
||||
/* Fill in default JFIF marker parameters. Note that whether the marker
|
||||
* will actually be written is determined by jpeg_set_colorspace.
|
||||
*
|
||||
* By default, the library emits JFIF version code 1.01.
|
||||
* An application that wants to emit JFIF 1.02 extension markers should set
|
||||
* JFIF_minor_version to 2. We could probably get away with just defaulting
|
||||
* to 1.02, but there may still be some decoders in use that will complain
|
||||
* about that; saying 1.01 should minimize compatibility problems.
|
||||
*/
|
||||
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
|
||||
cinfo->JFIF_minor_version = 1;
|
||||
cinfo->density_unit = 0; /* Pixel size is unknown by default */
|
||||
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
|
||||
cinfo->Y_density = 1;
|
||||
|
||||
/* Choose JPEG colorspace based on input space, set defaults accordingly */
|
||||
|
||||
jpeg_default_colorspace(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Select an appropriate JPEG colorspace for in_color_space.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_default_colorspace (j_compress_ptr cinfo)
|
||||
{
|
||||
switch (cinfo->in_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
|
||||
break;
|
||||
case JCS_RGB:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||
break;
|
||||
case JCS_YCbCr:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCbCr);
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
jpeg_set_colorspace(cinfo, JCS_YCCK);
|
||||
break;
|
||||
case JCS_UNKNOWN:
|
||||
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set the JPEG colorspace, and choose colorspace-dependent default values.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
|
||||
{
|
||||
jpeg_component_info * compptr;
|
||||
int ci;
|
||||
|
||||
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
|
||||
(compptr = &cinfo->comp_info[index], \
|
||||
compptr->component_id = (id), \
|
||||
compptr->h_samp_factor = (hsamp), \
|
||||
compptr->v_samp_factor = (vsamp), \
|
||||
compptr->quant_tbl_no = (quant), \
|
||||
compptr->dc_tbl_no = (dctbl), \
|
||||
compptr->ac_tbl_no = (actbl) )
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
|
||||
* tables 1 for chrominance components.
|
||||
*/
|
||||
|
||||
cinfo->jpeg_color_space = colorspace;
|
||||
|
||||
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
|
||||
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
|
||||
|
||||
switch (colorspace) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||
cinfo->num_components = 1;
|
||||
/* JFIF specifies component ID 1 */
|
||||
SET_COMP(0, 1, 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_RGB:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
|
||||
cinfo->num_components = 3;
|
||||
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
|
||||
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
|
||||
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_YCbCr:
|
||||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
|
||||
cinfo->num_components = 3;
|
||||
/* JFIF specifies component IDs 1,2,3 */
|
||||
/* We default to 2x2 subsamples of chrominance */
|
||||
SET_COMP(0, 1, 2,2, 0, 0,0);
|
||||
SET_COMP(1, 2, 1,1, 1, 1,1);
|
||||
SET_COMP(2, 3, 1,1, 1, 1,1);
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
|
||||
cinfo->num_components = 4;
|
||||
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
|
||||
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
|
||||
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
|
||||
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
|
||||
break;
|
||||
case JCS_YCCK:
|
||||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
|
||||
cinfo->num_components = 4;
|
||||
SET_COMP(0, 1, 2,2, 0, 0,0);
|
||||
SET_COMP(1, 2, 1,1, 1, 1,1);
|
||||
SET_COMP(2, 3, 1,1, 1, 1,1);
|
||||
SET_COMP(3, 4, 2,2, 0, 0,0);
|
||||
break;
|
||||
case JCS_UNKNOWN:
|
||||
cinfo->num_components = cinfo->input_components;
|
||||
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
SET_COMP(ci, ci, 1,1, 0, 0,0);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef C_PROGRESSIVE_SUPPORTED
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_a_scan (jpeg_scan_info * scanptr, int ci,
|
||||
int Ss, int Se, int Ah, int Al)
|
||||
/* Support routine: generate one scan for specified component */
|
||||
{
|
||||
scanptr->comps_in_scan = 1;
|
||||
scanptr->component_index[0] = ci;
|
||||
scanptr->Ss = Ss;
|
||||
scanptr->Se = Se;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_scans (jpeg_scan_info * scanptr, int ncomps,
|
||||
int Ss, int Se, int Ah, int Al)
|
||||
/* Support routine: generate one scan for each component */
|
||||
{
|
||||
int ci;
|
||||
|
||||
for (ci = 0; ci < ncomps; ci++) {
|
||||
scanptr->comps_in_scan = 1;
|
||||
scanptr->component_index[0] = ci;
|
||||
scanptr->Ss = Ss;
|
||||
scanptr->Se = Se;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
}
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
LOCAL(jpeg_scan_info *)
|
||||
fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
|
||||
/* Support routine: generate interleaved DC scan if possible, else N scans */
|
||||
{
|
||||
int ci;
|
||||
|
||||
if (ncomps <= MAX_COMPS_IN_SCAN) {
|
||||
/* Single interleaved DC scan */
|
||||
scanptr->comps_in_scan = ncomps;
|
||||
for (ci = 0; ci < ncomps; ci++)
|
||||
scanptr->component_index[ci] = ci;
|
||||
scanptr->Ss = scanptr->Se = 0;
|
||||
scanptr->Ah = Ah;
|
||||
scanptr->Al = Al;
|
||||
scanptr++;
|
||||
} else {
|
||||
/* Noninterleaved DC scan for each component */
|
||||
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
|
||||
}
|
||||
return scanptr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create a recommended progressive-JPEG script.
|
||||
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_simple_progression (j_compress_ptr cinfo)
|
||||
{
|
||||
int ncomps = cinfo->num_components;
|
||||
int nscans;
|
||||
jpeg_scan_info * scanptr;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Figure space needed for script. Calculation must match code below! */
|
||||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
/* Custom script for YCbCr color images. */
|
||||
nscans = 10;
|
||||
} else {
|
||||
/* All-purpose script for other color spaces. */
|
||||
if (ncomps > MAX_COMPS_IN_SCAN)
|
||||
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
|
||||
else
|
||||
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
|
||||
}
|
||||
|
||||
/* Allocate space for script.
|
||||
* We need to put it in the permanent pool in case the application performs
|
||||
* multiple compressions without changing the settings. To avoid a memory
|
||||
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
|
||||
* object, we try to re-use previously allocated space, and we allocate
|
||||
* enough space to handle YCbCr even if initially asked for grayscale.
|
||||
*/
|
||||
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
|
||||
cinfo->script_space_size = MAX(nscans, 10);
|
||||
cinfo->script_space = (jpeg_scan_info *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
cinfo->script_space_size * SIZEOF(jpeg_scan_info));
|
||||
}
|
||||
scanptr = cinfo->script_space;
|
||||
cinfo->scan_info = scanptr;
|
||||
cinfo->num_scans = nscans;
|
||||
|
||||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
/* Custom script for YCbCr color images. */
|
||||
/* Initial DC scan */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
||||
/* Initial AC scan: get some luma data out in a hurry */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
|
||||
/* Chroma data is too small to be worth expending many scans on */
|
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
|
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
|
||||
/* Complete spectral selection for luma AC */
|
||||
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
|
||||
/* Refine next bit of luma AC */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
|
||||
/* Finish DC successive approximation */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
||||
/* Finish AC successive approximation */
|
||||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
|
||||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
|
||||
/* Luma bottom bit comes last since it's usually largest scan */
|
||||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
|
||||
} else {
|
||||
/* All-purpose script for other color spaces. */
|
||||
/* Successive approximation first pass */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
|
||||
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
|
||||
/* Successive approximation second pass */
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
|
||||
/* Successive approximation final pass */
|
||||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
|
||||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* C_PROGRESSIVE_SUPPORTED */
|
||||
358
3rdparty/libjpeg/jcprepct.c
vendored
358
3rdparty/libjpeg/jcprepct.c
vendored
@@ -1,358 +0,0 @@
|
||||
/*
|
||||
* jcprepct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the compression preprocessing controller.
|
||||
* This controller manages the color conversion, downsampling,
|
||||
* and edge expansion steps.
|
||||
*
|
||||
* Most of the complexity here is associated with buffering input rows
|
||||
* as required by the downsampler. See the comments at the head of
|
||||
* jcsample.c for the downsampler's needs.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* At present, jcsample.c can request context rows only for smoothing.
|
||||
* In the future, we might also need context rows for CCIR601 sampling
|
||||
* or other more-complex downsampling procedures. The code to support
|
||||
* context rows should be compiled only if needed.
|
||||
*/
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
#define CONTEXT_ROWS_SUPPORTED
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* For the simple (no-context-row) case, we just need to buffer one
|
||||
* row group's worth of pixels for the downsampling step. At the bottom of
|
||||
* the image, we pad to a full row group by replicating the last pixel row.
|
||||
* The downsampler's last output row is then replicated if needed to pad
|
||||
* out to a full iMCU row.
|
||||
*
|
||||
* When providing context rows, we must buffer three row groups' worth of
|
||||
* pixels. Three row groups are physically allocated, but the row pointer
|
||||
* arrays are made five row groups high, with the extra pointers above and
|
||||
* below "wrapping around" to point to the last and first real row groups.
|
||||
* This allows the downsampler to access the proper context rows.
|
||||
* At the top and bottom of the image, we create dummy context rows by
|
||||
* copying the first or last real pixel row. This copying could be avoided
|
||||
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
|
||||
* trouble on the compression side.
|
||||
*/
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_prep_controller pub; /* public fields */
|
||||
|
||||
/* Downsampling input buffer. This buffer holds color-converted data
|
||||
* until we have enough to do a downsample step.
|
||||
*/
|
||||
JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in source image */
|
||||
int next_buf_row; /* index of next row to store in color_buf */
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
|
||||
int this_row_group; /* starting row index of group to process */
|
||||
int next_buf_stop; /* downsample when we reach this index */
|
||||
#endif
|
||||
} my_prep_controller;
|
||||
|
||||
typedef my_prep_controller * my_prep_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
|
||||
if (pass_mode != JBUF_PASS_THRU)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
prep->rows_to_go = cinfo->image_height;
|
||||
/* Mark the conversion buffer empty */
|
||||
prep->next_buf_row = 0;
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
/* Preset additional state variables for context mode.
|
||||
* These aren't used in non-context mode, so we needn't test which mode.
|
||||
*/
|
||||
prep->this_row_group = 0;
|
||||
/* Set next_buf_stop to stop after two row groups have been read in. */
|
||||
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Expand an image vertically from height input_rows to height output_rows,
|
||||
* by duplicating the bottom row.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
|
||||
int input_rows, int output_rows)
|
||||
{
|
||||
register int row;
|
||||
|
||||
for (row = input_rows; row < output_rows; row++) {
|
||||
jcopy_sample_rows(image_data, input_rows-1, image_data, row,
|
||||
1, num_cols);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the simple no-context case.
|
||||
*
|
||||
* Preprocessor output data is counted in "row groups". A row group
|
||||
* is defined to be v_samp_factor sample rows of each component.
|
||||
* Downsampling will produce this much data from each max_v_samp_factor
|
||||
* input rows.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pre_process_data (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int numrows, ci;
|
||||
JDIMENSION inrows;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
while (*in_row_ctr < in_rows_avail &&
|
||||
*out_row_group_ctr < out_row_groups_avail) {
|
||||
/* Do color conversion to fill the conversion buffer. */
|
||||
inrows = in_rows_avail - *in_row_ctr;
|
||||
numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
|
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows);
|
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->next_buf_row,
|
||||
numrows);
|
||||
*in_row_ctr += numrows;
|
||||
prep->next_buf_row += numrows;
|
||||
prep->rows_to_go -= numrows;
|
||||
/* If at bottom of image, pad to fill the conversion buffer. */
|
||||
if (prep->rows_to_go == 0 &&
|
||||
prep->next_buf_row < cinfo->max_v_samp_factor) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||
prep->next_buf_row, cinfo->max_v_samp_factor);
|
||||
}
|
||||
prep->next_buf_row = cinfo->max_v_samp_factor;
|
||||
}
|
||||
/* If we've filled the conversion buffer, empty it. */
|
||||
if (prep->next_buf_row == cinfo->max_v_samp_factor) {
|
||||
(*cinfo->downsample->downsample) (cinfo,
|
||||
prep->color_buf, (JDIMENSION) 0,
|
||||
output_buf, *out_row_group_ctr);
|
||||
prep->next_buf_row = 0;
|
||||
(*out_row_group_ctr)++;
|
||||
}
|
||||
/* If at bottom of image, pad the output to a full iMCU height.
|
||||
* Note we assume the caller is providing a one-iMCU-height output buffer!
|
||||
*/
|
||||
if (prep->rows_to_go == 0 &&
|
||||
*out_row_group_ctr < out_row_groups_avail) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
numrows = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size;
|
||||
expand_bottom_edge(output_buf[ci],
|
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size,
|
||||
(int) (*out_row_group_ctr * numrows),
|
||||
(int) (out_row_groups_avail * numrows));
|
||||
}
|
||||
*out_row_group_ctr = out_row_groups_avail;
|
||||
break; /* can exit outer loop without test */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the context case.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
pre_process_context (j_compress_ptr cinfo,
|
||||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
|
||||
JDIMENSION in_rows_avail,
|
||||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
|
||||
JDIMENSION out_row_groups_avail)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int numrows, ci;
|
||||
int buf_height = cinfo->max_v_samp_factor * 3;
|
||||
JDIMENSION inrows;
|
||||
|
||||
while (*out_row_group_ctr < out_row_groups_avail) {
|
||||
if (*in_row_ctr < in_rows_avail) {
|
||||
/* Do color conversion to fill the conversion buffer. */
|
||||
inrows = in_rows_avail - *in_row_ctr;
|
||||
numrows = prep->next_buf_stop - prep->next_buf_row;
|
||||
numrows = (int) MIN((JDIMENSION) numrows, inrows);
|
||||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->next_buf_row,
|
||||
numrows);
|
||||
/* Pad at top of image, if first time through */
|
||||
if (prep->rows_to_go == cinfo->image_height) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
int row;
|
||||
for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
|
||||
jcopy_sample_rows(prep->color_buf[ci], 0,
|
||||
prep->color_buf[ci], -row,
|
||||
1, cinfo->image_width);
|
||||
}
|
||||
}
|
||||
}
|
||||
*in_row_ctr += numrows;
|
||||
prep->next_buf_row += numrows;
|
||||
prep->rows_to_go -= numrows;
|
||||
} else {
|
||||
/* Return for more data, unless we are at the bottom of the image. */
|
||||
if (prep->rows_to_go != 0)
|
||||
break;
|
||||
/* When at bottom of image, pad to fill the conversion buffer. */
|
||||
if (prep->next_buf_row < prep->next_buf_stop) {
|
||||
for (ci = 0; ci < cinfo->num_components; ci++) {
|
||||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
|
||||
prep->next_buf_row, prep->next_buf_stop);
|
||||
}
|
||||
prep->next_buf_row = prep->next_buf_stop;
|
||||
}
|
||||
}
|
||||
/* If we've gotten enough data, downsample a row group. */
|
||||
if (prep->next_buf_row == prep->next_buf_stop) {
|
||||
(*cinfo->downsample->downsample) (cinfo,
|
||||
prep->color_buf,
|
||||
(JDIMENSION) prep->this_row_group,
|
||||
output_buf, *out_row_group_ctr);
|
||||
(*out_row_group_ctr)++;
|
||||
/* Advance pointers with wraparound as necessary. */
|
||||
prep->this_row_group += cinfo->max_v_samp_factor;
|
||||
if (prep->this_row_group >= buf_height)
|
||||
prep->this_row_group = 0;
|
||||
if (prep->next_buf_row >= buf_height)
|
||||
prep->next_buf_row = 0;
|
||||
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Create the wrapped-around downsampling input buffer needed for context mode.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
create_context_buffer (j_compress_ptr cinfo)
|
||||
{
|
||||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
|
||||
int rgroup_height = cinfo->max_v_samp_factor;
|
||||
int ci, i;
|
||||
jpeg_component_info * compptr;
|
||||
JSAMPARRAY true_buffer, fake_buffer;
|
||||
|
||||
/* Grab enough space for fake row pointers for all the components;
|
||||
* we need five row groups' worth of pointers for each component.
|
||||
*/
|
||||
fake_buffer = (JSAMPARRAY)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(cinfo->num_components * 5 * rgroup_height) *
|
||||
SIZEOF(JSAMPROW));
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Allocate the actual buffer space (3 row groups) for this component.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||
* horizontally within the buffer, if it so chooses.
|
||||
*/
|
||||
true_buffer = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) (((long) compptr->width_in_blocks *
|
||||
cinfo->min_DCT_h_scaled_size *
|
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||
(JDIMENSION) (3 * rgroup_height));
|
||||
/* Copy true buffer row pointers into the middle of the fake row array */
|
||||
MEMCOPY(fake_buffer + rgroup_height, true_buffer,
|
||||
3 * rgroup_height * SIZEOF(JSAMPROW));
|
||||
/* Fill in the above and below wraparound pointers */
|
||||
for (i = 0; i < rgroup_height; i++) {
|
||||
fake_buffer[i] = true_buffer[2 * rgroup_height + i];
|
||||
fake_buffer[4 * rgroup_height + i] = true_buffer[i];
|
||||
}
|
||||
prep->color_buf[ci] = fake_buffer + rgroup_height;
|
||||
fake_buffer += 5 * rgroup_height; /* point to space for next component */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* CONTEXT_ROWS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize preprocessing controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_prep_ptr prep;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
if (need_full_buffer) /* safety check */
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
prep = (my_prep_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_prep_controller));
|
||||
cinfo->prep = (struct jpeg_c_prep_controller *) prep;
|
||||
prep->pub.start_pass = start_pass_prep;
|
||||
|
||||
/* Allocate the color conversion buffer.
|
||||
* We make the buffer wide enough to allow the downsampler to edge-expand
|
||||
* horizontally within the buffer, if it so chooses.
|
||||
*/
|
||||
if (cinfo->downsample->need_context_rows) {
|
||||
/* Set up to provide context rows */
|
||||
#ifdef CONTEXT_ROWS_SUPPORTED
|
||||
prep->pub.pre_process_data = pre_process_context;
|
||||
create_context_buffer(cinfo);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
/* No context, just make it tall enough for one row group */
|
||||
prep->pub.pre_process_data = pre_process_data;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) (((long) compptr->width_in_blocks *
|
||||
cinfo->min_DCT_h_scaled_size *
|
||||
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
|
||||
(JDIMENSION) cinfo->max_v_samp_factor);
|
||||
}
|
||||
}
|
||||
}
|
||||
545
3rdparty/libjpeg/jcsample.c
vendored
545
3rdparty/libjpeg/jcsample.c
vendored
@@ -1,545 +0,0 @@
|
||||
/*
|
||||
* jcsample.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains downsampling routines.
|
||||
*
|
||||
* Downsampling input data is counted in "row groups". A row group
|
||||
* is defined to be max_v_samp_factor pixel rows of each component,
|
||||
* from which the downsampler produces v_samp_factor sample rows.
|
||||
* A single row group is processed in each call to the downsampler module.
|
||||
*
|
||||
* The downsampler is responsible for edge-expansion of its output data
|
||||
* to fill an integral number of DCT blocks horizontally. The source buffer
|
||||
* may be modified if it is helpful for this purpose (the source buffer is
|
||||
* allocated wide enough to correspond to the desired output width).
|
||||
* The caller (the prep controller) is responsible for vertical padding.
|
||||
*
|
||||
* The downsampler may request "context rows" by setting need_context_rows
|
||||
* during startup. In this case, the input arrays will contain at least
|
||||
* one row group's worth of pixels above and below the passed-in data;
|
||||
* the caller will create dummy rows at image top and bottom by replicating
|
||||
* the first or last real pixel row.
|
||||
*
|
||||
* An excellent reference for image resampling is
|
||||
* Digital Image Warping, George Wolberg, 1990.
|
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||
*
|
||||
* The downsampling algorithm used here is a simple average of the source
|
||||
* pixels covered by the output pixel. The hi-falutin sampling literature
|
||||
* refers to this as a "box filter". In general the characteristics of a box
|
||||
* filter are not very good, but for the specific cases we normally use (1:1
|
||||
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
|
||||
* nearly so bad. If you intend to use other sampling ratios, you'd be well
|
||||
* advised to improve this code.
|
||||
*
|
||||
* A simple input-smoothing capability is provided. This is mainly intended
|
||||
* for cleaning up color-dithered GIF input files (if you find it inadequate,
|
||||
* we suggest using an external filtering program such as pnmconvol). When
|
||||
* enabled, each input pixel P is replaced by a weighted sum of itself and its
|
||||
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
|
||||
* where SF = (smoothing_factor / 1024).
|
||||
* Currently, smoothing is only supported for 2h2v sampling factors.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Pointer to routine to downsample a single component */
|
||||
typedef JMETHOD(void, downsample1_ptr,
|
||||
(j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data));
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_downsampler pub; /* public fields */
|
||||
|
||||
/* Downsampling method pointers, one per component */
|
||||
downsample1_ptr methods[MAX_COMPONENTS];
|
||||
|
||||
/* Height of an output row group for each component. */
|
||||
int rowgroup_height[MAX_COMPONENTS];
|
||||
|
||||
/* These arrays save pixel expansion factors so that int_downsample need not
|
||||
* recompute them each time. They are unused for other downsampling methods.
|
||||
*/
|
||||
UINT8 h_expand[MAX_COMPONENTS];
|
||||
UINT8 v_expand[MAX_COMPONENTS];
|
||||
} my_downsampler;
|
||||
|
||||
typedef my_downsampler * my_downsample_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a downsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_downsample (j_compress_ptr cinfo)
|
||||
{
|
||||
/* no work for now */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Expand a component horizontally from width input_cols to width output_cols,
|
||||
* by duplicating the rightmost samples.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
expand_right_edge (JSAMPARRAY image_data, int num_rows,
|
||||
JDIMENSION input_cols, JDIMENSION output_cols)
|
||||
{
|
||||
register JSAMPROW ptr;
|
||||
register JSAMPLE pixval;
|
||||
register int count;
|
||||
int row;
|
||||
int numcols = (int) (output_cols - input_cols);
|
||||
|
||||
if (numcols > 0) {
|
||||
for (row = 0; row < num_rows; row++) {
|
||||
ptr = image_data[row] + input_cols;
|
||||
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
|
||||
for (count = numcols; count > 0; count--)
|
||||
*ptr++ = pixval;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Do downsampling for a whole row group (all components).
|
||||
*
|
||||
* In this version we simply downsample each component independently.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
sep_downsample (j_compress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
|
||||
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
|
||||
{
|
||||
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
JSAMPARRAY in_ptr, out_ptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
in_ptr = input_buf[ci] + in_row_index;
|
||||
out_ptr = output_buf[ci] +
|
||||
(out_row_group_index * downsample->rowgroup_height[ci]);
|
||||
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* One row group is processed per call.
|
||||
* This version handles arbitrary integral sampling ratios, without smoothing.
|
||||
* Note that this version is not actually used for customary sampling ratios.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
|
||||
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
|
||||
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||
JSAMPROW inptr, outptr;
|
||||
INT32 outvalue;
|
||||
|
||||
h_expand = downsample->h_expand[compptr->component_index];
|
||||
v_expand = downsample->v_expand[compptr->component_index];
|
||||
numpix = h_expand * v_expand;
|
||||
numpix2 = numpix/2;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * h_expand);
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (inrow < cinfo->max_v_samp_factor) {
|
||||
outptr = output_data[outrow];
|
||||
for (outcol = 0, outcol_h = 0; outcol < output_cols;
|
||||
outcol++, outcol_h += h_expand) {
|
||||
outvalue = 0;
|
||||
for (v = 0; v < v_expand; v++) {
|
||||
inptr = input_data[inrow+v] + outcol_h;
|
||||
for (h = 0; h < h_expand; h++) {
|
||||
outvalue += (INT32) GETJSAMPLE(*inptr++);
|
||||
}
|
||||
}
|
||||
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
|
||||
}
|
||||
inrow += v_expand;
|
||||
outrow++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component,
|
||||
* without smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
/* Copy the data */
|
||||
jcopy_sample_rows(input_data, 0, output_data, 0,
|
||||
cinfo->max_v_samp_factor, cinfo->image_width);
|
||||
/* Edge-expand */
|
||||
expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
|
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
|
||||
* without smoothing.
|
||||
*
|
||||
* A note about the "bias" calculations: when rounding fractional values to
|
||||
* integer, we do not want to always round 0.5 up to the next integer.
|
||||
* If we did that, we'd introduce a noticeable bias towards larger values.
|
||||
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
||||
* alternate pixel locations (a simple ordered dither pattern).
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow;
|
||||
JDIMENSION outcol;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register int bias;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||
outptr = output_data[inrow];
|
||||
inptr = input_data[inrow];
|
||||
bias = 0; /* bias = 0,1,0,1,... for successive samples */
|
||||
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
|
||||
+ bias) >> 1);
|
||||
bias ^= 1; /* 0=>1, 1=>0 */
|
||||
inptr += 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||
* without smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow;
|
||||
JDIMENSION outcol;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||
register JSAMPROW inptr0, inptr1, outptr;
|
||||
register int bias;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data, cinfo->max_v_samp_factor,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (inrow < cinfo->max_v_samp_factor) {
|
||||
outptr = output_data[outrow];
|
||||
inptr0 = input_data[inrow];
|
||||
inptr1 = input_data[inrow+1];
|
||||
bias = 1; /* bias = 1,2,1,2,... for successive samples */
|
||||
for (outcol = 0; outcol < output_cols; outcol++) {
|
||||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
|
||||
+ bias) >> 2);
|
||||
bias ^= 3; /* 1=>2, 2=>1 */
|
||||
inptr0 += 2; inptr1 += 2;
|
||||
}
|
||||
inrow += 2;
|
||||
outrow++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
|
||||
* with smoothing. One row of context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow, outrow;
|
||||
JDIMENSION colctr;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
|
||||
INT32 membersum, neighsum, memberscale, neighscale;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||
cinfo->image_width, output_cols * 2);
|
||||
|
||||
/* We don't bother to form the individual "smoothed" input pixel values;
|
||||
* we can directly compute the output which is the average of the four
|
||||
* smoothed values. Each of the four member pixels contributes a fraction
|
||||
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
|
||||
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
|
||||
* output. The four corner-adjacent neighbor pixels contribute a fraction
|
||||
* SF to just one smoothed pixel, or SF/4 to the final output; while the
|
||||
* eight edge-adjacent neighbors contribute SF to each of two smoothed
|
||||
* pixels, or SF/2 overall. In order to use integer arithmetic, these
|
||||
* factors are scaled by 2^16 = 65536.
|
||||
* Also recall that SF = smoothing_factor / 1024.
|
||||
*/
|
||||
|
||||
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
|
||||
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (inrow < cinfo->max_v_samp_factor) {
|
||||
outptr = output_data[outrow];
|
||||
inptr0 = input_data[inrow];
|
||||
inptr1 = input_data[inrow+1];
|
||||
above_ptr = input_data[inrow-1];
|
||||
below_ptr = input_data[inrow+2];
|
||||
|
||||
/* Special case for first column: pretend column -1 is same as column 0 */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
|
||||
neighsum += neighsum;
|
||||
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||
/* sum of pixels directly mapped to this output element */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
/* sum of edge-neighbor pixels */
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
|
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
|
||||
/* The edge-neighbors count twice as much as corner-neighbors */
|
||||
neighsum += neighsum;
|
||||
/* Add in the corner-neighbors */
|
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
|
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
|
||||
/* form final output scaled up by 2^16 */
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
/* round, descale and output it */
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
|
||||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
|
||||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
|
||||
neighsum += neighsum;
|
||||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
|
||||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
|
||||
inrow += 2;
|
||||
outrow++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Downsample pixel values of a single component.
|
||||
* This version handles the special case of a full-size component,
|
||||
* with smoothing. One row of context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY output_data)
|
||||
{
|
||||
int inrow;
|
||||
JDIMENSION colctr;
|
||||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
|
||||
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
|
||||
INT32 membersum, neighsum, memberscale, neighscale;
|
||||
int colsum, lastcolsum, nextcolsum;
|
||||
|
||||
/* Expand input data enough to let all the output samples be generated
|
||||
* by the standard loop. Special-casing padded output would be more
|
||||
* efficient.
|
||||
*/
|
||||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
|
||||
cinfo->image_width, output_cols);
|
||||
|
||||
/* Each of the eight neighbor pixels contributes a fraction SF to the
|
||||
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
|
||||
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
|
||||
* Also recall that SF = smoothing_factor / 1024.
|
||||
*/
|
||||
|
||||
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
|
||||
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
|
||||
|
||||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
||||
outptr = output_data[inrow];
|
||||
inptr = input_data[inrow];
|
||||
above_ptr = input_data[inrow-1];
|
||||
below_ptr = input_data[inrow+1];
|
||||
|
||||
/* Special case for first column */
|
||||
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
|
||||
GETJSAMPLE(*inptr);
|
||||
membersum = GETJSAMPLE(*inptr++);
|
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
||||
GETJSAMPLE(*inptr);
|
||||
neighsum = colsum + (colsum - membersum) + nextcolsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
lastcolsum = colsum; colsum = nextcolsum;
|
||||
|
||||
for (colctr = output_cols - 2; colctr > 0; colctr--) {
|
||||
membersum = GETJSAMPLE(*inptr++);
|
||||
above_ptr++; below_ptr++;
|
||||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
|
||||
GETJSAMPLE(*inptr);
|
||||
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
lastcolsum = colsum; colsum = nextcolsum;
|
||||
}
|
||||
|
||||
/* Special case for last column */
|
||||
membersum = GETJSAMPLE(*inptr);
|
||||
neighsum = lastcolsum + (colsum - membersum) + colsum;
|
||||
membersum = membersum * memberscale + neighsum * neighscale;
|
||||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* INPUT_SMOOTHING_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for downsampling.
|
||||
* Note that we must select a routine for each component.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_downsampler (j_compress_ptr cinfo)
|
||||
{
|
||||
my_downsample_ptr downsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
boolean smoothok = TRUE;
|
||||
int h_in_group, v_in_group, h_out_group, v_out_group;
|
||||
|
||||
downsample = (my_downsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_downsampler));
|
||||
cinfo->downsample = (struct jpeg_downsampler *) downsample;
|
||||
downsample->pub.start_pass = start_pass_downsample;
|
||||
downsample->pub.downsample = sep_downsample;
|
||||
downsample->pub.need_context_rows = FALSE;
|
||||
|
||||
if (cinfo->CCIR601_sampling)
|
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||
|
||||
/* Verify we can handle the sampling factors, and set up method pointers */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Compute size of an "output group" for DCT scaling. This many samples
|
||||
* are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
|
||||
*/
|
||||
h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
|
||||
cinfo->min_DCT_h_scaled_size;
|
||||
v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size;
|
||||
h_in_group = cinfo->max_h_samp_factor;
|
||||
v_in_group = cinfo->max_v_samp_factor;
|
||||
downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
|
||||
if (h_in_group == h_out_group && v_in_group == v_out_group) {
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor) {
|
||||
downsample->methods[ci] = fullsize_smooth_downsample;
|
||||
downsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
#endif
|
||||
downsample->methods[ci] = fullsize_downsample;
|
||||
} else if (h_in_group == h_out_group * 2 &&
|
||||
v_in_group == v_out_group) {
|
||||
smoothok = FALSE;
|
||||
downsample->methods[ci] = h2v1_downsample;
|
||||
} else if (h_in_group == h_out_group * 2 &&
|
||||
v_in_group == v_out_group * 2) {
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor) {
|
||||
downsample->methods[ci] = h2v2_smooth_downsample;
|
||||
downsample->pub.need_context_rows = TRUE;
|
||||
} else
|
||||
#endif
|
||||
downsample->methods[ci] = h2v2_downsample;
|
||||
} else if ((h_in_group % h_out_group) == 0 &&
|
||||
(v_in_group % v_out_group) == 0) {
|
||||
smoothok = FALSE;
|
||||
downsample->methods[ci] = int_downsample;
|
||||
downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
|
||||
downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||
}
|
||||
|
||||
#ifdef INPUT_SMOOTHING_SUPPORTED
|
||||
if (cinfo->smoothing_factor && !smoothok)
|
||||
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
|
||||
#endif
|
||||
}
|
||||
381
3rdparty/libjpeg/jctrans.c
vendored
381
3rdparty/libjpeg/jctrans.c
vendored
@@ -1,381 +0,0 @@
|
||||
/*
|
||||
* jctrans.c
|
||||
*
|
||||
* Copyright (C) 1995-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains library routines for transcoding compression,
|
||||
* that is, writing raw DCT coefficient arrays to an output JPEG file.
|
||||
* The routines in jcapimin.c will also be needed by a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(void) transencode_master_selection
|
||||
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
||||
LOCAL(void) transencode_coef_controller
|
||||
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
||||
|
||||
|
||||
/*
|
||||
* Compression initialization for writing raw-coefficient data.
|
||||
* Before calling this, all parameters and a data destination must be set up.
|
||||
* Call jpeg_finish_compress() to actually write the data.
|
||||
*
|
||||
* The number of passed virtual arrays must match cinfo->num_components.
|
||||
* Note that the virtual arrays need not be filled or even realized at
|
||||
* the time write_coefficients is called; indeed, if the virtual arrays
|
||||
* were requested from this compression object's memory manager, they
|
||||
* typically will be realized during this routine and filled afterwards.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
|
||||
{
|
||||
if (cinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Mark all tables to be written */
|
||||
jpeg_suppress_tables(cinfo, FALSE);
|
||||
/* (Re)initialize error mgr and destination modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->dest->init_destination) (cinfo);
|
||||
/* Perform master selection of active modules */
|
||||
transencode_master_selection(cinfo, coef_arrays);
|
||||
/* Wait for jpeg_finish_compress() call */
|
||||
cinfo->next_scanline = 0; /* so jpeg_write_marker works */
|
||||
cinfo->global_state = CSTATE_WRCOEFS;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the compression object with default parameters,
|
||||
* then copy from the source object all parameters needed for lossless
|
||||
* transcoding. Parameters that can be varied without loss (such as
|
||||
* scan script and Huffman optimization) are left in their default states.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
|
||||
j_compress_ptr dstinfo)
|
||||
{
|
||||
JQUANT_TBL ** qtblptr;
|
||||
jpeg_component_info *incomp, *outcomp;
|
||||
JQUANT_TBL *c_quant, *slot_quant;
|
||||
int tblno, ci, coefi;
|
||||
|
||||
/* Safety check to ensure start_compress not called yet. */
|
||||
if (dstinfo->global_state != CSTATE_START)
|
||||
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
|
||||
/* Copy fundamental image dimensions */
|
||||
dstinfo->image_width = srcinfo->image_width;
|
||||
dstinfo->image_height = srcinfo->image_height;
|
||||
dstinfo->input_components = srcinfo->num_components;
|
||||
dstinfo->in_color_space = srcinfo->jpeg_color_space;
|
||||
/* Initialize all parameters to default values */
|
||||
jpeg_set_defaults(dstinfo);
|
||||
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
|
||||
* Fix it to get the right header markers for the image colorspace.
|
||||
*/
|
||||
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
|
||||
dstinfo->data_precision = srcinfo->data_precision;
|
||||
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
|
||||
/* Copy the source's quantization tables. */
|
||||
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
|
||||
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
|
||||
qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
|
||||
if (*qtblptr == NULL)
|
||||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
|
||||
MEMCOPY((*qtblptr)->quantval,
|
||||
srcinfo->quant_tbl_ptrs[tblno]->quantval,
|
||||
SIZEOF((*qtblptr)->quantval));
|
||||
(*qtblptr)->sent_table = FALSE;
|
||||
}
|
||||
}
|
||||
/* Copy the source's per-component info.
|
||||
* Note we assume jpeg_set_defaults has allocated the dest comp_info array.
|
||||
*/
|
||||
dstinfo->num_components = srcinfo->num_components;
|
||||
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
|
||||
ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
|
||||
outcomp->component_id = incomp->component_id;
|
||||
outcomp->h_samp_factor = incomp->h_samp_factor;
|
||||
outcomp->v_samp_factor = incomp->v_samp_factor;
|
||||
outcomp->quant_tbl_no = incomp->quant_tbl_no;
|
||||
/* Make sure saved quantization table for component matches the qtable
|
||||
* slot. If not, the input file re-used this qtable slot.
|
||||
* IJG encoder currently cannot duplicate this.
|
||||
*/
|
||||
tblno = outcomp->quant_tbl_no;
|
||||
if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
|
||||
srcinfo->quant_tbl_ptrs[tblno] == NULL)
|
||||
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
|
||||
slot_quant = srcinfo->quant_tbl_ptrs[tblno];
|
||||
c_quant = incomp->quant_table;
|
||||
if (c_quant != NULL) {
|
||||
for (coefi = 0; coefi < DCTSIZE2; coefi++) {
|
||||
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
|
||||
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
|
||||
}
|
||||
}
|
||||
/* Note: we do not copy the source's Huffman table assignments;
|
||||
* instead we rely on jpeg_set_colorspace to have made a suitable choice.
|
||||
*/
|
||||
}
|
||||
/* Also copy JFIF version and resolution information, if available.
|
||||
* Strictly speaking this isn't "critical" info, but it's nearly
|
||||
* always appropriate to copy it if available. In particular,
|
||||
* if the application chooses to copy JFIF 1.02 extension markers from
|
||||
* the source file, we need to copy the version to make sure we don't
|
||||
* emit a file that has 1.02 extensions but a claimed version of 1.01.
|
||||
* We will *not*, however, copy version info from mislabeled "2.01" files.
|
||||
*/
|
||||
if (srcinfo->saw_JFIF_marker) {
|
||||
if (srcinfo->JFIF_major_version == 1) {
|
||||
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
|
||||
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
|
||||
}
|
||||
dstinfo->density_unit = srcinfo->density_unit;
|
||||
dstinfo->X_density = srcinfo->X_density;
|
||||
dstinfo->Y_density = srcinfo->Y_density;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of compression modules for transcoding.
|
||||
* This substitutes for jcinit.c's initialization of the full compressor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transencode_master_selection (j_compress_ptr cinfo,
|
||||
jvirt_barray_ptr * coef_arrays)
|
||||
{
|
||||
/* Although we don't actually use input_components for transcoding,
|
||||
* jcmaster.c's initial_setup will complain if input_components is 0.
|
||||
*/
|
||||
cinfo->input_components = 1;
|
||||
/* Initialize master control (includes parameter checking/processing) */
|
||||
jinit_c_master_control(cinfo, TRUE /* transcode only */);
|
||||
|
||||
/* Entropy encoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
jinit_arith_encoder(cinfo);
|
||||
} else {
|
||||
jinit_huff_encoder(cinfo);
|
||||
}
|
||||
|
||||
/* We need a special coefficient buffer controller. */
|
||||
transencode_coef_controller(cinfo, coef_arrays);
|
||||
|
||||
jinit_marker_writer(cinfo);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Write the datastream header (SOI, JFIF) immediately.
|
||||
* Frame and scan headers are postponed till later.
|
||||
* This lets application insert special markers after the SOI.
|
||||
*/
|
||||
(*cinfo->marker->write_file_header) (cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The rest of this file is a special implementation of the coefficient
|
||||
* buffer controller. This is similar to jccoefct.c, but it handles only
|
||||
* output from presupplied virtual arrays. Furthermore, we generate any
|
||||
* dummy padding blocks on-the-fly rather than expecting them to be present
|
||||
* in the arrays.
|
||||
*/
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_c_coef_controller pub; /* public fields */
|
||||
|
||||
JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
||||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* Virtual block array for each component. */
|
||||
jvirt_barray_ptr * whole_image;
|
||||
|
||||
/* Workspace for constructing dummy blocks at right/bottom edges. */
|
||||
JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller * my_coef_ptr;
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
start_iMCU_row (j_compress_ptr cinfo)
|
||||
/* Reset within-iMCU-row counters for a new row */
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||
* But at the bottom of the image, process only what's left.
|
||||
*/
|
||||
if (cinfo->comps_in_scan > 1) {
|
||||
coef->MCU_rows_per_iMCU_row = 1;
|
||||
} else {
|
||||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
else
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||
}
|
||||
|
||||
coef->mcu_ctr = 0;
|
||||
coef->MCU_vert_offset = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
if (pass_mode != JBUF_CRANK_DEST)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
coef->iMCU_row_num = 0;
|
||||
start_iMCU_row(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
||||
* per call, ie, v_samp_factor block rows for each component in the scan.
|
||||
* The data is obtained from the virtual arrays and fed to the entropy coder.
|
||||
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
||||
*
|
||||
* NB: input_buf is ignored; it is likely to be a NULL pointer.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
int blkn, ci, xindex, yindex, yoffset, blockcnt;
|
||||
JDIMENSION start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||
coef->iMCU_row_num * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||
MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||
: compptr->last_col_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (coef->iMCU_row_num < last_iMCU_row ||
|
||||
yindex+yoffset < compptr->last_row_height) {
|
||||
/* Fill in pointers to real blocks in this row */
|
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
||||
for (xindex = 0; xindex < blockcnt; xindex++)
|
||||
MCU_buffer[blkn++] = buffer_ptr++;
|
||||
} else {
|
||||
/* At bottom of image, need a whole row of dummy blocks */
|
||||
xindex = 0;
|
||||
}
|
||||
/* Fill in any dummy blocks needed in this row.
|
||||
* Dummy blocks are filled in the same way as in jccoefct.c:
|
||||
* all zeroes in the AC entries, DC entries equal to previous
|
||||
* block's DC value. The init routine has already zeroed the
|
||||
* AC entries, so we need only set the DC entries correctly.
|
||||
*/
|
||||
for (; xindex < compptr->MCU_width; xindex++) {
|
||||
MCU_buffer[blkn] = coef->dummy_buffer[blkn];
|
||||
MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
|
||||
blkn++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to write the MCU. */
|
||||
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->mcu_ctr = MCU_col_num;
|
||||
return FALSE;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->mcu_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
coef->iMCU_row_num++;
|
||||
start_iMCU_row(cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*
|
||||
* Each passed coefficient array must be the right size for that
|
||||
* coefficient: width_in_blocks wide and height_in_blocks high,
|
||||
* with unitheight at least v_samp_factor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transencode_coef_controller (j_compress_ptr cinfo,
|
||||
jvirt_barray_ptr * coef_arrays)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
JBLOCKROW buffer;
|
||||
int i;
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
||||
coef->pub.start_pass = start_pass_coef;
|
||||
coef->pub.compress_data = compress_output;
|
||||
|
||||
/* Save pointer to virtual arrays */
|
||||
coef->whole_image = coef_arrays;
|
||||
|
||||
/* Allocate and pre-zero space for dummy DCT blocks. */
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->dummy_buffer[i] = buffer + i;
|
||||
}
|
||||
}
|
||||
396
3rdparty/libjpeg/jdapimin.c
vendored
396
3rdparty/libjpeg/jdapimin.c
vendored
@@ -1,396 +0,0 @@
|
||||
/*
|
||||
* jdapimin.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* Modified 2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the decompression half
|
||||
* of the JPEG library. These are the "minimum" API routines that may be
|
||||
* needed in either the normal full-decompression case or the
|
||||
* transcoding-only case.
|
||||
*
|
||||
* Most of the routines intended to be called directly by an application
|
||||
* are in this file or in jdapistd.c. But also see jcomapi.c for routines
|
||||
* shared by compression and decompression, and jdtrans.c for the transcoding
|
||||
* case.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* Initialization of a JPEG decompression object.
|
||||
* The error manager must already be set up (in case memory manager fails).
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Guard against version mismatches between library and caller. */
|
||||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
|
||||
if (version != JPEG_LIB_VERSION)
|
||||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
|
||||
if (structsize != SIZEOF(struct jpeg_decompress_struct))
|
||||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
|
||||
(int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
|
||||
|
||||
/* For debugging purposes, we zero the whole master structure.
|
||||
* But the application has already set the err pointer, and may have set
|
||||
* client_data, so we have to save and restore those fields.
|
||||
* Note: if application hasn't set client_data, tools like Purify may
|
||||
* complain here.
|
||||
*/
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
|
||||
MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
|
||||
cinfo->err = err;
|
||||
cinfo->client_data = client_data;
|
||||
}
|
||||
cinfo->is_decompressor = TRUE;
|
||||
|
||||
/* Initialize a memory manager instance for this object */
|
||||
jinit_memory_mgr((j_common_ptr) cinfo);
|
||||
|
||||
/* Zero out pointers to permanent structures. */
|
||||
cinfo->progress = NULL;
|
||||
cinfo->src = NULL;
|
||||
|
||||
for (i = 0; i < NUM_QUANT_TBLS; i++)
|
||||
cinfo->quant_tbl_ptrs[i] = NULL;
|
||||
|
||||
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
||||
cinfo->dc_huff_tbl_ptrs[i] = NULL;
|
||||
cinfo->ac_huff_tbl_ptrs[i] = NULL;
|
||||
}
|
||||
|
||||
/* Initialize marker processor so application can override methods
|
||||
* for COM, APPn markers before calling jpeg_read_header.
|
||||
*/
|
||||
cinfo->marker_list = NULL;
|
||||
jinit_marker_reader(cinfo);
|
||||
|
||||
/* And initialize the overall input controller. */
|
||||
jinit_input_controller(cinfo);
|
||||
|
||||
/* OK, I'm ready */
|
||||
cinfo->global_state = DSTATE_START;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Destruction of a JPEG decompression object
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_destroy_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Abort processing of a JPEG decompression operation,
|
||||
* but don't destroy the object itself.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_abort_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set default decompression parameters.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
default_decompress_parms (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Guess the input colorspace, and set output colorspace accordingly. */
|
||||
/* (Wish JPEG committee had provided a real way to specify this...) */
|
||||
/* Note application may override our guesses. */
|
||||
switch (cinfo->num_components) {
|
||||
case 1:
|
||||
cinfo->jpeg_color_space = JCS_GRAYSCALE;
|
||||
cinfo->out_color_space = JCS_GRAYSCALE;
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (cinfo->saw_JFIF_marker) {
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
|
||||
} else if (cinfo->saw_Adobe_marker) {
|
||||
switch (cinfo->Adobe_transform) {
|
||||
case 0:
|
||||
cinfo->jpeg_color_space = JCS_RGB;
|
||||
break;
|
||||
case 1:
|
||||
cinfo->jpeg_color_space = JCS_YCbCr;
|
||||
break;
|
||||
default:
|
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
/* Saw no special markers, try to guess from the component IDs */
|
||||
int cid0 = cinfo->comp_info[0].component_id;
|
||||
int cid1 = cinfo->comp_info[1].component_id;
|
||||
int cid2 = cinfo->comp_info[2].component_id;
|
||||
|
||||
if (cid0 == 1 && cid1 == 2 && cid2 == 3)
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
|
||||
else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
|
||||
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
|
||||
else {
|
||||
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
|
||||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
|
||||
}
|
||||
}
|
||||
/* Always guess RGB is proper output colorspace. */
|
||||
cinfo->out_color_space = JCS_RGB;
|
||||
break;
|
||||
|
||||
case 4:
|
||||
if (cinfo->saw_Adobe_marker) {
|
||||
switch (cinfo->Adobe_transform) {
|
||||
case 0:
|
||||
cinfo->jpeg_color_space = JCS_CMYK;
|
||||
break;
|
||||
case 2:
|
||||
cinfo->jpeg_color_space = JCS_YCCK;
|
||||
break;
|
||||
default:
|
||||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
|
||||
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
/* No special markers, assume straight CMYK. */
|
||||
cinfo->jpeg_color_space = JCS_CMYK;
|
||||
}
|
||||
cinfo->out_color_space = JCS_CMYK;
|
||||
break;
|
||||
|
||||
default:
|
||||
cinfo->jpeg_color_space = JCS_UNKNOWN;
|
||||
cinfo->out_color_space = JCS_UNKNOWN;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Set defaults for other decompression parameters. */
|
||||
cinfo->scale_num = DCTSIZE; /* 1:1 scaling */
|
||||
cinfo->scale_denom = DCTSIZE;
|
||||
cinfo->output_gamma = 1.0;
|
||||
cinfo->buffered_image = FALSE;
|
||||
cinfo->raw_data_out = FALSE;
|
||||
cinfo->dct_method = JDCT_DEFAULT;
|
||||
cinfo->do_fancy_upsampling = TRUE;
|
||||
cinfo->do_block_smoothing = TRUE;
|
||||
cinfo->quantize_colors = FALSE;
|
||||
/* We set these in case application only sets quantize_colors. */
|
||||
cinfo->dither_mode = JDITHER_FS;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
cinfo->two_pass_quantize = TRUE;
|
||||
#else
|
||||
cinfo->two_pass_quantize = FALSE;
|
||||
#endif
|
||||
cinfo->desired_number_of_colors = 256;
|
||||
cinfo->colormap = NULL;
|
||||
/* Initialize for no mode change in buffered-image mode. */
|
||||
cinfo->enable_1pass_quant = FALSE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompression startup: read start of JPEG datastream to see what's there.
|
||||
* Need only initialize JPEG object and supply a data source before calling.
|
||||
*
|
||||
* This routine will read as far as the first SOS marker (ie, actual start of
|
||||
* compressed data), and will save all tables and parameters in the JPEG
|
||||
* object. It will also initialize the decompression parameters to default
|
||||
* values, and finally return JPEG_HEADER_OK. On return, the application may
|
||||
* adjust the decompression parameters and then call jpeg_start_decompress.
|
||||
* (Or, if the application only wanted to determine the image parameters,
|
||||
* the data need not be decompressed. In that case, call jpeg_abort or
|
||||
* jpeg_destroy to release any temporary space.)
|
||||
* If an abbreviated (tables only) datastream is presented, the routine will
|
||||
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
|
||||
* re-use the JPEG object to read the abbreviated image datastream(s).
|
||||
* It is unnecessary (but OK) to call jpeg_abort in this case.
|
||||
* The JPEG_SUSPENDED return code only occurs if the data source module
|
||||
* requests suspension of the decompressor. In this case the application
|
||||
* should load more source data and then re-call jpeg_read_header to resume
|
||||
* processing.
|
||||
* If a non-suspending data source is used and require_image is TRUE, then the
|
||||
* return code need not be inspected since only JPEG_HEADER_OK is possible.
|
||||
*
|
||||
* This routine is now just a front end to jpeg_consume_input, with some
|
||||
* extra error checking.
|
||||
*/
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
|
||||
{
|
||||
int retcode;
|
||||
|
||||
if (cinfo->global_state != DSTATE_START &&
|
||||
cinfo->global_state != DSTATE_INHEADER)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
retcode = jpeg_consume_input(cinfo);
|
||||
|
||||
switch (retcode) {
|
||||
case JPEG_REACHED_SOS:
|
||||
retcode = JPEG_HEADER_OK;
|
||||
break;
|
||||
case JPEG_REACHED_EOI:
|
||||
if (require_image) /* Complain if application wanted an image */
|
||||
ERREXIT(cinfo, JERR_NO_IMAGE);
|
||||
/* Reset to start state; it would be safer to require the application to
|
||||
* call jpeg_abort, but we can't change it now for compatibility reasons.
|
||||
* A side effect is to free any temporary memory (there shouldn't be any).
|
||||
*/
|
||||
jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
|
||||
retcode = JPEG_HEADER_TABLES_ONLY;
|
||||
break;
|
||||
case JPEG_SUSPENDED:
|
||||
/* no work */
|
||||
break;
|
||||
}
|
||||
|
||||
return retcode;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Consume data in advance of what the decompressor requires.
|
||||
* This can be called at any time once the decompressor object has
|
||||
* been created and a data source has been set up.
|
||||
*
|
||||
* This routine is essentially a state machine that handles a couple
|
||||
* of critical state-transition actions, namely initial setup and
|
||||
* transition from header scanning to ready-for-start_decompress.
|
||||
* All the actual input is done via the input controller's consume_input
|
||||
* method.
|
||||
*/
|
||||
|
||||
GLOBAL(int)
|
||||
jpeg_consume_input (j_decompress_ptr cinfo)
|
||||
{
|
||||
int retcode = JPEG_SUSPENDED;
|
||||
|
||||
/* NB: every possible DSTATE value should be listed in this switch */
|
||||
switch (cinfo->global_state) {
|
||||
case DSTATE_START:
|
||||
/* Start-of-datastream actions: reset appropriate modules */
|
||||
(*cinfo->inputctl->reset_input_controller) (cinfo);
|
||||
/* Initialize application's data source module */
|
||||
(*cinfo->src->init_source) (cinfo);
|
||||
cinfo->global_state = DSTATE_INHEADER;
|
||||
/*FALLTHROUGH*/
|
||||
case DSTATE_INHEADER:
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
|
||||
/* Set up default parameters based on header data */
|
||||
default_decompress_parms(cinfo);
|
||||
/* Set global state: ready for start_decompress */
|
||||
cinfo->global_state = DSTATE_READY;
|
||||
}
|
||||
break;
|
||||
case DSTATE_READY:
|
||||
/* Can't advance past first SOS until start_decompress is called */
|
||||
retcode = JPEG_REACHED_SOS;
|
||||
break;
|
||||
case DSTATE_PRELOAD:
|
||||
case DSTATE_PRESCAN:
|
||||
case DSTATE_SCANNING:
|
||||
case DSTATE_RAW_OK:
|
||||
case DSTATE_BUFIMAGE:
|
||||
case DSTATE_BUFPOST:
|
||||
case DSTATE_STOPPING:
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
break;
|
||||
default:
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
return retcode;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Have we finished reading the input file?
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_input_complete (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Check for valid jpeg object */
|
||||
if (cinfo->global_state < DSTATE_START ||
|
||||
cinfo->global_state > DSTATE_STOPPING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return cinfo->inputctl->eoi_reached;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Is there more than one scan?
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_has_multiple_scans (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* Only valid after jpeg_read_header completes */
|
||||
if (cinfo->global_state < DSTATE_READY ||
|
||||
cinfo->global_state > DSTATE_STOPPING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return cinfo->inputctl->has_multiple_scans;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish JPEG decompression.
|
||||
*
|
||||
* This will normally just verify the file trailer and release temp storage.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_finish_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
if ((cinfo->global_state == DSTATE_SCANNING ||
|
||||
cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
|
||||
/* Terminate final pass of non-buffered mode */
|
||||
if (cinfo->output_scanline < cinfo->output_height)
|
||||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
} else if (cinfo->global_state == DSTATE_BUFIMAGE) {
|
||||
/* Finishing after a buffered-image operation */
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
} else if (cinfo->global_state != DSTATE_STOPPING) {
|
||||
/* STOPPING = repeat call after a suspension, anything else is error */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
/* Read until EOI */
|
||||
while (! cinfo->inputctl->eoi_reached) {
|
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||
return FALSE; /* Suspend, come back later */
|
||||
}
|
||||
/* Do final cleanup */
|
||||
(*cinfo->src->term_source) (cinfo);
|
||||
/* We can use jpeg_abort to release memory and reset global_state */
|
||||
jpeg_abort((j_common_ptr) cinfo);
|
||||
return TRUE;
|
||||
}
|
||||
275
3rdparty/libjpeg/jdapistd.c
vendored
275
3rdparty/libjpeg/jdapistd.c
vendored
@@ -1,275 +0,0 @@
|
||||
/*
|
||||
* jdapistd.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains application interface code for the decompression half
|
||||
* of the JPEG library. These are the "standard" API routines that are
|
||||
* used in the normal full-decompression case. They are not used by a
|
||||
* transcoding-only application. Note that if an application links in
|
||||
* jpeg_start_decompress, it will end up linking in the entire decompressor.
|
||||
* We thus must separate this file from jdapimin.c to avoid linking the
|
||||
* whole decompression library into a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
|
||||
|
||||
|
||||
/*
|
||||
* Decompression initialization.
|
||||
* jpeg_read_header must be completed before calling this.
|
||||
*
|
||||
* If a multipass operating mode was selected, this will do all but the
|
||||
* last pass, and thus may take a great deal of time.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_start_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state == DSTATE_READY) {
|
||||
/* First call: initialize master control, select active modules */
|
||||
jinit_master_decompress(cinfo);
|
||||
if (cinfo->buffered_image) {
|
||||
/* No more work here; expecting jpeg_start_output next */
|
||||
cinfo->global_state = DSTATE_BUFIMAGE;
|
||||
return TRUE;
|
||||
}
|
||||
cinfo->global_state = DSTATE_PRELOAD;
|
||||
}
|
||||
if (cinfo->global_state == DSTATE_PRELOAD) {
|
||||
/* If file has multiple scans, absorb them all into the coef buffer */
|
||||
if (cinfo->inputctl->has_multiple_scans) {
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
for (;;) {
|
||||
int retcode;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL)
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
/* Absorb some more input */
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_SUSPENDED)
|
||||
return FALSE;
|
||||
if (retcode == JPEG_REACHED_EOI)
|
||||
break;
|
||||
/* Advance progress counter if appropriate */
|
||||
if (cinfo->progress != NULL &&
|
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||
/* jdmaster underestimated number of scans; ratchet up one scan */
|
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
}
|
||||
cinfo->output_scan_number = cinfo->input_scan_number;
|
||||
} else if (cinfo->global_state != DSTATE_PRESCAN)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Perform any dummy output passes, and set up for the final pass */
|
||||
return output_pass_setup(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set up for an output pass, and perform any dummy pass(es) needed.
|
||||
* Common subroutine for jpeg_start_decompress and jpeg_start_output.
|
||||
* Entry: global_state = DSTATE_PRESCAN only if previously suspended.
|
||||
* Exit: If done, returns TRUE and sets global_state for proper output mode.
|
||||
* If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
output_pass_setup (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state != DSTATE_PRESCAN) {
|
||||
/* First call: do pass setup */
|
||||
(*cinfo->master->prepare_for_output_pass) (cinfo);
|
||||
cinfo->output_scanline = 0;
|
||||
cinfo->global_state = DSTATE_PRESCAN;
|
||||
}
|
||||
/* Loop over any required dummy passes */
|
||||
while (cinfo->master->is_dummy_pass) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
/* Crank through the dummy pass */
|
||||
while (cinfo->output_scanline < cinfo->output_height) {
|
||||
JDIMENSION last_scanline;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
/* Process some data */
|
||||
last_scanline = cinfo->output_scanline;
|
||||
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
|
||||
&cinfo->output_scanline, (JDIMENSION) 0);
|
||||
if (cinfo->output_scanline == last_scanline)
|
||||
return FALSE; /* No progress made, must suspend */
|
||||
}
|
||||
/* Finish up dummy pass, and set up for another one */
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
(*cinfo->master->prepare_for_output_pass) (cinfo);
|
||||
cinfo->output_scanline = 0;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
}
|
||||
/* Ready for application to drive output pass through
|
||||
* jpeg_read_scanlines or jpeg_read_raw_data.
|
||||
*/
|
||||
cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read some scanlines of data from the JPEG decompressor.
|
||||
*
|
||||
* The return value will be the number of lines actually read.
|
||||
* This may be less than the number requested in several cases,
|
||||
* including bottom of image, data source suspension, and operating
|
||||
* modes that emit multiple scanlines at a time.
|
||||
*
|
||||
* Note: we warn about excess calls to jpeg_read_scanlines() since
|
||||
* this likely signals an application programmer error. However,
|
||||
* an oversize buffer (max_lines > scanlines remaining) is not an error.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
|
||||
JDIMENSION max_lines)
|
||||
{
|
||||
JDIMENSION row_ctr;
|
||||
|
||||
if (cinfo->global_state != DSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->output_scanline >= cinfo->output_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Process some data */
|
||||
row_ctr = 0;
|
||||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
|
||||
cinfo->output_scanline += row_ctr;
|
||||
return row_ctr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Alternate entry point to read raw data.
|
||||
* Processes exactly one iMCU row per call, unless suspended.
|
||||
*/
|
||||
|
||||
GLOBAL(JDIMENSION)
|
||||
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
|
||||
JDIMENSION max_lines)
|
||||
{
|
||||
JDIMENSION lines_per_iMCU_row;
|
||||
|
||||
if (cinfo->global_state != DSTATE_RAW_OK)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
if (cinfo->output_scanline >= cinfo->output_height) {
|
||||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
|
||||
cinfo->progress->pass_limit = (long) cinfo->output_height;
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
}
|
||||
|
||||
/* Verify that at least one iMCU row can be returned. */
|
||||
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size;
|
||||
if (max_lines < lines_per_iMCU_row)
|
||||
ERREXIT(cinfo, JERR_BUFFER_SIZE);
|
||||
|
||||
/* Decompress directly into user's buffer. */
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo, data))
|
||||
return 0; /* suspension forced, can do nothing more */
|
||||
|
||||
/* OK, we processed one iMCU row. */
|
||||
cinfo->output_scanline += lines_per_iMCU_row;
|
||||
return lines_per_iMCU_row;
|
||||
}
|
||||
|
||||
|
||||
/* Additional entry points for buffered-image mode. */
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Initialize for an output pass in buffered-image mode.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
|
||||
{
|
||||
if (cinfo->global_state != DSTATE_BUFIMAGE &&
|
||||
cinfo->global_state != DSTATE_PRESCAN)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
/* Limit scan number to valid range */
|
||||
if (scan_number <= 0)
|
||||
scan_number = 1;
|
||||
if (cinfo->inputctl->eoi_reached &&
|
||||
scan_number > cinfo->input_scan_number)
|
||||
scan_number = cinfo->input_scan_number;
|
||||
cinfo->output_scan_number = scan_number;
|
||||
/* Perform any dummy output passes, and set up for the real pass */
|
||||
return output_pass_setup(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up after an output pass in buffered-image mode.
|
||||
*
|
||||
* Returns FALSE if suspended. The return value need be inspected only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(boolean)
|
||||
jpeg_finish_output (j_decompress_ptr cinfo)
|
||||
{
|
||||
if ((cinfo->global_state == DSTATE_SCANNING ||
|
||||
cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
|
||||
/* Terminate this pass. */
|
||||
/* We do not require the whole pass to have been completed. */
|
||||
(*cinfo->master->finish_output_pass) (cinfo);
|
||||
cinfo->global_state = DSTATE_BUFPOST;
|
||||
} else if (cinfo->global_state != DSTATE_BUFPOST) {
|
||||
/* BUFPOST = repeat call after a suspension, anything else is error */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
}
|
||||
/* Read markers looking for SOS or EOI */
|
||||
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
||||
! cinfo->inputctl->eoi_reached) {
|
||||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
||||
return FALSE; /* Suspend, come back later */
|
||||
}
|
||||
cinfo->global_state = DSTATE_BUFIMAGE;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
762
3rdparty/libjpeg/jdarith.c
vendored
762
3rdparty/libjpeg/jdarith.c
vendored
@@ -1,762 +0,0 @@
|
||||
/*
|
||||
* jdarith.c
|
||||
*
|
||||
* Developed 1997 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains portable arithmetic entropy decoding routines for JPEG
|
||||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
|
||||
*
|
||||
* Both sequential and progressive modes are supported in this single module.
|
||||
*
|
||||
* Suspension is not currently supported in this module.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Expanded entropy decoder object for arithmetic decoding. */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_entropy_decoder pub; /* public fields */
|
||||
|
||||
INT32 c; /* C register, base of coding interval + input bit buffer */
|
||||
INT32 a; /* A register, normalized size of coding interval */
|
||||
int ct; /* bit shift counter, # of bits left in bit buffer part of C */
|
||||
/* init: ct = -16 */
|
||||
/* run: ct = 0..7 */
|
||||
/* error: ct = -1 */
|
||||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
||||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
|
||||
|
||||
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
||||
|
||||
/* Pointers to statistics areas (these workspaces have image lifespan) */
|
||||
unsigned char * dc_stats[NUM_ARITH_TBLS];
|
||||
unsigned char * ac_stats[NUM_ARITH_TBLS];
|
||||
} arith_entropy_decoder;
|
||||
|
||||
typedef arith_entropy_decoder * arith_entropy_ptr;
|
||||
|
||||
/* The following two definitions specify the allocation chunk size
|
||||
* for the statistics area.
|
||||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
|
||||
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
|
||||
* Note that we use one additional AC bin for codings with fixed
|
||||
* probability (0.5), thus the minimum number for AC is 246.
|
||||
*
|
||||
* We use a compact representation with 1 byte per statistics bin,
|
||||
* thus the numbers directly represent byte sizes.
|
||||
* This 1 byte per statistics bin contains the meaning of the MPS
|
||||
* (more probable symbol) in the highest bit (mask 0x80), and the
|
||||
* index into the probability estimation state machine table
|
||||
* in the lower bits (mask 0x7F).
|
||||
*/
|
||||
|
||||
#define DC_STAT_BINS 64
|
||||
#define AC_STAT_BINS 256
|
||||
|
||||
|
||||
LOCAL(int)
|
||||
get_byte (j_decompress_ptr cinfo)
|
||||
/* Read next input byte; we do not support suspension in this module. */
|
||||
{
|
||||
struct jpeg_source_mgr * src = cinfo->src;
|
||||
|
||||
if (src->bytes_in_buffer == 0)
|
||||
if (! (*src->fill_input_buffer) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
src->bytes_in_buffer--;
|
||||
return GETJOCTET(*src->next_input_byte++);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The core arithmetic decoding routine (common in JPEG and JBIG).
|
||||
* This needs to go as fast as possible.
|
||||
* Machine-dependent optimization facilities
|
||||
* are not utilized in this portable implementation.
|
||||
* However, this code should be fairly efficient and
|
||||
* may be a good base for further optimizations anyway.
|
||||
*
|
||||
* Return value is 0 or 1 (binary decision).
|
||||
*
|
||||
* Note: I've changed the handling of the code base & bit
|
||||
* buffer register C compared to other implementations
|
||||
* based on the standards layout & procedures.
|
||||
* While it also contains both the actual base of the
|
||||
* coding interval (16 bits) and the next-bits buffer,
|
||||
* the cut-point between these two parts is floating
|
||||
* (instead of fixed) with the bit shift counter CT.
|
||||
* Thus, we also need only one (variable instead of
|
||||
* fixed size) shift for the LPS/MPS decision, and
|
||||
* we can get away with any renormalization update
|
||||
* of C (except for new data insertion, of course).
|
||||
*
|
||||
* I've also introduced a new scheme for accessing
|
||||
* the probability estimation state machine table,
|
||||
* derived from Markus Kuhn's JBIG implementation.
|
||||
*/
|
||||
|
||||
LOCAL(int)
|
||||
arith_decode (j_decompress_ptr cinfo, unsigned char *st)
|
||||
{
|
||||
extern const INT32 jaritab[];
|
||||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
|
||||
register unsigned char nl, nm;
|
||||
register INT32 qe, temp;
|
||||
register int sv, data;
|
||||
|
||||
/* Renormalization & data input per section D.2.6 */
|
||||
while (e->a < 0x8000L) {
|
||||
if (--e->ct < 0) {
|
||||
/* Need to fetch next data byte */
|
||||
if (cinfo->unread_marker)
|
||||
data = 0; /* stuff zero data */
|
||||
else {
|
||||
data = get_byte(cinfo); /* read next input byte */
|
||||
if (data == 0xFF) { /* zero stuff or marker code */
|
||||
do data = get_byte(cinfo);
|
||||
while (data == 0xFF); /* swallow extra 0xFF bytes */
|
||||
if (data == 0)
|
||||
data = 0xFF; /* discard stuffed zero byte */
|
||||
else {
|
||||
/* Note: Different from the Huffman decoder, hitting
|
||||
* a marker while processing the compressed data
|
||||
* segment is legal in arithmetic coding.
|
||||
* The convention is to supply zero data
|
||||
* then until decoding is complete.
|
||||
*/
|
||||
cinfo->unread_marker = data;
|
||||
data = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
e->c = (e->c << 8) | data; /* insert data into C register */
|
||||
if ((e->ct += 8) < 0) /* update bit shift counter */
|
||||
/* Need more initial bytes */
|
||||
if (++e->ct == 0)
|
||||
/* Got 2 initial bytes -> re-init A and exit loop */
|
||||
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
|
||||
}
|
||||
e->a <<= 1;
|
||||
}
|
||||
|
||||
/* Fetch values from our compact representation of Table D.2:
|
||||
* Qe values and probability estimation state machine
|
||||
*/
|
||||
sv = *st;
|
||||
qe = jaritab[sv & 0x7F]; /* => Qe_Value */
|
||||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
|
||||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
|
||||
|
||||
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */
|
||||
temp = e->a - qe;
|
||||
e->a = temp;
|
||||
temp <<= e->ct;
|
||||
if (e->c >= temp) {
|
||||
e->c -= temp;
|
||||
/* Conditional LPS (less probable symbol) exchange */
|
||||
if (e->a < qe) {
|
||||
e->a = qe;
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
} else {
|
||||
e->a = qe;
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
sv ^= 0x80; /* Exchange LPS/MPS */
|
||||
}
|
||||
} else if (e->a < 0x8000L) {
|
||||
/* Conditional MPS (more probable symbol) exchange */
|
||||
if (e->a < qe) {
|
||||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
|
||||
sv ^= 0x80; /* Exchange LPS/MPS */
|
||||
} else {
|
||||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
|
||||
}
|
||||
}
|
||||
|
||||
return sv >> 7;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Check for a restart marker & resynchronize decoder.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
process_restart (j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
/* Advance past the RSTn marker */
|
||||
if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
||||
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Re-initialize statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
|
||||
/* Reset DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset arithmetic decoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0;
|
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
|
||||
|
||||
/* Reset restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Arithmetic MCU decoding.
|
||||
* Each of these routines decodes and returns one MCU's worth of
|
||||
* arithmetic-compressed coefficients.
|
||||
* The coefficients are reordered from zigzag order into natural array order,
|
||||
* but are not dequantized.
|
||||
*
|
||||
* The i'th block of the MCU is stored into the block pointed to by
|
||||
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
|
||||
*/
|
||||
|
||||
/*
|
||||
* MCU decoding for DC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, sign;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */
|
||||
if (arith_decode(cinfo, st) == 0)
|
||||
entropy->dc_context[ci] = 0;
|
||||
else {
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
sign = arith_decode(cinfo, st + 1);
|
||||
st += 2; st += sign;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
|
||||
else
|
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
entropy->last_dc_val[ci] += v;
|
||||
}
|
||||
|
||||
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
|
||||
(*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC initial scan (either spectral selection,
|
||||
* or first pass of successive approximation).
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int tbl, sign, k;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
|
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */
|
||||
for (k = cinfo->Ss; k <= cinfo->Se; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
while (arith_decode(cinfo, st + 1) == 0) {
|
||||
st += 3; k++;
|
||||
if (k > cinfo->Se) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
sign = arith_decode(cinfo, entropy->ac_stats[tbl] + 245);
|
||||
st += 2;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
if (arith_decode(cinfo, st)) {
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
/* Scale and output coefficient in natural (dezigzagged) order */
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al);
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for DC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
unsigned char st[4];
|
||||
int p1, blkn;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
st[0] = 0; /* use fixed probability estimation */
|
||||
/* Encoded data is simply the next bit of the two's-complement DC value */
|
||||
if (arith_decode(cinfo, st))
|
||||
MCU_data[blkn][0][0] |= p1;
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* MCU decoding for AC successive approximation refinement scan.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
JBLOCKROW block;
|
||||
JCOEFPTR thiscoef;
|
||||
unsigned char *st;
|
||||
int tbl, k, kex;
|
||||
int p1, m1;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* There is always only one block per MCU */
|
||||
block = MCU_data[0];
|
||||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
|
||||
|
||||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
||||
m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
|
||||
|
||||
/* Establish EOBx (previous stage end-of-block) index */
|
||||
for (kex = cinfo->Se + 1; kex > 1; kex--)
|
||||
if ((*block)[jpeg_natural_order[kex - 1]]) break;
|
||||
|
||||
for (k = cinfo->Ss; k <= cinfo->Se; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (k >= kex)
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
for (;;) {
|
||||
thiscoef = *block + jpeg_natural_order[k];
|
||||
if (*thiscoef) { /* previously nonzero coef */
|
||||
if (arith_decode(cinfo, st + 2)) {
|
||||
if (*thiscoef < 0)
|
||||
*thiscoef += m1;
|
||||
else
|
||||
*thiscoef += p1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
if (arith_decode(cinfo, entropy->ac_stats[tbl] + 245))
|
||||
*thiscoef = m1;
|
||||
else
|
||||
*thiscoef = p1;
|
||||
break;
|
||||
}
|
||||
st += 3; k++;
|
||||
if (k > cinfo->Se) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decode one MCU's worth of arithmetic-compressed coefficients.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
jpeg_component_info * compptr;
|
||||
JBLOCKROW block;
|
||||
unsigned char *st;
|
||||
int blkn, ci, tbl, sign, k;
|
||||
int v, m;
|
||||
|
||||
/* Process restart marker if needed */
|
||||
if (cinfo->restart_interval) {
|
||||
if (entropy->restarts_to_go == 0)
|
||||
process_restart(cinfo);
|
||||
entropy->restarts_to_go--;
|
||||
}
|
||||
|
||||
if (entropy->ct == -1) return TRUE; /* if error do nothing */
|
||||
|
||||
/* Outer loop handles each block in the MCU */
|
||||
|
||||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
||||
block = MCU_data[blkn];
|
||||
ci = cinfo->MCU_membership[blkn];
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
|
||||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
|
||||
|
||||
tbl = compptr->dc_tbl_no;
|
||||
|
||||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
|
||||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
|
||||
|
||||
/* Figure F.19: Decode_DC_DIFF */
|
||||
if (arith_decode(cinfo, st) == 0)
|
||||
entropy->dc_context[ci] = 0;
|
||||
else {
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
sign = arith_decode(cinfo, st + 1);
|
||||
st += 2; st += sign;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
|
||||
if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 0; /* zero diff category */
|
||||
else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
|
||||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
|
||||
else
|
||||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
entropy->last_dc_val[ci] += v;
|
||||
}
|
||||
|
||||
(*block)[0] = (JCOEF) entropy->last_dc_val[ci];
|
||||
|
||||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
|
||||
|
||||
tbl = compptr->ac_tbl_no;
|
||||
|
||||
/* Figure F.20: Decode_AC_coefficients */
|
||||
for (k = 1; k < DCTSIZE2; k++) {
|
||||
st = entropy->ac_stats[tbl] + 3 * (k - 1);
|
||||
if (arith_decode(cinfo, st)) break; /* EOB flag */
|
||||
while (arith_decode(cinfo, st + 1) == 0) {
|
||||
st += 3; k++;
|
||||
if (k >= DCTSIZE2) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* spectral overflow */
|
||||
return TRUE;
|
||||
}
|
||||
}
|
||||
/* Figure F.21: Decoding nonzero value v */
|
||||
/* Figure F.22: Decoding the sign of v */
|
||||
entropy->ac_stats[tbl][245] = 0;
|
||||
sign = arith_decode(cinfo, entropy->ac_stats[tbl] + 245);
|
||||
st += 2;
|
||||
/* Figure F.23: Decoding the magnitude category of v */
|
||||
if ((m = arith_decode(cinfo, st)) != 0) {
|
||||
if (arith_decode(cinfo, st)) {
|
||||
m <<= 1;
|
||||
st = entropy->ac_stats[tbl] +
|
||||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
|
||||
while (arith_decode(cinfo, st)) {
|
||||
if ((m <<= 1) == 0x8000) {
|
||||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
|
||||
entropy->ct = -1; /* magnitude overflow */
|
||||
return TRUE;
|
||||
}
|
||||
st += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
v = m;
|
||||
/* Figure F.24: Decoding the magnitude bit pattern of v */
|
||||
st += 14;
|
||||
while (m >>= 1)
|
||||
if (arith_decode(cinfo, st)) v |= m;
|
||||
v += 1; if (sign) v = -v;
|
||||
(*block)[jpeg_natural_order[k]] = (JCOEF) v;
|
||||
}
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an arithmetic-compressed scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
|
||||
int ci, tbl;
|
||||
jpeg_component_info * compptr;
|
||||
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Validate progressive scan parameters */
|
||||
if (cinfo->Ss == 0) {
|
||||
if (cinfo->Se != 0)
|
||||
goto bad;
|
||||
} else {
|
||||
/* need not check Ss/Se < 0 since they came from unsigned bytes */
|
||||
if (cinfo->Se < cinfo->Ss || cinfo->Se >= DCTSIZE2)
|
||||
goto bad;
|
||||
/* AC scans may have only one component */
|
||||
if (cinfo->comps_in_scan != 1)
|
||||
goto bad;
|
||||
}
|
||||
if (cinfo->Ah != 0) {
|
||||
/* Successive approximation refinement scan: must have Al = Ah-1. */
|
||||
if (cinfo->Ah-1 != cinfo->Al)
|
||||
goto bad;
|
||||
}
|
||||
if (cinfo->Al > 13) { /* need not check for < 0 */
|
||||
bad:
|
||||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
||||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
||||
}
|
||||
/* Update progression status, and verify that scan order is legal.
|
||||
* Note that inter-scan inconsistencies are treated as warnings
|
||||
* not fatal errors ... not clear if this is right way to behave.
|
||||
*/
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
|
||||
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
|
||||
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
|
||||
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
|
||||
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
|
||||
if (cinfo->Ah != expected)
|
||||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
|
||||
coef_bit_ptr[coefi] = cinfo->Al;
|
||||
}
|
||||
}
|
||||
/* Select MCU decoding routine */
|
||||
if (cinfo->Ah == 0) {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_first;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_first;
|
||||
} else {
|
||||
if (cinfo->Ss == 0)
|
||||
entropy->pub.decode_mcu = decode_mcu_DC_refine;
|
||||
else
|
||||
entropy->pub.decode_mcu = decode_mcu_AC_refine;
|
||||
}
|
||||
} else {
|
||||
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
|
||||
* This ought to be an error condition, but we make it a warning because
|
||||
* there are some baseline files out there with all zeroes in these bytes.
|
||||
*/
|
||||
if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
|
||||
cinfo->Ah != 0 || cinfo->Al != 0)
|
||||
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
|
||||
/* Select MCU decoding routine */
|
||||
entropy->pub.decode_mcu = decode_mcu;
|
||||
}
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Allocate & initialize requested statistics areas */
|
||||
if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
|
||||
tbl = compptr->dc_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->dc_stats[tbl] == NULL)
|
||||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
|
||||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
|
||||
/* Initialize DC predictions to 0 */
|
||||
entropy->last_dc_val[ci] = 0;
|
||||
entropy->dc_context[ci] = 0;
|
||||
}
|
||||
if (cinfo->progressive_mode == 0 || cinfo->Ss) {
|
||||
tbl = compptr->ac_tbl_no;
|
||||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
|
||||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
|
||||
if (entropy->ac_stats[tbl] == NULL)
|
||||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
|
||||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize arithmetic decoding variables */
|
||||
entropy->c = 0;
|
||||
entropy->a = 0;
|
||||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
|
||||
|
||||
/* Initialize restart counter */
|
||||
entropy->restarts_to_go = cinfo->restart_interval;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for arithmetic entropy decoding.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_arith_decoder (j_decompress_ptr cinfo)
|
||||
{
|
||||
arith_entropy_ptr entropy;
|
||||
int i;
|
||||
|
||||
entropy = (arith_entropy_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(arith_entropy_decoder));
|
||||
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
|
||||
entropy->pub.start_pass = start_pass;
|
||||
|
||||
/* Mark tables unallocated */
|
||||
for (i = 0; i < NUM_ARITH_TBLS; i++) {
|
||||
entropy->dc_stats[i] = NULL;
|
||||
entropy->ac_stats[i] = NULL;
|
||||
}
|
||||
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Create progression status table */
|
||||
int *coef_bit_ptr, ci;
|
||||
cinfo->coef_bits = (int (*)[DCTSIZE2])
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components*DCTSIZE2*SIZEOF(int));
|
||||
coef_bit_ptr = & cinfo->coef_bits[0][0];
|
||||
for (ci = 0; ci < cinfo->num_components; ci++)
|
||||
for (i = 0; i < DCTSIZE2; i++)
|
||||
*coef_bit_ptr++ = -1;
|
||||
}
|
||||
}
|
||||
151
3rdparty/libjpeg/jdatadst.c
vendored
151
3rdparty/libjpeg/jdatadst.c
vendored
@@ -1,151 +0,0 @@
|
||||
/*
|
||||
* jdatadst.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains compression data destination routines for the case of
|
||||
* emitting JPEG data to a file (or any stdio stream). While these routines
|
||||
* are sufficient for most applications, some will want to use a different
|
||||
* destination manager.
|
||||
* IMPORTANT: we assume that fwrite() will correctly transcribe an array of
|
||||
* JOCTETs into 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
/* Expanded data destination object for stdio output */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_destination_mgr pub; /* public fields */
|
||||
|
||||
FILE * outfile; /* target stream */
|
||||
JOCTET * buffer; /* start of buffer */
|
||||
} my_destination_mgr;
|
||||
|
||||
typedef my_destination_mgr * my_dest_ptr;
|
||||
|
||||
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize destination --- called by jpeg_start_compress
|
||||
* before any data is actually written.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
init_destination (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
|
||||
/* Allocate the output buffer --- it will be released when done with image */
|
||||
dest->buffer = (JOCTET *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
OUTPUT_BUF_SIZE * SIZEOF(JOCTET));
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer;
|
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty the output buffer --- called whenever buffer fills up.
|
||||
*
|
||||
* In typical applications, this should write the entire output buffer
|
||||
* (ignoring the current state of next_output_byte & free_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been dumped.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to output
|
||||
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
|
||||
* In this situation, the compressor will return to its caller (possibly with
|
||||
* an indication that it has not accepted all the supplied scanlines). The
|
||||
* application should resume compression after it has made more room in the
|
||||
* output buffer. Note that there are substantial restrictions on the use of
|
||||
* suspension --- see the documentation.
|
||||
*
|
||||
* When suspending, the compressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_output_byte & free_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point will be regenerated after resumption, so do not
|
||||
* write it out when emptying the buffer externally.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
empty_output_buffer (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
|
||||
if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) !=
|
||||
(size_t) OUTPUT_BUF_SIZE)
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
|
||||
dest->pub.next_output_byte = dest->buffer;
|
||||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Terminate destination --- called by jpeg_finish_compress
|
||||
* after all data has been written. Usually needs to flush buffer.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
term_destination (j_compress_ptr cinfo)
|
||||
{
|
||||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||||
size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;
|
||||
|
||||
/* Write any data remaining in the buffer */
|
||||
if (datacount > 0) {
|
||||
if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount)
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
}
|
||||
fflush(dest->outfile);
|
||||
/* Make sure we wrote the output file OK */
|
||||
if (ferror(dest->outfile))
|
||||
ERREXIT(cinfo, JERR_FILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for output to a stdio stream.
|
||||
* The caller must have already opened the stream, and is responsible
|
||||
* for closing it after finishing compression.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
|
||||
{
|
||||
my_dest_ptr dest;
|
||||
|
||||
/* The destination object is made permanent so that multiple JPEG images
|
||||
* can be written to the same file without re-executing jpeg_stdio_dest.
|
||||
* This makes it dangerous to use this manager and a different destination
|
||||
* manager serially with the same JPEG object, because their private object
|
||||
* sizes may be different. Caveat programmer.
|
||||
*/
|
||||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->dest = (struct jpeg_destination_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
SIZEOF(my_destination_mgr));
|
||||
}
|
||||
|
||||
dest = (my_dest_ptr) cinfo->dest;
|
||||
dest->pub.init_destination = init_destination;
|
||||
dest->pub.empty_output_buffer = empty_output_buffer;
|
||||
dest->pub.term_destination = term_destination;
|
||||
dest->outfile = outfile;
|
||||
}
|
||||
212
3rdparty/libjpeg/jdatasrc.c
vendored
212
3rdparty/libjpeg/jdatasrc.c
vendored
@@ -1,212 +0,0 @@
|
||||
/*
|
||||
* jdatasrc.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains decompression data source routines for the case of
|
||||
* reading JPEG data from a file (or any stdio stream). While these routines
|
||||
* are sufficient for most applications, some will want to use a different
|
||||
* source manager.
|
||||
* IMPORTANT: we assume that fread() will correctly transcribe an array of
|
||||
* JOCTETs from 8-bit-wide elements on external storage. If char is wider
|
||||
* than 8 bits on your machine, you may need to do some tweaking.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jerror.h"
|
||||
|
||||
|
||||
/* Expanded data source object for stdio input */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_source_mgr pub; /* public fields */
|
||||
|
||||
FILE * infile; /* source stream */
|
||||
JOCTET * buffer; /* start of buffer */
|
||||
boolean start_of_file; /* have we gotten any data yet? */
|
||||
} my_source_mgr;
|
||||
|
||||
typedef my_source_mgr * my_src_ptr;
|
||||
|
||||
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize source --- called by jpeg_read_header
|
||||
* before any data is actually read.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
init_source (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
|
||||
/* We reset the empty-input-file flag for each image,
|
||||
* but we don't clear the input buffer.
|
||||
* This is correct behavior for reading a series of images from one source.
|
||||
*/
|
||||
src->start_of_file = TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fill the input buffer --- called whenever buffer is emptied.
|
||||
*
|
||||
* In typical applications, this should read fresh data into the buffer
|
||||
* (ignoring the current state of next_input_byte & bytes_in_buffer),
|
||||
* reset the pointer & count to the start of the buffer, and return TRUE
|
||||
* indicating that the buffer has been reloaded. It is not necessary to
|
||||
* fill the buffer entirely, only to obtain at least one more byte.
|
||||
*
|
||||
* There is no such thing as an EOF return. If the end of the file has been
|
||||
* reached, the routine has a choice of ERREXIT() or inserting fake data into
|
||||
* the buffer. In most cases, generating a warning message and inserting a
|
||||
* fake EOI marker is the best course of action --- this will allow the
|
||||
* decompressor to output however much of the image is there. However,
|
||||
* the resulting error message is misleading if the real problem is an empty
|
||||
* input file, so we handle that case specially.
|
||||
*
|
||||
* In applications that need to be able to suspend compression due to input
|
||||
* not being available yet, a FALSE return indicates that no more data can be
|
||||
* obtained right now, but more may be forthcoming later. In this situation,
|
||||
* the decompressor will return to its caller (with an indication of the
|
||||
* number of scanlines it has read, if any). The application should resume
|
||||
* decompression after it has loaded more data into the input buffer. Note
|
||||
* that there are substantial restrictions on the use of suspension --- see
|
||||
* the documentation.
|
||||
*
|
||||
* When suspending, the decompressor will back up to a convenient restart point
|
||||
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer
|
||||
* indicate where the restart point will be if the current call returns FALSE.
|
||||
* Data beyond this point must be rescanned after resumption, so move it to
|
||||
* the front of the buffer rather than discarding it.
|
||||
*/
|
||||
|
||||
METHODDEF(boolean)
|
||||
fill_input_buffer (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
size_t nbytes;
|
||||
|
||||
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
|
||||
|
||||
if (nbytes <= 0) {
|
||||
if (src->start_of_file) /* Treat empty input file as fatal error */
|
||||
ERREXIT(cinfo, JERR_INPUT_EMPTY);
|
||||
WARNMS(cinfo, JWRN_JPEG_EOF);
|
||||
/* Insert a fake EOI marker */
|
||||
src->buffer[0] = (JOCTET) 0xFF;
|
||||
src->buffer[1] = (JOCTET) JPEG_EOI;
|
||||
nbytes = 2;
|
||||
}
|
||||
|
||||
src->pub.next_input_byte = src->buffer;
|
||||
src->pub.bytes_in_buffer = nbytes;
|
||||
src->start_of_file = FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Skip data --- used to skip over a potentially large amount of
|
||||
* uninteresting data (such as an APPn marker).
|
||||
*
|
||||
* Writers of suspendable-input applications must note that skip_input_data
|
||||
* is not granted the right to give a suspension return. If the skip extends
|
||||
* beyond the data currently in the buffer, the buffer can be marked empty so
|
||||
* that the next read will cause a fill_input_buffer call that can suspend.
|
||||
* Arranging for additional bytes to be discarded before reloading the input
|
||||
* buffer is the application writer's problem.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
skip_input_data (j_decompress_ptr cinfo, long num_bytes)
|
||||
{
|
||||
my_src_ptr src = (my_src_ptr) cinfo->src;
|
||||
|
||||
/* Just a dumb implementation for now. Could use fseek() except
|
||||
* it doesn't work on pipes. Not clear that being smart is worth
|
||||
* any trouble anyway --- large skips are infrequent.
|
||||
*/
|
||||
if (num_bytes > 0) {
|
||||
while (num_bytes > (long) src->pub.bytes_in_buffer) {
|
||||
num_bytes -= (long) src->pub.bytes_in_buffer;
|
||||
(void) fill_input_buffer(cinfo);
|
||||
/* note we assume that fill_input_buffer will never return FALSE,
|
||||
* so suspension need not be handled.
|
||||
*/
|
||||
}
|
||||
src->pub.next_input_byte += (size_t) num_bytes;
|
||||
src->pub.bytes_in_buffer -= (size_t) num_bytes;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* An additional method that can be provided by data source modules is the
|
||||
* resync_to_restart method for error recovery in the presence of RST markers.
|
||||
* For the moment, this source module just uses the default resync method
|
||||
* provided by the JPEG library. That method assumes that no backtracking
|
||||
* is possible.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Terminate source --- called by jpeg_finish_decompress
|
||||
* after all data has been read. Often a no-op.
|
||||
*
|
||||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||||
* application must deal with any cleanup that should happen even
|
||||
* for error exit.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
term_source (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work necessary here */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for input from a stdio stream.
|
||||
* The caller must have already opened the stream, and is responsible
|
||||
* for closing it after finishing decompression.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
|
||||
{
|
||||
my_src_ptr src;
|
||||
|
||||
/* The source object and input buffer are made permanent so that a series
|
||||
* of JPEG images can be read from the same file by calling jpeg_stdio_src
|
||||
* only before the first one. (If we discarded the buffer at the end of
|
||||
* one image, we'd likely lose the start of the next one.)
|
||||
* This makes it unsafe to use this manager and a different source
|
||||
* manager serially with the same JPEG object. Caveat programmer.
|
||||
*/
|
||||
if (cinfo->src == NULL) { /* first time for this JPEG object? */
|
||||
cinfo->src = (struct jpeg_source_mgr *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
SIZEOF(my_source_mgr));
|
||||
src = (my_src_ptr) cinfo->src;
|
||||
src->buffer = (JOCTET *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
INPUT_BUF_SIZE * SIZEOF(JOCTET));
|
||||
}
|
||||
|
||||
src = (my_src_ptr) cinfo->src;
|
||||
src->pub.init_source = init_source;
|
||||
src->pub.fill_input_buffer = fill_input_buffer;
|
||||
src->pub.skip_input_data = skip_input_data;
|
||||
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
|
||||
src->pub.term_source = term_source;
|
||||
src->infile = infile;
|
||||
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
|
||||
src->pub.next_input_byte = NULL; /* until buffer loaded */
|
||||
}
|
||||
736
3rdparty/libjpeg/jdcoefct.c
vendored
736
3rdparty/libjpeg/jdcoefct.c
vendored
@@ -1,736 +0,0 @@
|
||||
/*
|
||||
* jdcoefct.c
|
||||
*
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the coefficient buffer controller for decompression.
|
||||
* This controller is the top level of the JPEG decompressor proper.
|
||||
* The coefficient buffer lies between entropy decoding and inverse-DCT steps.
|
||||
*
|
||||
* In buffered-image mode, this controller is the interface between
|
||||
* input-oriented processing and output-oriented processing.
|
||||
* Also, the input side (only) is used when reading a file for transcoding.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
/* Block smoothing is only applicable for progressive JPEG, so: */
|
||||
#ifndef D_PROGRESSIVE_SUPPORTED
|
||||
#undef BLOCK_SMOOTHING_SUPPORTED
|
||||
#endif
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_coef_controller pub; /* public fields */
|
||||
|
||||
/* These variables keep track of the current location of the input side. */
|
||||
/* cinfo->input_iMCU_row is also used for this. */
|
||||
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
|
||||
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
||||
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
||||
|
||||
/* The output side's location is represented by cinfo->output_iMCU_row. */
|
||||
|
||||
/* In single-pass modes, it's sufficient to buffer just one MCU.
|
||||
* We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
|
||||
* and let the entropy decoder write into that workspace each time.
|
||||
* (On 80x86, the workspace is FAR even though it's not really very big;
|
||||
* this is to keep the module interfaces unchanged when a large coefficient
|
||||
* buffer is necessary.)
|
||||
* In multi-pass modes, this array points to the current MCU's blocks
|
||||
* within the virtual arrays; it is used only by the input side.
|
||||
*/
|
||||
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
/* In multi-pass modes, we need a virtual block array for each component. */
|
||||
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
||||
#endif
|
||||
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
/* When doing block smoothing, we latch coefficient Al values here */
|
||||
int * coef_bits_latch;
|
||||
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
|
||||
#endif
|
||||
} my_coef_controller;
|
||||
|
||||
typedef my_coef_controller * my_coef_ptr;
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(int) decompress_onepass
|
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
METHODDEF(int) decompress_data
|
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||
#endif
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
|
||||
METHODDEF(int) decompress_smooth_data
|
||||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
start_iMCU_row (j_decompress_ptr cinfo)
|
||||
/* Reset within-iMCU-row counters for a new row (input side) */
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
||||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
||||
* But at the bottom of the image, process only what's left.
|
||||
*/
|
||||
if (cinfo->comps_in_scan > 1) {
|
||||
coef->MCU_rows_per_iMCU_row = 1;
|
||||
} else {
|
||||
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
||||
else
|
||||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
||||
}
|
||||
|
||||
coef->MCU_ctr = 0;
|
||||
coef->MCU_vert_offset = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an input processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_input_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
cinfo->input_iMCU_row = 0;
|
||||
start_iMCU_row(cinfo);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an output processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_output_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
|
||||
/* If multipass, check to see whether to use block smoothing on this pass */
|
||||
if (coef->pub.coef_arrays != NULL) {
|
||||
if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
|
||||
coef->pub.decompress_data = decompress_smooth_data;
|
||||
else
|
||||
coef->pub.decompress_data = decompress_data;
|
||||
}
|
||||
#endif
|
||||
cinfo->output_iMCU_row = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompress and return some data in the single-pass case.
|
||||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
||||
* Input and output must run in lockstep since we have only a one-MCU buffer.
|
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||
*
|
||||
* NB: output_buf contains a plane for each component in image,
|
||||
* which we index according to the component's SOF position.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
int blkn, ci, xindex, yindex, yoffset, useful_width;
|
||||
JSAMPARRAY output_ptr;
|
||||
JDIMENSION start_col, output_col;
|
||||
jpeg_component_info *compptr;
|
||||
inverse_DCT_method_ptr inverse_DCT;
|
||||
|
||||
/* Loop to process as much as one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
|
||||
MCU_col_num++) {
|
||||
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
|
||||
jzero_far((void FAR *) coef->MCU_buffer[0],
|
||||
(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
|
||||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->MCU_ctr = MCU_col_num;
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
/* Determine where data should go in output_buf and do the IDCT thing.
|
||||
* We skip dummy blocks at the right and bottom edges (but blkn gets
|
||||
* incremented past them!). Note the inner loop relies on having
|
||||
* allocated the MCU_buffer[] blocks sequentially.
|
||||
*/
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Don't bother to IDCT an uninteresting component. */
|
||||
if (! compptr->component_needed) {
|
||||
blkn += compptr->MCU_blocks;
|
||||
continue;
|
||||
}
|
||||
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
|
||||
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
||||
: compptr->last_col_width;
|
||||
output_ptr = output_buf[compptr->component_index] +
|
||||
yoffset * compptr->DCT_v_scaled_size;
|
||||
start_col = MCU_col_num * compptr->MCU_sample_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
if (cinfo->input_iMCU_row < last_iMCU_row ||
|
||||
yoffset+yindex < compptr->last_row_height) {
|
||||
output_col = start_col;
|
||||
for (xindex = 0; xindex < useful_width; xindex++) {
|
||||
(*inverse_DCT) (cinfo, compptr,
|
||||
(JCOEFPTR) coef->MCU_buffer[blkn+xindex],
|
||||
output_ptr, output_col);
|
||||
output_col += compptr->DCT_h_scaled_size;
|
||||
}
|
||||
}
|
||||
blkn += compptr->MCU_width;
|
||||
output_ptr += compptr->DCT_v_scaled_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->MCU_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
cinfo->output_iMCU_row++;
|
||||
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
||||
start_iMCU_row(cinfo);
|
||||
return JPEG_ROW_COMPLETED;
|
||||
}
|
||||
/* Completed the scan */
|
||||
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Dummy consume-input routine for single-pass operation.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
dummy_consume_data (j_decompress_ptr cinfo)
|
||||
{
|
||||
return JPEG_SUSPENDED; /* Always indicate nothing was done */
|
||||
}
|
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Consume input data and store it in the full-image coefficient buffer.
|
||||
* We read as much as one fully interleaved MCU row ("iMCU" row) per call,
|
||||
* ie, v_samp_factor block rows for each component in the scan.
|
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
consume_data (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
||||
int blkn, ci, xindex, yindex, yoffset;
|
||||
JDIMENSION start_col;
|
||||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
||||
JBLOCKROW buffer_ptr;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Align the virtual buffers for the components used in this scan. */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
||||
cinfo->input_iMCU_row * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
||||
/* Note: entropy decoder expects buffer to be zeroed,
|
||||
* but this is handled automatically by the memory manager
|
||||
* because we requested a pre-zeroed array.
|
||||
*/
|
||||
}
|
||||
|
||||
/* Loop to process one whole iMCU row */
|
||||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
||||
yoffset++) {
|
||||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
||||
MCU_col_num++) {
|
||||
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
||||
blkn = 0; /* index of current DCT block within MCU */
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
start_col = MCU_col_num * compptr->MCU_width;
|
||||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
||||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
||||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
||||
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Try to fetch the MCU. */
|
||||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
||||
/* Suspension forced; update state counters and exit */
|
||||
coef->MCU_vert_offset = yoffset;
|
||||
coef->MCU_ctr = MCU_col_num;
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
}
|
||||
/* Completed an MCU row, but perhaps not an iMCU row */
|
||||
coef->MCU_ctr = 0;
|
||||
}
|
||||
/* Completed the iMCU row, advance counters for next one */
|
||||
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
||||
start_iMCU_row(cinfo);
|
||||
return JPEG_ROW_COMPLETED;
|
||||
}
|
||||
/* Completed the scan */
|
||||
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decompress and return some data in the multi-pass case.
|
||||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
||||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
||||
*
|
||||
* NB: output_buf contains a plane for each component in image.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION block_num;
|
||||
int ci, block_row, block_rows;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW buffer_ptr;
|
||||
JSAMPARRAY output_ptr;
|
||||
JDIMENSION output_col;
|
||||
jpeg_component_info *compptr;
|
||||
inverse_DCT_method_ptr inverse_DCT;
|
||||
|
||||
/* Force some input to be done if we are getting ahead of the input. */
|
||||
while (cinfo->input_scan_number < cinfo->output_scan_number ||
|
||||
(cinfo->input_scan_number == cinfo->output_scan_number &&
|
||||
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
|
||||
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
|
||||
/* OK, output from the virtual arrays. */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Don't bother to IDCT an uninteresting component. */
|
||||
if (! compptr->component_needed)
|
||||
continue;
|
||||
/* Align the virtual buffer for this component. */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||
cinfo->output_iMCU_row * compptr->v_samp_factor,
|
||||
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (cinfo->output_iMCU_row < last_iMCU_row)
|
||||
block_rows = compptr->v_samp_factor;
|
||||
else {
|
||||
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
}
|
||||
inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
||||
output_ptr = output_buf[ci];
|
||||
/* Loop over all DCT blocks to be processed. */
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
buffer_ptr = buffer[block_row];
|
||||
output_col = 0;
|
||||
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
|
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
|
||||
output_ptr, output_col);
|
||||
buffer_ptr++;
|
||||
output_col += compptr->DCT_h_scaled_size;
|
||||
}
|
||||
output_ptr += compptr->DCT_v_scaled_size;
|
||||
}
|
||||
}
|
||||
|
||||
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
||||
return JPEG_ROW_COMPLETED;
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
|
||||
/*
|
||||
* This code applies interblock smoothing as described by section K.8
|
||||
* of the JPEG standard: the first 5 AC coefficients are estimated from
|
||||
* the DC values of a DCT block and its 8 neighboring blocks.
|
||||
* We apply smoothing only for progressive JPEG decoding, and only if
|
||||
* the coefficients it can estimate are not yet known to full precision.
|
||||
*/
|
||||
|
||||
/* Natural-order array positions of the first 5 zigzag-order coefficients */
|
||||
#define Q01_POS 1
|
||||
#define Q10_POS 8
|
||||
#define Q20_POS 16
|
||||
#define Q11_POS 9
|
||||
#define Q02_POS 2
|
||||
|
||||
/*
|
||||
* Determine whether block smoothing is applicable and safe.
|
||||
* We also latch the current states of the coef_bits[] entries for the
|
||||
* AC coefficients; otherwise, if the input side of the decompressor
|
||||
* advances into a new scan, we might think the coefficients are known
|
||||
* more accurately than they really are.
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
smoothing_ok (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
boolean smoothing_useful = FALSE;
|
||||
int ci, coefi;
|
||||
jpeg_component_info *compptr;
|
||||
JQUANT_TBL * qtable;
|
||||
int * coef_bits;
|
||||
int * coef_bits_latch;
|
||||
|
||||
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
|
||||
return FALSE;
|
||||
|
||||
/* Allocate latch area if not already done */
|
||||
if (coef->coef_bits_latch == NULL)
|
||||
coef->coef_bits_latch = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components *
|
||||
(SAVED_COEFS * SIZEOF(int)));
|
||||
coef_bits_latch = coef->coef_bits_latch;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* All components' quantization values must already be latched. */
|
||||
if ((qtable = compptr->quant_table) == NULL)
|
||||
return FALSE;
|
||||
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
|
||||
if (qtable->quantval[0] == 0 ||
|
||||
qtable->quantval[Q01_POS] == 0 ||
|
||||
qtable->quantval[Q10_POS] == 0 ||
|
||||
qtable->quantval[Q20_POS] == 0 ||
|
||||
qtable->quantval[Q11_POS] == 0 ||
|
||||
qtable->quantval[Q02_POS] == 0)
|
||||
return FALSE;
|
||||
/* DC values must be at least partly known for all components. */
|
||||
coef_bits = cinfo->coef_bits[ci];
|
||||
if (coef_bits[0] < 0)
|
||||
return FALSE;
|
||||
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */
|
||||
for (coefi = 1; coefi <= 5; coefi++) {
|
||||
coef_bits_latch[coefi] = coef_bits[coefi];
|
||||
if (coef_bits[coefi] != 0)
|
||||
smoothing_useful = TRUE;
|
||||
}
|
||||
coef_bits_latch += SAVED_COEFS;
|
||||
}
|
||||
|
||||
return smoothing_useful;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Variant of decompress_data for use when doing block smoothing.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||
{
|
||||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
||||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
||||
JDIMENSION block_num, last_block_column;
|
||||
int ci, block_row, block_rows, access_rows;
|
||||
JBLOCKARRAY buffer;
|
||||
JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
|
||||
JSAMPARRAY output_ptr;
|
||||
JDIMENSION output_col;
|
||||
jpeg_component_info *compptr;
|
||||
inverse_DCT_method_ptr inverse_DCT;
|
||||
boolean first_row, last_row;
|
||||
JBLOCK workspace;
|
||||
int *coef_bits;
|
||||
JQUANT_TBL *quanttbl;
|
||||
INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
|
||||
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
|
||||
int Al, pred;
|
||||
|
||||
/* Force some input to be done if we are getting ahead of the input. */
|
||||
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
||||
! cinfo->inputctl->eoi_reached) {
|
||||
if (cinfo->input_scan_number == cinfo->output_scan_number) {
|
||||
/* If input is working on current scan, we ordinarily want it to
|
||||
* have completed the current row. But if input scan is DC,
|
||||
* we want it to keep one row ahead so that next block row's DC
|
||||
* values are up to date.
|
||||
*/
|
||||
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
|
||||
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
|
||||
break;
|
||||
}
|
||||
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
|
||||
return JPEG_SUSPENDED;
|
||||
}
|
||||
|
||||
/* OK, output from the virtual arrays. */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Don't bother to IDCT an uninteresting component. */
|
||||
if (! compptr->component_needed)
|
||||
continue;
|
||||
/* Count non-dummy DCT block rows in this iMCU row. */
|
||||
if (cinfo->output_iMCU_row < last_iMCU_row) {
|
||||
block_rows = compptr->v_samp_factor;
|
||||
access_rows = block_rows * 2; /* this and next iMCU row */
|
||||
last_row = FALSE;
|
||||
} else {
|
||||
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
||||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
||||
access_rows = block_rows; /* this iMCU row only */
|
||||
last_row = TRUE;
|
||||
}
|
||||
/* Align the virtual buffer for this component. */
|
||||
if (cinfo->output_iMCU_row > 0) {
|
||||
access_rows += compptr->v_samp_factor; /* prior iMCU row too */
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
|
||||
(JDIMENSION) access_rows, FALSE);
|
||||
buffer += compptr->v_samp_factor; /* point to current iMCU row */
|
||||
first_row = FALSE;
|
||||
} else {
|
||||
buffer = (*cinfo->mem->access_virt_barray)
|
||||
((j_common_ptr) cinfo, coef->whole_image[ci],
|
||||
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
|
||||
first_row = TRUE;
|
||||
}
|
||||
/* Fetch component-dependent info */
|
||||
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
|
||||
quanttbl = compptr->quant_table;
|
||||
Q00 = quanttbl->quantval[0];
|
||||
Q01 = quanttbl->quantval[Q01_POS];
|
||||
Q10 = quanttbl->quantval[Q10_POS];
|
||||
Q20 = quanttbl->quantval[Q20_POS];
|
||||
Q11 = quanttbl->quantval[Q11_POS];
|
||||
Q02 = quanttbl->quantval[Q02_POS];
|
||||
inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
||||
output_ptr = output_buf[ci];
|
||||
/* Loop over all DCT blocks to be processed. */
|
||||
for (block_row = 0; block_row < block_rows; block_row++) {
|
||||
buffer_ptr = buffer[block_row];
|
||||
if (first_row && block_row == 0)
|
||||
prev_block_row = buffer_ptr;
|
||||
else
|
||||
prev_block_row = buffer[block_row-1];
|
||||
if (last_row && block_row == block_rows-1)
|
||||
next_block_row = buffer_ptr;
|
||||
else
|
||||
next_block_row = buffer[block_row+1];
|
||||
/* We fetch the surrounding DC values using a sliding-register approach.
|
||||
* Initialize all nine here so as to do the right thing on narrow pics.
|
||||
*/
|
||||
DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
|
||||
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
|
||||
DC7 = DC8 = DC9 = (int) next_block_row[0][0];
|
||||
output_col = 0;
|
||||
last_block_column = compptr->width_in_blocks - 1;
|
||||
for (block_num = 0; block_num <= last_block_column; block_num++) {
|
||||
/* Fetch current DCT block into workspace so we can modify it. */
|
||||
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
|
||||
/* Update DC values */
|
||||
if (block_num < last_block_column) {
|
||||
DC3 = (int) prev_block_row[1][0];
|
||||
DC6 = (int) buffer_ptr[1][0];
|
||||
DC9 = (int) next_block_row[1][0];
|
||||
}
|
||||
/* Compute coefficient estimates per K.8.
|
||||
* An estimate is applied only if coefficient is still zero,
|
||||
* and is not known to be fully accurate.
|
||||
*/
|
||||
/* AC01 */
|
||||
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
|
||||
num = 36 * Q00 * (DC4 - DC6);
|
||||
if (num >= 0) {
|
||||
pred = (int) (((Q01<<7) + num) / (Q01<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
} else {
|
||||
pred = (int) (((Q01<<7) - num) / (Q01<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[1] = (JCOEF) pred;
|
||||
}
|
||||
/* AC10 */
|
||||
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
|
||||
num = 36 * Q00 * (DC2 - DC8);
|
||||
if (num >= 0) {
|
||||
pred = (int) (((Q10<<7) + num) / (Q10<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
} else {
|
||||
pred = (int) (((Q10<<7) - num) / (Q10<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[8] = (JCOEF) pred;
|
||||
}
|
||||
/* AC20 */
|
||||
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
|
||||
num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
|
||||
if (num >= 0) {
|
||||
pred = (int) (((Q20<<7) + num) / (Q20<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
} else {
|
||||
pred = (int) (((Q20<<7) - num) / (Q20<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[16] = (JCOEF) pred;
|
||||
}
|
||||
/* AC11 */
|
||||
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
|
||||
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
|
||||
if (num >= 0) {
|
||||
pred = (int) (((Q11<<7) + num) / (Q11<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
} else {
|
||||
pred = (int) (((Q11<<7) - num) / (Q11<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[9] = (JCOEF) pred;
|
||||
}
|
||||
/* AC02 */
|
||||
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
|
||||
num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
|
||||
if (num >= 0) {
|
||||
pred = (int) (((Q02<<7) + num) / (Q02<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
} else {
|
||||
pred = (int) (((Q02<<7) - num) / (Q02<<8));
|
||||
if (Al > 0 && pred >= (1<<Al))
|
||||
pred = (1<<Al)-1;
|
||||
pred = -pred;
|
||||
}
|
||||
workspace[2] = (JCOEF) pred;
|
||||
}
|
||||
/* OK, do the IDCT */
|
||||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
|
||||
output_ptr, output_col);
|
||||
/* Advance for next column */
|
||||
DC1 = DC2; DC2 = DC3;
|
||||
DC4 = DC5; DC5 = DC6;
|
||||
DC7 = DC8; DC8 = DC9;
|
||||
buffer_ptr++, prev_block_row++, next_block_row++;
|
||||
output_col += compptr->DCT_h_scaled_size;
|
||||
}
|
||||
output_ptr += compptr->DCT_v_scaled_size;
|
||||
}
|
||||
}
|
||||
|
||||
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
||||
return JPEG_ROW_COMPLETED;
|
||||
return JPEG_SCAN_COMPLETED;
|
||||
}
|
||||
|
||||
#endif /* BLOCK_SMOOTHING_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize coefficient buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_coef_ptr coef;
|
||||
|
||||
coef = (my_coef_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_coef_controller));
|
||||
cinfo->coef = (struct jpeg_d_coef_controller *) coef;
|
||||
coef->pub.start_input_pass = start_input_pass;
|
||||
coef->pub.start_output_pass = start_output_pass;
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
coef->coef_bits_latch = NULL;
|
||||
#endif
|
||||
|
||||
/* Create the coefficient buffer. */
|
||||
if (need_full_buffer) {
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
/* Allocate a full-image virtual array for each component, */
|
||||
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
||||
/* Note we ask for a pre-zeroed array. */
|
||||
int ci, access_rows;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
access_rows = compptr->v_samp_factor;
|
||||
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
||||
/* If block smoothing could be used, need a bigger window */
|
||||
if (cinfo->progressive_mode)
|
||||
access_rows *= 3;
|
||||
#endif
|
||||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
|
||||
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
||||
(long) compptr->h_samp_factor),
|
||||
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
||||
(long) compptr->v_samp_factor),
|
||||
(JDIMENSION) access_rows);
|
||||
}
|
||||
coef->pub.consume_data = consume_data;
|
||||
coef->pub.decompress_data = decompress_data;
|
||||
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
/* We only need a single-MCU buffer. */
|
||||
JBLOCKROW buffer;
|
||||
int i;
|
||||
|
||||
buffer = (JBLOCKROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
||||
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
|
||||
coef->MCU_buffer[i] = buffer + i;
|
||||
}
|
||||
coef->pub.consume_data = dummy_consume_data;
|
||||
coef->pub.decompress_data = decompress_onepass;
|
||||
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
|
||||
}
|
||||
}
|
||||
396
3rdparty/libjpeg/jdcolor.c
vendored
396
3rdparty/libjpeg/jdcolor.c
vendored
@@ -1,396 +0,0 @@
|
||||
/*
|
||||
* jdcolor.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains output colorspace conversion routines.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_color_deconverter pub; /* public fields */
|
||||
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int * Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int * Cb_b_tab; /* => table for Cb to B conversion */
|
||||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
|
||||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
|
||||
} my_color_deconverter;
|
||||
|
||||
typedef my_color_deconverter * my_cconvert_ptr;
|
||||
|
||||
|
||||
/**************** YCbCr -> RGB conversion: most common case **************/
|
||||
|
||||
/*
|
||||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
|
||||
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
|
||||
* The conversion equations to be implemented are therefore
|
||||
* R = Y + 1.40200 * Cr
|
||||
* G = Y - 0.34414 * Cb - 0.71414 * Cr
|
||||
* B = Y + 1.77200 * Cb
|
||||
* where Cb and Cr represent the incoming values less CENTERJSAMPLE.
|
||||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
|
||||
*
|
||||
* To avoid floating-point arithmetic, we represent the fractional constants
|
||||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
|
||||
* the products by 2^16, with appropriate rounding, to get the correct answer.
|
||||
* Notice that Y, being an integral input, does not contribute any fraction
|
||||
* so it need not participate in the rounding.
|
||||
*
|
||||
* For even more speed, we avoid doing any multiplications in the inner loop
|
||||
* by precalculating the constants times Cb and Cr for all possible values.
|
||||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
|
||||
* for 12-bit samples it is still acceptable. It's not very reasonable for
|
||||
* 16-bit samples, but if you want lossless storage you shouldn't be changing
|
||||
* colorspace anyway.
|
||||
* The Cr=>R and Cb=>B values can be rounded to integers in advance; the
|
||||
* values for the G calculation are left scaled up, since we must add them
|
||||
* together before rounding.
|
||||
*/
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCC->RGB colorspace conversion.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
build_ycc_rgb_table (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
int i;
|
||||
INT32 x;
|
||||
SHIFT_TEMPS
|
||||
|
||||
cconvert->Cr_r_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
cconvert->Cb_b_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
cconvert->Cr_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
cconvert->Cb_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
|
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
|
||||
/* Cr=>R value is nearest int to 1.40200 * x */
|
||||
cconvert->Cr_r_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cb=>B value is nearest int to 1.77200 * x */
|
||||
cconvert->Cb_b_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cr=>G value is scaled-up -0.71414 * x */
|
||||
cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
|
||||
/* Cb=>G value is scaled-up -0.34414 * x */
|
||||
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||
cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert some rows of samples to the output colorspace.
|
||||
*
|
||||
* Note that we change from noninterleaved, one-plane-per-component format
|
||||
* to interleaved-pixel format. The output buffer is therefore three times
|
||||
* as wide as the input buffer.
|
||||
* A starting row offset is provided only for the input buffer. The caller
|
||||
* can easily adjust the passed output_buf value to accommodate any row
|
||||
* offset required on that side.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
ycc_rgb_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
register int * Crrtab = cconvert->Cr_r_tab;
|
||||
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
y = GETJSAMPLE(inptr0[col]);
|
||||
cb = GETJSAMPLE(inptr1[col]);
|
||||
cr = GETJSAMPLE(inptr2[col]);
|
||||
/* Range-limiting is essential due to noise introduced by DCT losses. */
|
||||
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
|
||||
outptr[RGB_GREEN] = range_limit[y +
|
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS))];
|
||||
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**************** Cases other than YCbCr -> RGB **************/
|
||||
|
||||
|
||||
/*
|
||||
* Color conversion for no colorspace change: just copy the data,
|
||||
* converting from separate-planes to interleaved representation.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
null_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JDIMENSION count;
|
||||
register int num_components = cinfo->num_components;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
int ci;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
for (ci = 0; ci < num_components; ci++) {
|
||||
inptr = input_buf[ci][input_row];
|
||||
outptr = output_buf[0] + ci;
|
||||
for (count = num_cols; count > 0; count--) {
|
||||
*outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
|
||||
outptr += num_components;
|
||||
}
|
||||
}
|
||||
input_row++;
|
||||
output_buf++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Color conversion for grayscale: just copy the data.
|
||||
* This also works for YCbCr -> grayscale conversion, in which
|
||||
* we just copy the Y (luminance) component and ignore chrominance.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
grayscale_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
|
||||
num_rows, cinfo->output_width);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Convert grayscale to RGB: just duplicate the graylevel three times.
|
||||
* This is provided to support applications that don't want to cope
|
||||
* with grayscale as a separate case.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
gray_rgb_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr = input_buf[0][input_row++];
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
/* We can dispense with GETJSAMPLE() here */
|
||||
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Adobe-style YCCK->CMYK conversion.
|
||||
* We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
|
||||
* conversion as above, while passing K (black) unchanged.
|
||||
* We assume build_ycc_rgb_table has been called.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
ycck_cmyk_convert (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION input_row,
|
||||
JSAMPARRAY output_buf, int num_rows)
|
||||
{
|
||||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
|
||||
register int y, cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
register JSAMPROW inptr0, inptr1, inptr2, inptr3;
|
||||
register JDIMENSION col;
|
||||
JDIMENSION num_cols = cinfo->output_width;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
register int * Crrtab = cconvert->Cr_r_tab;
|
||||
register int * Cbbtab = cconvert->Cb_b_tab;
|
||||
register INT32 * Crgtab = cconvert->Cr_g_tab;
|
||||
register INT32 * Cbgtab = cconvert->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
while (--num_rows >= 0) {
|
||||
inptr0 = input_buf[0][input_row];
|
||||
inptr1 = input_buf[1][input_row];
|
||||
inptr2 = input_buf[2][input_row];
|
||||
inptr3 = input_buf[3][input_row];
|
||||
input_row++;
|
||||
outptr = *output_buf++;
|
||||
for (col = 0; col < num_cols; col++) {
|
||||
y = GETJSAMPLE(inptr0[col]);
|
||||
cb = GETJSAMPLE(inptr1[col]);
|
||||
cr = GETJSAMPLE(inptr2[col]);
|
||||
/* Range-limiting is essential due to noise introduced by DCT losses. */
|
||||
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
|
||||
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
|
||||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
|
||||
SCALEBITS)))];
|
||||
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
|
||||
/* K passes through unchanged */
|
||||
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
|
||||
outptr += 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Empty method for start_pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_dcolor (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* no work needed */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for output colorspace conversion.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_color_deconverter (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_cconvert_ptr cconvert;
|
||||
int ci;
|
||||
|
||||
cconvert = (my_cconvert_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_color_deconverter));
|
||||
cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
|
||||
cconvert->pub.start_pass = start_pass_dcolor;
|
||||
|
||||
/* Make sure num_components agrees with jpeg_color_space */
|
||||
switch (cinfo->jpeg_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
if (cinfo->num_components != 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
case JCS_YCbCr:
|
||||
if (cinfo->num_components != 3)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
if (cinfo->num_components != 4)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
|
||||
default: /* JCS_UNKNOWN can be anything */
|
||||
if (cinfo->num_components < 1)
|
||||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Set out_color_components and conversion method based on requested space.
|
||||
* Also clear the component_needed flags for any unused components,
|
||||
* so that earlier pipeline stages can avoid useless computation.
|
||||
*/
|
||||
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->out_color_components = 1;
|
||||
if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
|
||||
cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
cconvert->pub.color_convert = grayscale_convert;
|
||||
/* For color->grayscale conversion, only the Y (0) component is needed */
|
||||
for (ci = 1; ci < cinfo->num_components; ci++)
|
||||
cinfo->comp_info[ci].component_needed = FALSE;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_RGB:
|
||||
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||
if (cinfo->jpeg_color_space == JCS_YCbCr) {
|
||||
cconvert->pub.color_convert = ycc_rgb_convert;
|
||||
build_ycc_rgb_table(cinfo);
|
||||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
|
||||
cconvert->pub.color_convert = gray_rgb_convert;
|
||||
} else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
case JCS_CMYK:
|
||||
cinfo->out_color_components = 4;
|
||||
if (cinfo->jpeg_color_space == JCS_YCCK) {
|
||||
cconvert->pub.color_convert = ycck_cmyk_convert;
|
||||
build_ycc_rgb_table(cinfo);
|
||||
} else if (cinfo->jpeg_color_space == JCS_CMYK) {
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
|
||||
default:
|
||||
/* Permit null conversion to same output space */
|
||||
if (cinfo->out_color_space == cinfo->jpeg_color_space) {
|
||||
cinfo->out_color_components = cinfo->num_components;
|
||||
cconvert->pub.color_convert = null_convert;
|
||||
} else /* unsupported non-null conversion */
|
||||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
|
||||
break;
|
||||
}
|
||||
|
||||
if (cinfo->quantize_colors)
|
||||
cinfo->output_components = 1; /* single colormapped output component */
|
||||
else
|
||||
cinfo->output_components = cinfo->out_color_components;
|
||||
}
|
||||
393
3rdparty/libjpeg/jdct.h
vendored
393
3rdparty/libjpeg/jdct.h
vendored
@@ -1,393 +0,0 @@
|
||||
/*
|
||||
* jdct.h
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This include file contains common declarations for the forward and
|
||||
* inverse DCT modules. These declarations are private to the DCT managers
|
||||
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
|
||||
* The individual DCT algorithms are kept in separate files to ease
|
||||
* machine-dependent tuning (e.g., assembly coding).
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* A forward DCT routine is given a pointer to an input sample array and
|
||||
* a pointer to a work area of type DCTELEM[]; the DCT is to be performed
|
||||
* in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32
|
||||
* for 12-bit samples. (NOTE: Floating-point DCT implementations use an
|
||||
* array of type FAST_FLOAT, instead.)
|
||||
* The input data is to be fetched from the sample array starting at a
|
||||
* specified column. (Any row offset needed will be applied to the array
|
||||
* pointer before it is passed to the FDCT code.)
|
||||
* Note that the number of samples fetched by the FDCT routine is
|
||||
* DCT_h_scaled_size * DCT_v_scaled_size.
|
||||
* The DCT outputs are returned scaled up by a factor of 8; they therefore
|
||||
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
|
||||
* convention improves accuracy in integer implementations and saves some
|
||||
* work in floating-point ones.
|
||||
* Quantization of the output coefficients is done by jcdctmgr.c.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef int DCTELEM; /* 16 or 32 bits is fine */
|
||||
#else
|
||||
typedef INT32 DCTELEM; /* must have 32 bits */
|
||||
#endif
|
||||
|
||||
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data,
|
||||
JSAMPARRAY sample_data,
|
||||
JDIMENSION start_col));
|
||||
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data,
|
||||
JSAMPARRAY sample_data,
|
||||
JDIMENSION start_col));
|
||||
|
||||
|
||||
/*
|
||||
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
|
||||
* to an output sample array. The routine must dequantize the input data as
|
||||
* well as perform the IDCT; for dequantization, it uses the multiplier table
|
||||
* pointed to by compptr->dct_table. The output data is to be placed into the
|
||||
* sample array starting at a specified column. (Any row offset needed will
|
||||
* be applied to the array pointer before it is passed to the IDCT code.)
|
||||
* Note that the number of samples emitted by the IDCT routine is
|
||||
* DCT_h_scaled_size * DCT_v_scaled_size.
|
||||
*/
|
||||
|
||||
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
|
||||
|
||||
/*
|
||||
* Each IDCT routine has its own ideas about the best dct_table element type.
|
||||
*/
|
||||
|
||||
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
|
||||
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
|
||||
#else
|
||||
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
|
||||
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
|
||||
#endif
|
||||
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
|
||||
|
||||
|
||||
/*
|
||||
* Each IDCT routine is responsible for range-limiting its results and
|
||||
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
|
||||
* be quite far out of range if the input data is corrupt, so a bulletproof
|
||||
* range-limiting step is required. We use a mask-and-table-lookup method
|
||||
* to do the combined operations quickly. See the comments with
|
||||
* prepare_range_limit_table (in jdmaster.c) for more info.
|
||||
*/
|
||||
|
||||
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
|
||||
|
||||
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_fdct_islow jFDislow
|
||||
#define jpeg_fdct_ifast jFDifast
|
||||
#define jpeg_fdct_float jFDfloat
|
||||
#define jpeg_fdct_7x7 jFD7x7
|
||||
#define jpeg_fdct_6x6 jFD6x6
|
||||
#define jpeg_fdct_5x5 jFD5x5
|
||||
#define jpeg_fdct_4x4 jFD4x4
|
||||
#define jpeg_fdct_3x3 jFD3x3
|
||||
#define jpeg_fdct_2x2 jFD2x2
|
||||
#define jpeg_fdct_1x1 jFD1x1
|
||||
#define jpeg_fdct_9x9 jFD9x9
|
||||
#define jpeg_fdct_10x10 jFD10x10
|
||||
#define jpeg_fdct_11x11 jFD11x11
|
||||
#define jpeg_fdct_12x12 jFD12x12
|
||||
#define jpeg_fdct_13x13 jFD13x13
|
||||
#define jpeg_fdct_14x14 jFD14x14
|
||||
#define jpeg_fdct_15x15 jFD15x15
|
||||
#define jpeg_fdct_16x16 jFD16x16
|
||||
#define jpeg_fdct_16x8 jFD16x8
|
||||
#define jpeg_fdct_14x7 jFD14x7
|
||||
#define jpeg_fdct_12x6 jFD12x6
|
||||
#define jpeg_fdct_10x5 jFD10x5
|
||||
#define jpeg_fdct_8x4 jFD8x4
|
||||
#define jpeg_fdct_6x3 jFD6x3
|
||||
#define jpeg_fdct_4x2 jFD4x2
|
||||
#define jpeg_fdct_2x1 jFD2x1
|
||||
#define jpeg_fdct_8x16 jFD8x16
|
||||
#define jpeg_fdct_7x14 jFD7x14
|
||||
#define jpeg_fdct_6x12 jFD6x12
|
||||
#define jpeg_fdct_5x10 jFD5x10
|
||||
#define jpeg_fdct_4x8 jFD4x8
|
||||
#define jpeg_fdct_3x6 jFD3x6
|
||||
#define jpeg_fdct_2x4 jFD2x4
|
||||
#define jpeg_fdct_1x2 jFD1x2
|
||||
#define jpeg_idct_islow jRDislow
|
||||
#define jpeg_idct_ifast jRDifast
|
||||
#define jpeg_idct_float jRDfloat
|
||||
#define jpeg_idct_7x7 jRD7x7
|
||||
#define jpeg_idct_6x6 jRD6x6
|
||||
#define jpeg_idct_5x5 jRD5x5
|
||||
#define jpeg_idct_4x4 jRD4x4
|
||||
#define jpeg_idct_3x3 jRD3x3
|
||||
#define jpeg_idct_2x2 jRD2x2
|
||||
#define jpeg_idct_1x1 jRD1x1
|
||||
#define jpeg_idct_9x9 jRD9x9
|
||||
#define jpeg_idct_10x10 jRD10x10
|
||||
#define jpeg_idct_11x11 jRD11x11
|
||||
#define jpeg_idct_12x12 jRD12x12
|
||||
#define jpeg_idct_13x13 jRD13x13
|
||||
#define jpeg_idct_14x14 jRD14x14
|
||||
#define jpeg_idct_15x15 jRD15x15
|
||||
#define jpeg_idct_16x16 jRD16x16
|
||||
#define jpeg_idct_16x8 jRD16x8
|
||||
#define jpeg_idct_14x7 jRD14x7
|
||||
#define jpeg_idct_12x6 jRD12x6
|
||||
#define jpeg_idct_10x5 jRD10x5
|
||||
#define jpeg_idct_8x4 jRD8x4
|
||||
#define jpeg_idct_6x3 jRD6x3
|
||||
#define jpeg_idct_4x2 jRD4x2
|
||||
#define jpeg_idct_2x1 jRD2x1
|
||||
#define jpeg_idct_8x16 jRD8x16
|
||||
#define jpeg_idct_7x14 jRD7x14
|
||||
#define jpeg_idct_6x12 jRD6x12
|
||||
#define jpeg_idct_5x10 jRD5x10
|
||||
#define jpeg_idct_4x8 jRD4x8
|
||||
#define jpeg_idct_3x6 jRD3x8
|
||||
#define jpeg_idct_2x4 jRD2x4
|
||||
#define jpeg_idct_1x2 jRD1x2
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
/* Extern declarations for the forward and inverse DCT routines. */
|
||||
|
||||
EXTERN(void) jpeg_fdct_islow
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_ifast
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_float
|
||||
JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_7x7
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_6x6
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_5x5
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_4x4
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_3x3
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_2x2
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_1x1
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_9x9
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_10x10
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_11x11
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_12x12
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_13x13
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_14x14
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_15x15
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_16x16
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_16x8
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_14x7
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_12x6
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_10x5
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_8x4
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_6x3
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_4x2
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_2x1
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_8x16
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_7x14
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_6x12
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_5x10
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_4x8
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_3x6
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_2x4
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
EXTERN(void) jpeg_fdct_1x2
|
||||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
|
||||
|
||||
EXTERN(void) jpeg_idct_islow
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_ifast
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_float
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_7x7
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_6x6
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_5x5
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_4x4
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_3x3
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_2x2
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_1x1
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_9x9
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_10x10
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_11x11
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_12x12
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_13x13
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_14x14
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_15x15
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_16x16
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_16x8
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_14x7
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_12x6
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_10x5
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_8x4
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_6x3
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_4x2
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_2x1
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_8x16
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_7x14
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_6x12
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_5x10
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_4x8
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_3x6
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_2x4
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
EXTERN(void) jpeg_idct_1x2
|
||||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
|
||||
|
||||
|
||||
/*
|
||||
* Macros for handling fixed-point arithmetic; these are used by many
|
||||
* but not all of the DCT/IDCT modules.
|
||||
*
|
||||
* All values are expected to be of type INT32.
|
||||
* Fractional constants are scaled left by CONST_BITS bits.
|
||||
* CONST_BITS is defined within each module using these macros,
|
||||
* and may differ from one module to the next.
|
||||
*/
|
||||
|
||||
#define ONE ((INT32) 1)
|
||||
#define CONST_SCALE (ONE << CONST_BITS)
|
||||
|
||||
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
||||
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
|
||||
* thus causing a lot of useless floating-point operations at run time.
|
||||
*/
|
||||
|
||||
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
|
||||
|
||||
/* Descale and correctly round an INT32 value that's scaled by N bits.
|
||||
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
||||
* the fudge factor is correct for either sign of X.
|
||||
*/
|
||||
|
||||
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
|
||||
|
||||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
||||
* This macro is used only when the two inputs will actually be no more than
|
||||
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
|
||||
* full 32x32 multiply. This provides a useful speedup on many machines.
|
||||
* Unfortunately there is no way to specify a 16x16->32 multiply portably
|
||||
* in C, but some C compilers will do the right thing if you provide the
|
||||
* correct combination of casts.
|
||||
*/
|
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
|
||||
#endif
|
||||
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
|
||||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
|
||||
#endif
|
||||
|
||||
#ifndef MULTIPLY16C16 /* default definition */
|
||||
#define MULTIPLY16C16(var,const) ((var) * (const))
|
||||
#endif
|
||||
|
||||
/* Same except both inputs are variables. */
|
||||
|
||||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
||||
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
|
||||
#endif
|
||||
|
||||
#ifndef MULTIPLY16V16 /* default definition */
|
||||
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
|
||||
#endif
|
||||
382
3rdparty/libjpeg/jddctmgr.c
vendored
382
3rdparty/libjpeg/jddctmgr.c
vendored
@@ -1,382 +0,0 @@
|
||||
/*
|
||||
* jddctmgr.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the inverse-DCT management logic.
|
||||
* This code selects a particular IDCT implementation to be used,
|
||||
* and it performs related housekeeping chores. No code in this file
|
||||
* is executed per IDCT step, only during output pass setup.
|
||||
*
|
||||
* Note that the IDCT routines are responsible for performing coefficient
|
||||
* dequantization as well as the IDCT proper. This module sets up the
|
||||
* dequantization multiplier table needed by the IDCT routine.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
|
||||
/*
|
||||
* The decompressor input side (jdinput.c) saves away the appropriate
|
||||
* quantization table for each component at the start of the first scan
|
||||
* involving that component. (This is necessary in order to correctly
|
||||
* decode files that reuse Q-table slots.)
|
||||
* When we are ready to make an output pass, the saved Q-table is converted
|
||||
* to a multiplier table that will actually be used by the IDCT routine.
|
||||
* The multiplier table contents are IDCT-method-dependent. To support
|
||||
* application changes in IDCT method between scans, we can remake the
|
||||
* multiplier tables if necessary.
|
||||
* In buffered-image mode, the first output pass may occur before any data
|
||||
* has been seen for some components, and thus before their Q-tables have
|
||||
* been saved away. To handle this case, multiplier tables are preset
|
||||
* to zeroes; the result of the IDCT will be a neutral gray level.
|
||||
*/
|
||||
|
||||
|
||||
/* Private subobject for this module */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_inverse_dct pub; /* public fields */
|
||||
|
||||
/* This array contains the IDCT method code that each multiplier table
|
||||
* is currently set up for, or -1 if it's not yet set up.
|
||||
* The actual multiplier tables are pointed to by dct_table in the
|
||||
* per-component comp_info structures.
|
||||
*/
|
||||
int cur_method[MAX_COMPONENTS];
|
||||
} my_idct_controller;
|
||||
|
||||
typedef my_idct_controller * my_idct_ptr;
|
||||
|
||||
|
||||
/* Allocated multiplier tables: big enough for any supported variant */
|
||||
|
||||
typedef union {
|
||||
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
FLOAT_MULT_TYPE float_array[DCTSIZE2];
|
||||
#endif
|
||||
} multiplier_table;
|
||||
|
||||
|
||||
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
|
||||
* so be sure to compile that code if either ISLOW or SCALING is requested.
|
||||
*/
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#else
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
#define PROVIDE_ISLOW_TABLES
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Prepare for an output pass.
|
||||
* Here we select the proper IDCT routine for each component and build
|
||||
* a matching multiplier table.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
|
||||
int ci, i;
|
||||
jpeg_component_info *compptr;
|
||||
int method = 0;
|
||||
inverse_DCT_method_ptr method_ptr = NULL;
|
||||
JQUANT_TBL * qtbl;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Select the proper IDCT routine for this component's scaling */
|
||||
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
case ((1 << 8) + 1):
|
||||
method_ptr = jpeg_idct_1x1;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 2):
|
||||
method_ptr = jpeg_idct_2x2;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((3 << 8) + 3):
|
||||
method_ptr = jpeg_idct_3x3;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 4):
|
||||
method_ptr = jpeg_idct_4x4;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((5 << 8) + 5):
|
||||
method_ptr = jpeg_idct_5x5;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 6):
|
||||
method_ptr = jpeg_idct_6x6;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((7 << 8) + 7):
|
||||
method_ptr = jpeg_idct_7x7;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((9 << 8) + 9):
|
||||
method_ptr = jpeg_idct_9x9;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((10 << 8) + 10):
|
||||
method_ptr = jpeg_idct_10x10;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((11 << 8) + 11):
|
||||
method_ptr = jpeg_idct_11x11;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((12 << 8) + 12):
|
||||
method_ptr = jpeg_idct_12x12;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((13 << 8) + 13):
|
||||
method_ptr = jpeg_idct_13x13;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((14 << 8) + 14):
|
||||
method_ptr = jpeg_idct_14x14;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((15 << 8) + 15):
|
||||
method_ptr = jpeg_idct_15x15;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((16 << 8) + 16):
|
||||
method_ptr = jpeg_idct_16x16;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((16 << 8) + 8):
|
||||
method_ptr = jpeg_idct_16x8;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((14 << 8) + 7):
|
||||
method_ptr = jpeg_idct_14x7;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((12 << 8) + 6):
|
||||
method_ptr = jpeg_idct_12x6;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((10 << 8) + 5):
|
||||
method_ptr = jpeg_idct_10x5;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((8 << 8) + 4):
|
||||
method_ptr = jpeg_idct_8x4;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 3):
|
||||
method_ptr = jpeg_idct_6x3;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 2):
|
||||
method_ptr = jpeg_idct_4x2;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 1):
|
||||
method_ptr = jpeg_idct_2x1;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((8 << 8) + 16):
|
||||
method_ptr = jpeg_idct_8x16;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((7 << 8) + 14):
|
||||
method_ptr = jpeg_idct_7x14;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((6 << 8) + 12):
|
||||
method_ptr = jpeg_idct_6x12;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((5 << 8) + 10):
|
||||
method_ptr = jpeg_idct_5x10;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((4 << 8) + 8):
|
||||
method_ptr = jpeg_idct_4x8;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((3 << 8) + 6):
|
||||
method_ptr = jpeg_idct_3x6;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((2 << 8) + 4):
|
||||
method_ptr = jpeg_idct_2x4;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
case ((1 << 8) + 2):
|
||||
method_ptr = jpeg_idct_1x2;
|
||||
method = JDCT_ISLOW; /* jidctint uses islow-style table */
|
||||
break;
|
||||
#endif
|
||||
case ((DCTSIZE << 8) + DCTSIZE):
|
||||
switch (cinfo->dct_method) {
|
||||
#ifdef DCT_ISLOW_SUPPORTED
|
||||
case JDCT_ISLOW:
|
||||
method_ptr = jpeg_idct_islow;
|
||||
method = JDCT_ISLOW;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
method_ptr = jpeg_idct_ifast;
|
||||
method = JDCT_IFAST;
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
method_ptr = jpeg_idct_float;
|
||||
method = JDCT_FLOAT;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
|
||||
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
|
||||
break;
|
||||
}
|
||||
idct->pub.inverse_DCT[ci] = method_ptr;
|
||||
/* Create multiplier table from quant table.
|
||||
* However, we can skip this if the component is uninteresting
|
||||
* or if we already built the table. Also, if no quant table
|
||||
* has yet been saved for the component, we leave the
|
||||
* multiplier table all-zero; we'll be reading zeroes from the
|
||||
* coefficient controller's buffer anyway.
|
||||
*/
|
||||
if (! compptr->component_needed || idct->cur_method[ci] == method)
|
||||
continue;
|
||||
qtbl = compptr->quant_table;
|
||||
if (qtbl == NULL) /* happens if no data yet for component */
|
||||
continue;
|
||||
idct->cur_method[ci] = method;
|
||||
switch (method) {
|
||||
#ifdef PROVIDE_ISLOW_TABLES
|
||||
case JDCT_ISLOW:
|
||||
{
|
||||
/* For LL&M IDCT method, multipliers are equal to raw quantization
|
||||
* coefficients, but are stored as ints to ensure access efficiency.
|
||||
*/
|
||||
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
case JDCT_IFAST:
|
||||
{
|
||||
/* For AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
* For integer operation, the multiplier table is to be scaled by
|
||||
* IFAST_SCALE_BITS.
|
||||
*/
|
||||
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
|
||||
#define CONST_BITS 14
|
||||
static const INT16 aanscales[DCTSIZE2] = {
|
||||
/* precomputed values scaled up by 14 bits */
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
||||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
||||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
||||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
||||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
||||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
||||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
||||
};
|
||||
SHIFT_TEMPS
|
||||
|
||||
for (i = 0; i < DCTSIZE2; i++) {
|
||||
ifmtbl[i] = (IFAST_MULT_TYPE)
|
||||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
|
||||
(INT32) aanscales[i]),
|
||||
CONST_BITS-IFAST_SCALE_BITS);
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
case JDCT_FLOAT:
|
||||
{
|
||||
/* For float AA&N IDCT method, multipliers are equal to quantization
|
||||
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
||||
* scalefactor[0] = 1
|
||||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
||||
*/
|
||||
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
||||
int row, col;
|
||||
static const double aanscalefactor[DCTSIZE] = {
|
||||
1.0, 1.387039845, 1.306562965, 1.175875602,
|
||||
1.0, 0.785694958, 0.541196100, 0.275899379
|
||||
};
|
||||
|
||||
i = 0;
|
||||
for (row = 0; row < DCTSIZE; row++) {
|
||||
for (col = 0; col < DCTSIZE; col++) {
|
||||
fmtbl[i] = (FLOAT_MULT_TYPE)
|
||||
((double) qtbl->quantval[i] *
|
||||
aanscalefactor[row] * aanscalefactor[col]);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize IDCT manager.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_inverse_dct (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_idct_ptr idct;
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
idct = (my_idct_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_idct_controller));
|
||||
cinfo->idct = (struct jpeg_inverse_dct *) idct;
|
||||
idct->pub.start_pass = start_pass;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Allocate and pre-zero a multiplier table for each component */
|
||||
compptr->dct_table =
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(multiplier_table));
|
||||
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
|
||||
/* Mark multiplier table not yet set up for any method */
|
||||
idct->cur_method[ci] = -1;
|
||||
}
|
||||
}
|
||||
1309
3rdparty/libjpeg/jdhuff.c
vendored
1309
3rdparty/libjpeg/jdhuff.c
vendored
File diff suppressed because it is too large
Load Diff
384
3rdparty/libjpeg/jdinput.c
vendored
384
3rdparty/libjpeg/jdinput.c
vendored
@@ -1,384 +0,0 @@
|
||||
/*
|
||||
* jdinput.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 2002-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains input control logic for the JPEG decompressor.
|
||||
* These routines are concerned with controlling the decompressor's input
|
||||
* processing (marker reading and coefficient decoding). The actual input
|
||||
* reading is done in jdmarker.c, jdhuff.c, and jdarith.c.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_input_controller pub; /* public fields */
|
||||
|
||||
boolean inheaders; /* TRUE until first SOS is reached */
|
||||
} my_input_controller;
|
||||
|
||||
typedef my_input_controller * my_inputctl_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
|
||||
|
||||
|
||||
/*
|
||||
* Routines to calculate various quantities related to the size of the image.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
initial_setup (j_decompress_ptr cinfo)
|
||||
/* Called once, when first SOS marker is reached */
|
||||
{
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
/* Make sure image isn't bigger than I can handle */
|
||||
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
|
||||
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
|
||||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
|
||||
|
||||
/* For now, precision must match compiled-in value... */
|
||||
if (cinfo->data_precision != BITS_IN_JSAMPLE)
|
||||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
|
||||
|
||||
/* Check that number of components won't exceed internal array sizes */
|
||||
if (cinfo->num_components > MAX_COMPONENTS)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
|
||||
MAX_COMPONENTS);
|
||||
|
||||
/* Compute maximum sampling factors; check factor validity */
|
||||
cinfo->max_h_samp_factor = 1;
|
||||
cinfo->max_v_samp_factor = 1;
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
|
||||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
|
||||
ERREXIT(cinfo, JERR_BAD_SAMPLING);
|
||||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
|
||||
compptr->h_samp_factor);
|
||||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
|
||||
compptr->v_samp_factor);
|
||||
}
|
||||
|
||||
/* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
|
||||
* In the full decompressor, this will be overridden by jdmaster.c;
|
||||
* but in the transcoder, jdmaster.c is not used, so we must do it here.
|
||||
*/
|
||||
cinfo->min_DCT_h_scaled_size = DCTSIZE;
|
||||
cinfo->min_DCT_v_scaled_size = DCTSIZE;
|
||||
|
||||
/* Compute dimensions of components */
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
compptr->DCT_h_scaled_size = DCTSIZE;
|
||||
compptr->DCT_v_scaled_size = DCTSIZE;
|
||||
/* Size in DCT blocks */
|
||||
compptr->width_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->height_in_blocks = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
/* downsampled_width and downsampled_height will also be overridden by
|
||||
* jdmaster.c if we are doing full decompression. The transcoder library
|
||||
* doesn't use these values, but the calling application might.
|
||||
*/
|
||||
/* Size in samples */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
|
||||
(long) cinfo->max_h_samp_factor);
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
|
||||
(long) cinfo->max_v_samp_factor);
|
||||
/* Mark component needed, until color conversion says otherwise */
|
||||
compptr->component_needed = TRUE;
|
||||
/* Mark no quantization table yet saved for component */
|
||||
compptr->quant_table = NULL;
|
||||
}
|
||||
|
||||
/* Compute number of fully interleaved MCU rows. */
|
||||
cinfo->total_iMCU_rows = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
|
||||
/* Decide whether file contains multiple scans */
|
||||
if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
|
||||
cinfo->inputctl->has_multiple_scans = TRUE;
|
||||
else
|
||||
cinfo->inputctl->has_multiple_scans = FALSE;
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
per_scan_setup (j_decompress_ptr cinfo)
|
||||
/* Do computations that are needed before processing a JPEG scan */
|
||||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
|
||||
{
|
||||
int ci, mcublks, tmp;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
if (cinfo->comps_in_scan == 1) {
|
||||
|
||||
/* Noninterleaved (single-component) scan */
|
||||
compptr = cinfo->cur_comp_info[0];
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = compptr->width_in_blocks;
|
||||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
|
||||
|
||||
/* For noninterleaved scan, always one block per MCU */
|
||||
compptr->MCU_width = 1;
|
||||
compptr->MCU_height = 1;
|
||||
compptr->MCU_blocks = 1;
|
||||
compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
|
||||
compptr->last_col_width = 1;
|
||||
/* For noninterleaved scans, it is convenient to define last_row_height
|
||||
* as the number of block rows present in the last iMCU row.
|
||||
*/
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
||||
if (tmp == 0) tmp = compptr->v_samp_factor;
|
||||
compptr->last_row_height = tmp;
|
||||
|
||||
/* Prepare array describing MCU composition */
|
||||
cinfo->blocks_in_MCU = 1;
|
||||
cinfo->MCU_membership[0] = 0;
|
||||
|
||||
} else {
|
||||
|
||||
/* Interleaved (multi-component) scan */
|
||||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
|
||||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
|
||||
MAX_COMPS_IN_SCAN);
|
||||
|
||||
/* Overall image size in MCUs */
|
||||
cinfo->MCUs_per_row = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width,
|
||||
(long) (cinfo->max_h_samp_factor*DCTSIZE));
|
||||
cinfo->MCU_rows_in_scan = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height,
|
||||
(long) (cinfo->max_v_samp_factor*DCTSIZE));
|
||||
|
||||
cinfo->blocks_in_MCU = 0;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* Sampling factors give # of blocks of component in each MCU */
|
||||
compptr->MCU_width = compptr->h_samp_factor;
|
||||
compptr->MCU_height = compptr->v_samp_factor;
|
||||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
|
||||
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
|
||||
/* Figure number of non-dummy blocks in last MCU column & row */
|
||||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
|
||||
if (tmp == 0) tmp = compptr->MCU_width;
|
||||
compptr->last_col_width = tmp;
|
||||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
|
||||
if (tmp == 0) tmp = compptr->MCU_height;
|
||||
compptr->last_row_height = tmp;
|
||||
/* Prepare array describing MCU composition */
|
||||
mcublks = compptr->MCU_blocks;
|
||||
if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
|
||||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
|
||||
while (mcublks-- > 0) {
|
||||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Save away a copy of the Q-table referenced by each component present
|
||||
* in the current scan, unless already saved during a prior scan.
|
||||
*
|
||||
* In a multiple-scan JPEG file, the encoder could assign different components
|
||||
* the same Q-table slot number, but change table definitions between scans
|
||||
* so that each component uses a different Q-table. (The IJG encoder is not
|
||||
* currently capable of doing this, but other encoders might.) Since we want
|
||||
* to be able to dequantize all the components at the end of the file, this
|
||||
* means that we have to save away the table actually used for each component.
|
||||
* We do this by copying the table at the start of the first scan containing
|
||||
* the component.
|
||||
* The JPEG spec prohibits the encoder from changing the contents of a Q-table
|
||||
* slot between scans of a component using that slot. If the encoder does so
|
||||
* anyway, this decoder will simply use the Q-table values that were current
|
||||
* at the start of the first scan for the component.
|
||||
*
|
||||
* The decompressor output side looks only at the saved quant tables,
|
||||
* not at the current Q-table slots.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
latch_quant_tables (j_decompress_ptr cinfo)
|
||||
{
|
||||
int ci, qtblno;
|
||||
jpeg_component_info *compptr;
|
||||
JQUANT_TBL * qtbl;
|
||||
|
||||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
||||
compptr = cinfo->cur_comp_info[ci];
|
||||
/* No work if we already saved Q-table for this component */
|
||||
if (compptr->quant_table != NULL)
|
||||
continue;
|
||||
/* Make sure specified quantization table is present */
|
||||
qtblno = compptr->quant_tbl_no;
|
||||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
||||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
||||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
||||
/* OK, save away the quantization table */
|
||||
qtbl = (JQUANT_TBL *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(JQUANT_TBL));
|
||||
MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
|
||||
compptr->quant_table = qtbl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the input modules to read a scan of compressed data.
|
||||
* The first call to this is done by jdmaster.c after initializing
|
||||
* the entire decompressor (during jpeg_start_decompress).
|
||||
* Subsequent calls come from consume_markers, below.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_input_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
per_scan_setup(cinfo);
|
||||
latch_quant_tables(cinfo);
|
||||
(*cinfo->entropy->start_pass) (cinfo);
|
||||
(*cinfo->coef->start_input_pass) (cinfo);
|
||||
cinfo->inputctl->consume_input = cinfo->coef->consume_data;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up after inputting a compressed-data scan.
|
||||
* This is called by the coefficient controller after it's read all
|
||||
* the expected data of the scan.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_input_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
cinfo->inputctl->consume_input = consume_markers;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Read JPEG markers before, between, or after compressed-data scans.
|
||||
* Change state as necessary when a new scan is reached.
|
||||
* Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
|
||||
*
|
||||
* The consume_input method pointer points either here or to the
|
||||
* coefficient controller's consume_data routine, depending on whether
|
||||
* we are reading a compressed data segment or inter-segment markers.
|
||||
*/
|
||||
|
||||
METHODDEF(int)
|
||||
consume_markers (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
|
||||
int val;
|
||||
|
||||
if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
|
||||
return JPEG_REACHED_EOI;
|
||||
|
||||
val = (*cinfo->marker->read_markers) (cinfo);
|
||||
|
||||
switch (val) {
|
||||
case JPEG_REACHED_SOS: /* Found SOS */
|
||||
if (inputctl->inheaders) { /* 1st SOS */
|
||||
initial_setup(cinfo);
|
||||
inputctl->inheaders = FALSE;
|
||||
/* Note: start_input_pass must be called by jdmaster.c
|
||||
* before any more input can be consumed. jdapimin.c is
|
||||
* responsible for enforcing this sequencing.
|
||||
*/
|
||||
} else { /* 2nd or later SOS marker */
|
||||
if (! inputctl->pub.has_multiple_scans)
|
||||
ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
|
||||
start_input_pass(cinfo);
|
||||
}
|
||||
break;
|
||||
case JPEG_REACHED_EOI: /* Found EOI */
|
||||
inputctl->pub.eoi_reached = TRUE;
|
||||
if (inputctl->inheaders) { /* Tables-only datastream, apparently */
|
||||
if (cinfo->marker->saw_SOF)
|
||||
ERREXIT(cinfo, JERR_SOF_NO_SOS);
|
||||
} else {
|
||||
/* Prevent infinite loop in coef ctlr's decompress_data routine
|
||||
* if user set output_scan_number larger than number of scans.
|
||||
*/
|
||||
if (cinfo->output_scan_number > cinfo->input_scan_number)
|
||||
cinfo->output_scan_number = cinfo->input_scan_number;
|
||||
}
|
||||
break;
|
||||
case JPEG_SUSPENDED:
|
||||
break;
|
||||
}
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Reset state to begin a fresh datastream.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
reset_input_controller (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
|
||||
|
||||
inputctl->pub.consume_input = consume_markers;
|
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
|
||||
inputctl->pub.eoi_reached = FALSE;
|
||||
inputctl->inheaders = TRUE;
|
||||
/* Reset other modules */
|
||||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
||||
(*cinfo->marker->reset_marker_reader) (cinfo);
|
||||
/* Reset progression state -- would be cleaner if entropy decoder did this */
|
||||
cinfo->coef_bits = NULL;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize the input controller module.
|
||||
* This is called only once, when the decompression object is created.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_input_controller (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_inputctl_ptr inputctl;
|
||||
|
||||
/* Create subobject in permanent pool */
|
||||
inputctl = (my_inputctl_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||||
SIZEOF(my_input_controller));
|
||||
cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
|
||||
/* Initialize method pointers */
|
||||
inputctl->pub.consume_input = consume_markers;
|
||||
inputctl->pub.reset_input_controller = reset_input_controller;
|
||||
inputctl->pub.start_input_pass = start_input_pass;
|
||||
inputctl->pub.finish_input_pass = finish_input_pass;
|
||||
/* Initialize state: can't use reset_input_controller since we don't
|
||||
* want to try to reset other modules yet.
|
||||
*/
|
||||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
|
||||
inputctl->pub.eoi_reached = FALSE;
|
||||
inputctl->inheaders = TRUE;
|
||||
}
|
||||
512
3rdparty/libjpeg/jdmainct.c
vendored
512
3rdparty/libjpeg/jdmainct.c
vendored
@@ -1,512 +0,0 @@
|
||||
/*
|
||||
* jdmainct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the main buffer controller for decompression.
|
||||
* The main buffer lies between the JPEG decompressor proper and the
|
||||
* post-processor; it holds downsampled data in the JPEG colorspace.
|
||||
*
|
||||
* Note that this code is bypassed in raw-data mode, since the application
|
||||
* supplies the equivalent of the main buffer in that case.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/*
|
||||
* In the current system design, the main buffer need never be a full-image
|
||||
* buffer; any full-height buffers will be found inside the coefficient or
|
||||
* postprocessing controllers. Nonetheless, the main controller is not
|
||||
* trivial. Its responsibility is to provide context rows for upsampling/
|
||||
* rescaling, and doing this in an efficient fashion is a bit tricky.
|
||||
*
|
||||
* Postprocessor input data is counted in "row groups". A row group
|
||||
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
|
||||
* sample rows of each component. (We require DCT_scaled_size values to be
|
||||
* chosen such that these numbers are integers. In practice DCT_scaled_size
|
||||
* values will likely be powers of two, so we actually have the stronger
|
||||
* condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
|
||||
* Upsampling will typically produce max_v_samp_factor pixel rows from each
|
||||
* row group (times any additional scale factor that the upsampler is
|
||||
* applying).
|
||||
*
|
||||
* The coefficient controller will deliver data to us one iMCU row at a time;
|
||||
* each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
|
||||
* exactly min_DCT_scaled_size row groups. (This amount of data corresponds
|
||||
* to one row of MCUs when the image is fully interleaved.) Note that the
|
||||
* number of sample rows varies across components, but the number of row
|
||||
* groups does not. Some garbage sample rows may be included in the last iMCU
|
||||
* row at the bottom of the image.
|
||||
*
|
||||
* Depending on the vertical scaling algorithm used, the upsampler may need
|
||||
* access to the sample row(s) above and below its current input row group.
|
||||
* The upsampler is required to set need_context_rows TRUE at global selection
|
||||
* time if so. When need_context_rows is FALSE, this controller can simply
|
||||
* obtain one iMCU row at a time from the coefficient controller and dole it
|
||||
* out as row groups to the postprocessor.
|
||||
*
|
||||
* When need_context_rows is TRUE, this controller guarantees that the buffer
|
||||
* passed to postprocessing contains at least one row group's worth of samples
|
||||
* above and below the row group(s) being processed. Note that the context
|
||||
* rows "above" the first passed row group appear at negative row offsets in
|
||||
* the passed buffer. At the top and bottom of the image, the required
|
||||
* context rows are manufactured by duplicating the first or last real sample
|
||||
* row; this avoids having special cases in the upsampling inner loops.
|
||||
*
|
||||
* The amount of context is fixed at one row group just because that's a
|
||||
* convenient number for this controller to work with. The existing
|
||||
* upsamplers really only need one sample row of context. An upsampler
|
||||
* supporting arbitrary output rescaling might wish for more than one row
|
||||
* group of context when shrinking the image; tough, we don't handle that.
|
||||
* (This is justified by the assumption that downsizing will be handled mostly
|
||||
* by adjusting the DCT_scaled_size values, so that the actual scale factor at
|
||||
* the upsample step needn't be much less than one.)
|
||||
*
|
||||
* To provide the desired context, we have to retain the last two row groups
|
||||
* of one iMCU row while reading in the next iMCU row. (The last row group
|
||||
* can't be processed until we have another row group for its below-context,
|
||||
* and so we have to save the next-to-last group too for its above-context.)
|
||||
* We could do this most simply by copying data around in our buffer, but
|
||||
* that'd be very slow. We can avoid copying any data by creating a rather
|
||||
* strange pointer structure. Here's how it works. We allocate a workspace
|
||||
* consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
|
||||
* of row groups per iMCU row). We create two sets of redundant pointers to
|
||||
* the workspace. Labeling the physical row groups 0 to M+1, the synthesized
|
||||
* pointer lists look like this:
|
||||
* M+1 M-1
|
||||
* master pointer --> 0 master pointer --> 0
|
||||
* 1 1
|
||||
* ... ...
|
||||
* M-3 M-3
|
||||
* M-2 M
|
||||
* M-1 M+1
|
||||
* M M-2
|
||||
* M+1 M-1
|
||||
* 0 0
|
||||
* We read alternate iMCU rows using each master pointer; thus the last two
|
||||
* row groups of the previous iMCU row remain un-overwritten in the workspace.
|
||||
* The pointer lists are set up so that the required context rows appear to
|
||||
* be adjacent to the proper places when we pass the pointer lists to the
|
||||
* upsampler.
|
||||
*
|
||||
* The above pictures describe the normal state of the pointer lists.
|
||||
* At top and bottom of the image, we diddle the pointer lists to duplicate
|
||||
* the first or last sample row as necessary (this is cheaper than copying
|
||||
* sample rows around).
|
||||
*
|
||||
* This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
|
||||
* situation each iMCU row provides only one row group so the buffering logic
|
||||
* must be different (eg, we must read two iMCU rows before we can emit the
|
||||
* first row group). For now, we simply do not support providing context
|
||||
* rows when min_DCT_scaled_size is 1. That combination seems unlikely to
|
||||
* be worth providing --- if someone wants a 1/8th-size preview, they probably
|
||||
* want it quick and dirty, so a context-free upsampler is sufficient.
|
||||
*/
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_main_controller pub; /* public fields */
|
||||
|
||||
/* Pointer to allocated workspace (M or M+2 row groups). */
|
||||
JSAMPARRAY buffer[MAX_COMPONENTS];
|
||||
|
||||
boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
|
||||
JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
|
||||
|
||||
/* Remaining fields are only used in the context case. */
|
||||
|
||||
/* These are the master pointers to the funny-order pointer lists. */
|
||||
JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
|
||||
|
||||
int whichptr; /* indicates which pointer set is now in use */
|
||||
int context_state; /* process_data state machine status */
|
||||
JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
|
||||
JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
|
||||
} my_main_controller;
|
||||
|
||||
typedef my_main_controller * my_main_ptr;
|
||||
|
||||
/* context_state values: */
|
||||
#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
|
||||
#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
|
||||
#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(void) process_data_simple_main
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
METHODDEF(void) process_data_context_main
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
METHODDEF(void) process_data_crank_post
|
||||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
alloc_funny_pointers (j_decompress_ptr cinfo)
|
||||
/* Allocate space for the funny pointer lists.
|
||||
* This is done only once, not once per pass.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, rgroup;
|
||||
int M = cinfo->min_DCT_v_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY xbuf;
|
||||
|
||||
/* Get top-level space for component array pointers.
|
||||
* We alloc both arrays with one call to save a few cycles.
|
||||
*/
|
||||
main->xbuffer[0] = (JSAMPIMAGE)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
|
||||
main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||
/* Get space for pointer lists --- M+4 row groups in each list.
|
||||
* We alloc both pointer lists with one call to save a few cycles.
|
||||
*/
|
||||
xbuf = (JSAMPARRAY)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
|
||||
xbuf += rgroup; /* want one row group at negative offsets */
|
||||
main->xbuffer[0][ci] = xbuf;
|
||||
xbuf += rgroup * (M + 4);
|
||||
main->xbuffer[1][ci] = xbuf;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
make_funny_pointers (j_decompress_ptr cinfo)
|
||||
/* Create the funny pointer lists discussed in the comments above.
|
||||
* The actual workspace is already allocated (in main->buffer),
|
||||
* and the space for the pointer lists is allocated too.
|
||||
* This routine just fills in the curiously ordered lists.
|
||||
* This will be repeated at the beginning of each pass.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup;
|
||||
int M = cinfo->min_DCT_v_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY buf, xbuf0, xbuf1;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||
xbuf0 = main->xbuffer[0][ci];
|
||||
xbuf1 = main->xbuffer[1][ci];
|
||||
/* First copy the workspace pointers as-is */
|
||||
buf = main->buffer[ci];
|
||||
for (i = 0; i < rgroup * (M + 2); i++) {
|
||||
xbuf0[i] = xbuf1[i] = buf[i];
|
||||
}
|
||||
/* In the second list, put the last four row groups in swapped order */
|
||||
for (i = 0; i < rgroup * 2; i++) {
|
||||
xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
|
||||
xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
|
||||
}
|
||||
/* The wraparound pointers at top and bottom will be filled later
|
||||
* (see set_wraparound_pointers, below). Initially we want the "above"
|
||||
* pointers to duplicate the first actual data line. This only needs
|
||||
* to happen in xbuffer[0].
|
||||
*/
|
||||
for (i = 0; i < rgroup; i++) {
|
||||
xbuf0[i - rgroup] = xbuf0[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
set_wraparound_pointers (j_decompress_ptr cinfo)
|
||||
/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
|
||||
* This changes the pointer list state from top-of-image to the normal state.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup;
|
||||
int M = cinfo->min_DCT_v_scaled_size;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY xbuf0, xbuf1;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||
xbuf0 = main->xbuffer[0][ci];
|
||||
xbuf1 = main->xbuffer[1][ci];
|
||||
for (i = 0; i < rgroup; i++) {
|
||||
xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
|
||||
xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
|
||||
xbuf0[rgroup*(M+2) + i] = xbuf0[i];
|
||||
xbuf1[rgroup*(M+2) + i] = xbuf1[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
set_bottom_pointers (j_decompress_ptr cinfo)
|
||||
/* Change the pointer lists to duplicate the last sample row at the bottom
|
||||
* of the image. whichptr indicates which xbuffer holds the final iMCU row.
|
||||
* Also sets rowgroups_avail to indicate number of nondummy row groups in row.
|
||||
*/
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
int ci, i, rgroup, iMCUheight, rows_left;
|
||||
jpeg_component_info *compptr;
|
||||
JSAMPARRAY xbuf;
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Count sample rows in one iMCU row and in one row group */
|
||||
iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size;
|
||||
rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size;
|
||||
/* Count nondummy sample rows remaining for this component */
|
||||
rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
|
||||
if (rows_left == 0) rows_left = iMCUheight;
|
||||
/* Count nondummy row groups. Should get same answer for each component,
|
||||
* so we need only do it once.
|
||||
*/
|
||||
if (ci == 0) {
|
||||
main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
|
||||
}
|
||||
/* Duplicate the last real sample row rgroup*2 times; this pads out the
|
||||
* last partial rowgroup and ensures at least one full rowgroup of context.
|
||||
*/
|
||||
xbuf = main->xbuffer[main->whichptr][ci];
|
||||
for (i = 0; i < rgroup * 2; i++) {
|
||||
xbuf[rows_left + i] = xbuf[rows_left-1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
main->pub.process_data = process_data_context_main;
|
||||
make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
|
||||
main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
|
||||
main->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
main->iMCU_row_ctr = 0;
|
||||
} else {
|
||||
/* Simple case with no context needed */
|
||||
main->pub.process_data = process_data_simple_main;
|
||||
}
|
||||
main->buffer_full = FALSE; /* Mark buffer empty */
|
||||
main->rowgroup_ctr = 0;
|
||||
break;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
case JBUF_CRANK_DEST:
|
||||
/* For last pass of 2-pass quantization, just crank the postprocessor */
|
||||
main->pub.process_data = process_data_crank_post;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This handles the simple case where no context is required.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_simple_main (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
JDIMENSION rowgroups_avail;
|
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (! main->buffer_full) {
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
|
||||
return; /* suspension forced, can do nothing more */
|
||||
main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
|
||||
}
|
||||
|
||||
/* There are always min_DCT_scaled_size row groups in an iMCU row. */
|
||||
rowgroups_avail = (JDIMENSION) cinfo->min_DCT_v_scaled_size;
|
||||
/* Note: at the bottom of the image, we may pass extra garbage row groups
|
||||
* to the postprocessor. The postprocessor has to check for bottom
|
||||
* of image anyway (at row resolution), so no point in us doing it too.
|
||||
*/
|
||||
|
||||
/* Feed the postprocessor */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->buffer,
|
||||
&main->rowgroup_ctr, rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
|
||||
/* Has postprocessor consumed all the data yet? If so, mark buffer empty */
|
||||
if (main->rowgroup_ctr >= rowgroups_avail) {
|
||||
main->buffer_full = FALSE;
|
||||
main->rowgroup_ctr = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* This handles the case where context rows must be provided.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_context_main (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_main_ptr main = (my_main_ptr) cinfo->main;
|
||||
|
||||
/* Read input data if we haven't filled the main buffer yet */
|
||||
if (! main->buffer_full) {
|
||||
if (! (*cinfo->coef->decompress_data) (cinfo,
|
||||
main->xbuffer[main->whichptr]))
|
||||
return; /* suspension forced, can do nothing more */
|
||||
main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
|
||||
main->iMCU_row_ctr++; /* count rows received */
|
||||
}
|
||||
|
||||
/* Postprocessor typically will not swallow all the input data it is handed
|
||||
* in one call (due to filling the output buffer first). Must be prepared
|
||||
* to exit and restart. This switch lets us keep track of how far we got.
|
||||
* Note that each case falls through to the next on successful completion.
|
||||
*/
|
||||
switch (main->context_state) {
|
||||
case CTX_POSTPONED_ROW:
|
||||
/* Call postprocessor using previously set pointers for postponed row */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
|
||||
&main->rowgroup_ctr, main->rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
if (main->rowgroup_ctr < main->rowgroups_avail)
|
||||
return; /* Need to suspend */
|
||||
main->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
if (*out_row_ctr >= out_rows_avail)
|
||||
return; /* Postprocessor exactly filled output buf */
|
||||
/*FALLTHROUGH*/
|
||||
case CTX_PREPARE_FOR_IMCU:
|
||||
/* Prepare to process first M-1 row groups of this iMCU row */
|
||||
main->rowgroup_ctr = 0;
|
||||
main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
|
||||
/* Check for bottom of image: if so, tweak pointers to "duplicate"
|
||||
* the last sample row, and adjust rowgroups_avail to ignore padding rows.
|
||||
*/
|
||||
if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
|
||||
set_bottom_pointers(cinfo);
|
||||
main->context_state = CTX_PROCESS_IMCU;
|
||||
/*FALLTHROUGH*/
|
||||
case CTX_PROCESS_IMCU:
|
||||
/* Call postprocessor using previously set pointers */
|
||||
(*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
|
||||
&main->rowgroup_ctr, main->rowgroups_avail,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
if (main->rowgroup_ctr < main->rowgroups_avail)
|
||||
return; /* Need to suspend */
|
||||
/* After the first iMCU, change wraparound pointers to normal state */
|
||||
if (main->iMCU_row_ctr == 1)
|
||||
set_wraparound_pointers(cinfo);
|
||||
/* Prepare to load new iMCU row using other xbuffer list */
|
||||
main->whichptr ^= 1; /* 0=>1 or 1=>0 */
|
||||
main->buffer_full = FALSE;
|
||||
/* Still need to process last row group of this iMCU row, */
|
||||
/* which is saved at index M+1 of the other xbuffer */
|
||||
main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
|
||||
main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
|
||||
main->context_state = CTX_POSTPONED_ROW;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data.
|
||||
* Final pass of two-pass quantization: just call the postprocessor.
|
||||
* Source data will be the postprocessor controller's internal buffer.
|
||||
*/
|
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
|
||||
METHODDEF(void)
|
||||
process_data_crank_post (j_decompress_ptr cinfo,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
(*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
|
||||
(JDIMENSION *) NULL, (JDIMENSION) 0,
|
||||
output_buf, out_row_ctr, out_rows_avail);
|
||||
}
|
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize main buffer controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_main_ptr main;
|
||||
int ci, rgroup, ngroups;
|
||||
jpeg_component_info *compptr;
|
||||
|
||||
main = (my_main_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_main_controller));
|
||||
cinfo->main = (struct jpeg_d_main_controller *) main;
|
||||
main->pub.start_pass = start_pass_main;
|
||||
|
||||
if (need_full_buffer) /* shouldn't happen */
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
|
||||
/* Allocate the workspace.
|
||||
* ngroups is the number of row groups we need.
|
||||
*/
|
||||
if (cinfo->upsample->need_context_rows) {
|
||||
if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
|
||||
ngroups = cinfo->min_DCT_v_scaled_size + 2;
|
||||
} else {
|
||||
ngroups = cinfo->min_DCT_v_scaled_size;
|
||||
}
|
||||
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
|
||||
main->buffer[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
compptr->width_in_blocks * compptr->DCT_h_scaled_size,
|
||||
(JDIMENSION) (rgroup * ngroups));
|
||||
}
|
||||
}
|
||||
1360
3rdparty/libjpeg/jdmarker.c
vendored
1360
3rdparty/libjpeg/jdmarker.c
vendored
File diff suppressed because it is too large
Load Diff
663
3rdparty/libjpeg/jdmaster.c
vendored
663
3rdparty/libjpeg/jdmaster.c
vendored
@@ -1,663 +0,0 @@
|
||||
/*
|
||||
* jdmaster.c
|
||||
*
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 2002-2008 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains master control logic for the JPEG decompressor.
|
||||
* These routines are concerned with selecting the modules to be executed
|
||||
* and with determining the number of passes and the work to be done in each
|
||||
* pass.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private state */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_decomp_master pub; /* public fields */
|
||||
|
||||
int pass_number; /* # of passes completed */
|
||||
|
||||
boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
|
||||
|
||||
/* Saved references to initialized quantizer modules,
|
||||
* in case we need to switch modes.
|
||||
*/
|
||||
struct jpeg_color_quantizer * quantizer_1pass;
|
||||
struct jpeg_color_quantizer * quantizer_2pass;
|
||||
} my_decomp_master;
|
||||
|
||||
typedef my_decomp_master * my_master_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Determine whether merged upsample/color conversion should be used.
|
||||
* CRUCIAL: this must match the actual capabilities of jdmerge.c!
|
||||
*/
|
||||
|
||||
LOCAL(boolean)
|
||||
use_merged_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
/* Merging is the equivalent of plain box-filter upsampling */
|
||||
if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
|
||||
return FALSE;
|
||||
/* jdmerge.c only supports YCC=>RGB color conversion */
|
||||
if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
|
||||
cinfo->out_color_space != JCS_RGB ||
|
||||
cinfo->out_color_components != RGB_PIXELSIZE)
|
||||
return FALSE;
|
||||
/* and it only handles 2h1v or 2h2v sampling ratios */
|
||||
if (cinfo->comp_info[0].h_samp_factor != 2 ||
|
||||
cinfo->comp_info[1].h_samp_factor != 1 ||
|
||||
cinfo->comp_info[2].h_samp_factor != 1 ||
|
||||
cinfo->comp_info[0].v_samp_factor > 2 ||
|
||||
cinfo->comp_info[1].v_samp_factor != 1 ||
|
||||
cinfo->comp_info[2].v_samp_factor != 1)
|
||||
return FALSE;
|
||||
/* furthermore, it doesn't work if we've scaled the IDCTs differently */
|
||||
if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
|
||||
cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
|
||||
cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
|
||||
cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
|
||||
cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
|
||||
cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size)
|
||||
return FALSE;
|
||||
/* ??? also need to test for upsample-time rescaling, when & if supported */
|
||||
return TRUE; /* by golly, it'll work... */
|
||||
#else
|
||||
return FALSE;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Compute output image dimensions and related values.
|
||||
* NOTE: this is exported for possible use by application.
|
||||
* Hence it mustn't do anything that can't be done twice.
|
||||
* Also note that it may be called before the master module is initialized!
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
|
||||
/* Do computations that are needed before master selection phase */
|
||||
{
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
int ci;
|
||||
jpeg_component_info *compptr;
|
||||
#endif
|
||||
|
||||
/* Prevent application from calling me at wrong times */
|
||||
if (cinfo->global_state != DSTATE_READY)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
#ifdef IDCT_SCALING_SUPPORTED
|
||||
|
||||
/* Compute actual output image dimensions and DCT scaling choices. */
|
||||
if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
|
||||
/* Provide 1/8 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 8L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 1;
|
||||
cinfo->min_DCT_v_scaled_size = 1;
|
||||
} else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
|
||||
/* Provide 1/4 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 4L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 4L);
|
||||
cinfo->min_DCT_h_scaled_size = 2;
|
||||
cinfo->min_DCT_v_scaled_size = 2;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 3) {
|
||||
/* Provide 3/8 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 3L, 8L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 3L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 3;
|
||||
cinfo->min_DCT_v_scaled_size = 3;
|
||||
} else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
|
||||
/* Provide 1/2 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 2L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 2L);
|
||||
cinfo->min_DCT_h_scaled_size = 4;
|
||||
cinfo->min_DCT_v_scaled_size = 4;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 5) {
|
||||
/* Provide 5/8 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 5L, 8L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 5L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 5;
|
||||
cinfo->min_DCT_v_scaled_size = 5;
|
||||
} else if (cinfo->scale_num * 4 <= cinfo->scale_denom * 3) {
|
||||
/* Provide 3/4 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 3L, 4L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 3L, 4L);
|
||||
cinfo->min_DCT_h_scaled_size = 6;
|
||||
cinfo->min_DCT_v_scaled_size = 6;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 7) {
|
||||
/* Provide 7/8 scaling */
|
||||
cinfo->output_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 7L, 8L);
|
||||
cinfo->output_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 7L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 7;
|
||||
cinfo->min_DCT_v_scaled_size = 7;
|
||||
} else if (cinfo->scale_num <= cinfo->scale_denom) {
|
||||
/* Provide 1/1 scaling */
|
||||
cinfo->output_width = cinfo->image_width;
|
||||
cinfo->output_height = cinfo->image_height;
|
||||
cinfo->min_DCT_h_scaled_size = DCTSIZE;
|
||||
cinfo->min_DCT_v_scaled_size = DCTSIZE;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 9) {
|
||||
/* Provide 9/8 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 8L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 9;
|
||||
cinfo->min_DCT_v_scaled_size = 9;
|
||||
} else if (cinfo->scale_num * 4 <= cinfo->scale_denom * 5) {
|
||||
/* Provide 5/4 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 4L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 4L);
|
||||
cinfo->min_DCT_h_scaled_size = 10;
|
||||
cinfo->min_DCT_v_scaled_size = 10;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 11) {
|
||||
/* Provide 11/8 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 3L, 8L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 3L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 11;
|
||||
cinfo->min_DCT_v_scaled_size = 11;
|
||||
} else if (cinfo->scale_num * 2 <= cinfo->scale_denom * 3) {
|
||||
/* Provide 3/2 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width, 2L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height, 2L);
|
||||
cinfo->min_DCT_h_scaled_size = 12;
|
||||
cinfo->min_DCT_v_scaled_size = 12;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 13) {
|
||||
/* Provide 13/8 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 5L, 8L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 5L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 13;
|
||||
cinfo->min_DCT_v_scaled_size = 13;
|
||||
} else if (cinfo->scale_num * 4 <= cinfo->scale_denom * 7) {
|
||||
/* Provide 7/4 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 3L, 4L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 3L, 4L);
|
||||
cinfo->min_DCT_h_scaled_size = 14;
|
||||
cinfo->min_DCT_v_scaled_size = 14;
|
||||
} else if (cinfo->scale_num * 8 <= cinfo->scale_denom * 15) {
|
||||
/* Provide 15/8 scaling */
|
||||
cinfo->output_width = cinfo->image_width + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width * 7L, 8L);
|
||||
cinfo->output_height = cinfo->image_height + (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height * 7L, 8L);
|
||||
cinfo->min_DCT_h_scaled_size = 15;
|
||||
cinfo->min_DCT_v_scaled_size = 15;
|
||||
} else {
|
||||
/* Provide 2/1 scaling */
|
||||
cinfo->output_width = cinfo->image_width << 1;
|
||||
cinfo->output_height = cinfo->image_height << 1;
|
||||
cinfo->min_DCT_h_scaled_size = 16;
|
||||
cinfo->min_DCT_v_scaled_size = 16;
|
||||
}
|
||||
/* In selecting the actual DCT scaling for each component, we try to
|
||||
* scale up the chroma components via IDCT scaling rather than upsampling.
|
||||
* This saves time if the upsampler gets to use 1:1 scaling.
|
||||
* Note this code adapts subsampling ratios which are powers of 2.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
int ssize = 1;
|
||||
while (cinfo->min_DCT_h_scaled_size * ssize <=
|
||||
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) {
|
||||
ssize = ssize * 2;
|
||||
}
|
||||
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
|
||||
ssize = 1;
|
||||
while (cinfo->min_DCT_v_scaled_size * ssize <=
|
||||
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
|
||||
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) {
|
||||
ssize = ssize * 2;
|
||||
}
|
||||
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
|
||||
|
||||
/* We don't support IDCT ratios larger than 2. */
|
||||
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
|
||||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
|
||||
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
|
||||
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
|
||||
}
|
||||
|
||||
/* Recompute downsampled dimensions of components;
|
||||
* application needs to know these if using raw downsampled data.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Size in samples, after IDCT scaling */
|
||||
compptr->downsampled_width = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_width *
|
||||
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
|
||||
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
||||
compptr->downsampled_height = (JDIMENSION)
|
||||
jdiv_round_up((long) cinfo->image_height *
|
||||
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
|
||||
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
||||
}
|
||||
|
||||
#else /* !IDCT_SCALING_SUPPORTED */
|
||||
|
||||
/* Hardwire it to "no scaling" */
|
||||
cinfo->output_width = cinfo->image_width;
|
||||
cinfo->output_height = cinfo->image_height;
|
||||
/* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
|
||||
* and has computed unscaled downsampled_width and downsampled_height.
|
||||
*/
|
||||
|
||||
#endif /* IDCT_SCALING_SUPPORTED */
|
||||
|
||||
/* Report number of components in selected colorspace. */
|
||||
/* Probably this should be in the color conversion module... */
|
||||
switch (cinfo->out_color_space) {
|
||||
case JCS_GRAYSCALE:
|
||||
cinfo->out_color_components = 1;
|
||||
break;
|
||||
case JCS_RGB:
|
||||
#if RGB_PIXELSIZE != 3
|
||||
cinfo->out_color_components = RGB_PIXELSIZE;
|
||||
break;
|
||||
#endif /* else share code with YCbCr */
|
||||
case JCS_YCbCr:
|
||||
cinfo->out_color_components = 3;
|
||||
break;
|
||||
case JCS_CMYK:
|
||||
case JCS_YCCK:
|
||||
cinfo->out_color_components = 4;
|
||||
break;
|
||||
default: /* else must be same colorspace as in file */
|
||||
cinfo->out_color_components = cinfo->num_components;
|
||||
break;
|
||||
}
|
||||
cinfo->output_components = (cinfo->quantize_colors ? 1 :
|
||||
cinfo->out_color_components);
|
||||
|
||||
/* See if upsampler will want to emit more than one row at a time */
|
||||
if (use_merged_upsample(cinfo))
|
||||
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
|
||||
else
|
||||
cinfo->rec_outbuf_height = 1;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Several decompression processes need to range-limit values to the range
|
||||
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range
|
||||
* due to noise introduced by quantization, roundoff error, etc. These
|
||||
* processes are inner loops and need to be as fast as possible. On most
|
||||
* machines, particularly CPUs with pipelines or instruction prefetch,
|
||||
* a (subscript-check-less) C table lookup
|
||||
* x = sample_range_limit[x];
|
||||
* is faster than explicit tests
|
||||
* if (x < 0) x = 0;
|
||||
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
|
||||
* These processes all use a common table prepared by the routine below.
|
||||
*
|
||||
* For most steps we can mathematically guarantee that the initial value
|
||||
* of x is within MAXJSAMPLE+1 of the legal range, so a table running from
|
||||
* -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
|
||||
* limiting step (just after the IDCT), a wildly out-of-range value is
|
||||
* possible if the input data is corrupt. To avoid any chance of indexing
|
||||
* off the end of memory and getting a bad-pointer trap, we perform the
|
||||
* post-IDCT limiting thus:
|
||||
* x = range_limit[x & MASK];
|
||||
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
|
||||
* samples. Under normal circumstances this is more than enough range and
|
||||
* a correct output will be generated; with bogus input data the mask will
|
||||
* cause wraparound, and we will safely generate a bogus-but-in-range output.
|
||||
* For the post-IDCT step, we want to convert the data from signed to unsigned
|
||||
* representation by adding CENTERJSAMPLE at the same time that we limit it.
|
||||
* So the post-IDCT limiting table ends up looking like this:
|
||||
* CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
|
||||
* MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
||||
* 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
||||
* 0,1,...,CENTERJSAMPLE-1
|
||||
* Negative inputs select values from the upper half of the table after
|
||||
* masking.
|
||||
*
|
||||
* We can save some space by overlapping the start of the post-IDCT table
|
||||
* with the simpler range limiting table. The post-IDCT table begins at
|
||||
* sample_range_limit + CENTERJSAMPLE.
|
||||
*
|
||||
* Note that the table is allocated in near data space on PCs; it's small
|
||||
* enough and used often enough to justify this.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
prepare_range_limit_table (j_decompress_ptr cinfo)
|
||||
/* Allocate and fill in the sample_range_limit table */
|
||||
{
|
||||
JSAMPLE * table;
|
||||
int i;
|
||||
|
||||
table = (JSAMPLE *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
|
||||
table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
|
||||
cinfo->sample_range_limit = table;
|
||||
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
|
||||
MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
|
||||
/* Main part of "simple" table: limit[x] = x */
|
||||
for (i = 0; i <= MAXJSAMPLE; i++)
|
||||
table[i] = (JSAMPLE) i;
|
||||
table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
|
||||
/* End of simple table, rest of first half of post-IDCT table */
|
||||
for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
|
||||
table[i] = MAXJSAMPLE;
|
||||
/* Second half of post-IDCT table */
|
||||
MEMZERO(table + (2 * (MAXJSAMPLE+1)),
|
||||
(2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
|
||||
MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
|
||||
cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules.
|
||||
* This is done once at jpeg_start_decompress time. We determine
|
||||
* which modules will be used and give them appropriate initialization calls.
|
||||
* We also initialize the decompressor input side to begin consuming data.
|
||||
*
|
||||
* Since jpeg_read_header has finished, we know what is in the SOF
|
||||
* and (first) SOS markers. We also have all the application parameter
|
||||
* settings.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
master_selection (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
boolean use_c_buffer;
|
||||
long samplesperrow;
|
||||
JDIMENSION jd_samplesperrow;
|
||||
|
||||
/* Initialize dimensions and other stuff */
|
||||
jpeg_calc_output_dimensions(cinfo);
|
||||
prepare_range_limit_table(cinfo);
|
||||
|
||||
/* Width of an output scanline must be representable as JDIMENSION. */
|
||||
samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
|
||||
jd_samplesperrow = (JDIMENSION) samplesperrow;
|
||||
if ((long) jd_samplesperrow != samplesperrow)
|
||||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
||||
|
||||
/* Initialize my private state */
|
||||
master->pass_number = 0;
|
||||
master->using_merged_upsample = use_merged_upsample(cinfo);
|
||||
|
||||
/* Color quantizer selection */
|
||||
master->quantizer_1pass = NULL;
|
||||
master->quantizer_2pass = NULL;
|
||||
/* No mode changes if not using buffered-image mode. */
|
||||
if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
|
||||
cinfo->enable_1pass_quant = FALSE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
}
|
||||
if (cinfo->quantize_colors) {
|
||||
if (cinfo->raw_data_out)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
/* 2-pass quantizer only works in 3-component color space. */
|
||||
if (cinfo->out_color_components != 3) {
|
||||
cinfo->enable_1pass_quant = TRUE;
|
||||
cinfo->enable_external_quant = FALSE;
|
||||
cinfo->enable_2pass_quant = FALSE;
|
||||
cinfo->colormap = NULL;
|
||||
} else if (cinfo->colormap != NULL) {
|
||||
cinfo->enable_external_quant = TRUE;
|
||||
} else if (cinfo->two_pass_quantize) {
|
||||
cinfo->enable_2pass_quant = TRUE;
|
||||
} else {
|
||||
cinfo->enable_1pass_quant = TRUE;
|
||||
}
|
||||
|
||||
if (cinfo->enable_1pass_quant) {
|
||||
#ifdef QUANT_1PASS_SUPPORTED
|
||||
jinit_1pass_quantizer(cinfo);
|
||||
master->quantizer_1pass = cinfo->cquantize;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* We use the 2-pass code to map to external colormaps. */
|
||||
if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
jinit_2pass_quantizer(cinfo);
|
||||
master->quantizer_2pass = cinfo->cquantize;
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
}
|
||||
/* If both quantizers are initialized, the 2-pass one is left active;
|
||||
* this is necessary for starting with quantization to an external map.
|
||||
*/
|
||||
}
|
||||
|
||||
/* Post-processing: in particular, color conversion first */
|
||||
if (! cinfo->raw_data_out) {
|
||||
if (master->using_merged_upsample) {
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
jinit_merged_upsampler(cinfo); /* does color conversion too */
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif
|
||||
} else {
|
||||
jinit_color_deconverter(cinfo);
|
||||
jinit_upsampler(cinfo);
|
||||
}
|
||||
jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
|
||||
}
|
||||
/* Inverse DCT */
|
||||
jinit_inverse_dct(cinfo);
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code) {
|
||||
jinit_arith_decoder(cinfo);
|
||||
} else {
|
||||
jinit_huff_decoder(cinfo);
|
||||
}
|
||||
|
||||
/* Initialize principal buffer controllers. */
|
||||
use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
|
||||
jinit_d_coef_controller(cinfo, use_c_buffer);
|
||||
|
||||
if (! cinfo->raw_data_out)
|
||||
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */
|
||||
(*cinfo->inputctl->start_input_pass) (cinfo);
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
/* If jpeg_start_decompress will read the whole file, initialize
|
||||
* progress monitoring appropriately. The input step is counted
|
||||
* as one pass.
|
||||
*/
|
||||
if (cinfo->progress != NULL && ! cinfo->buffered_image &&
|
||||
cinfo->inputctl->has_multiple_scans) {
|
||||
int nscans;
|
||||
/* Estimate number of scans to set pass_limit. */
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
|
||||
nscans = 2 + 3 * cinfo->num_components;
|
||||
} else {
|
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
|
||||
nscans = cinfo->num_components;
|
||||
}
|
||||
cinfo->progress->pass_counter = 0L;
|
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
|
||||
cinfo->progress->completed_passes = 0;
|
||||
cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
|
||||
/* Count the input pass as done */
|
||||
master->pass_number++;
|
||||
}
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Per-pass setup.
|
||||
* This is called at the beginning of each output pass. We determine which
|
||||
* modules will be active during this pass and give them appropriate
|
||||
* start_pass calls. We also set is_dummy_pass to indicate whether this
|
||||
* is a "real" output pass or a dummy pass for color quantization.
|
||||
* (In the latter case, jdapistd.c will crank the pass to completion.)
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
prepare_for_output_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
if (master->pub.is_dummy_pass) {
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
/* Final pass of 2-pass quantization */
|
||||
master->pub.is_dummy_pass = FALSE;
|
||||
(*cinfo->cquantize->start_pass) (cinfo, FALSE);
|
||||
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
} else {
|
||||
if (cinfo->quantize_colors && cinfo->colormap == NULL) {
|
||||
/* Select new quantization method */
|
||||
if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
|
||||
cinfo->cquantize = master->quantizer_2pass;
|
||||
master->pub.is_dummy_pass = TRUE;
|
||||
} else if (cinfo->enable_1pass_quant) {
|
||||
cinfo->cquantize = master->quantizer_1pass;
|
||||
} else {
|
||||
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||
}
|
||||
}
|
||||
(*cinfo->idct->start_pass) (cinfo);
|
||||
(*cinfo->coef->start_output_pass) (cinfo);
|
||||
if (! cinfo->raw_data_out) {
|
||||
if (! master->using_merged_upsample)
|
||||
(*cinfo->cconvert->start_pass) (cinfo);
|
||||
(*cinfo->upsample->start_pass) (cinfo);
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
|
||||
(*cinfo->post->start_pass) (cinfo,
|
||||
(master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
||||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
||||
}
|
||||
}
|
||||
|
||||
/* Set up progress monitor's pass info if present */
|
||||
if (cinfo->progress != NULL) {
|
||||
cinfo->progress->completed_passes = master->pass_number;
|
||||
cinfo->progress->total_passes = master->pass_number +
|
||||
(master->pub.is_dummy_pass ? 2 : 1);
|
||||
/* In buffered-image mode, we assume one more output pass if EOI not
|
||||
* yet reached, but no more passes if EOI has been reached.
|
||||
*/
|
||||
if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
|
||||
cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Finish up at end of an output pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
finish_output_pass (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
if (cinfo->quantize_colors)
|
||||
(*cinfo->cquantize->finish_pass) (cinfo);
|
||||
master->pass_number++;
|
||||
}
|
||||
|
||||
|
||||
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
||||
|
||||
/*
|
||||
* Switch to a new external colormap between output passes.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_new_colormap (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master = (my_master_ptr) cinfo->master;
|
||||
|
||||
/* Prevent application from calling me at wrong times */
|
||||
if (cinfo->global_state != DSTATE_BUFIMAGE)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
if (cinfo->quantize_colors && cinfo->enable_external_quant &&
|
||||
cinfo->colormap != NULL) {
|
||||
/* Select 2-pass quantizer for external colormap use */
|
||||
cinfo->cquantize = master->quantizer_2pass;
|
||||
/* Notify quantizer of colormap change */
|
||||
(*cinfo->cquantize->new_color_map) (cinfo);
|
||||
master->pub.is_dummy_pass = FALSE; /* just in case */
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||||
}
|
||||
|
||||
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize master decompression control and select active modules.
|
||||
* This is performed at the start of jpeg_start_decompress.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_master_decompress (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_master_ptr master;
|
||||
|
||||
master = (my_master_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_decomp_master));
|
||||
cinfo->master = (struct jpeg_decomp_master *) master;
|
||||
master->pub.prepare_for_output_pass = prepare_for_output_pass;
|
||||
master->pub.finish_output_pass = finish_output_pass;
|
||||
|
||||
master->pub.is_dummy_pass = FALSE;
|
||||
|
||||
master_selection(cinfo);
|
||||
}
|
||||
400
3rdparty/libjpeg/jdmerge.c
vendored
400
3rdparty/libjpeg/jdmerge.c
vendored
@@ -1,400 +0,0 @@
|
||||
/*
|
||||
* jdmerge.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains code for merged upsampling/color conversion.
|
||||
*
|
||||
* This file combines functions from jdsample.c and jdcolor.c;
|
||||
* read those files first to understand what's going on.
|
||||
*
|
||||
* When the chroma components are to be upsampled by simple replication
|
||||
* (ie, box filtering), we can save some work in color conversion by
|
||||
* calculating all the output pixels corresponding to a pair of chroma
|
||||
* samples at one time. In the conversion equations
|
||||
* R = Y + K1 * Cr
|
||||
* G = Y + K2 * Cb + K3 * Cr
|
||||
* B = Y + K4 * Cb
|
||||
* only the Y term varies among the group of pixels corresponding to a pair
|
||||
* of chroma samples, so the rest of the terms can be calculated just once.
|
||||
* At typical sampling ratios, this eliminates half or three-quarters of the
|
||||
* multiplications needed for color conversion.
|
||||
*
|
||||
* This file currently provides implementations for the following cases:
|
||||
* YCbCr => RGB color conversion only.
|
||||
* Sampling ratios of 2h1v or 2h2v.
|
||||
* No scaling needed at upsample time.
|
||||
* Corner-aligned (non-CCIR601) sampling alignment.
|
||||
* Other special cases could be added, but in most applications these are
|
||||
* the only common cases. (For uncommon cases we fall back on the more
|
||||
* general code in jdsample.c and jdcolor.c.)
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Pointer to routine to do actual upsampling/conversion of one row group */
|
||||
JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf));
|
||||
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int * Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int * Cb_b_tab; /* => table for Cb to B conversion */
|
||||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
|
||||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
|
||||
|
||||
/* For 2:1 vertical sampling, we produce two output rows at a time.
|
||||
* We need a "spare" row buffer to hold the second output row if the
|
||||
* application provides just a one-row buffer; we also use the spare
|
||||
* to discard the dummy last row if the image height is odd.
|
||||
*/
|
||||
JSAMPROW spare_row;
|
||||
boolean spare_full; /* T if spare buffer is occupied */
|
||||
|
||||
JDIMENSION out_row_width; /* samples per output row */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
} my_upsampler;
|
||||
|
||||
typedef my_upsampler * my_upsample_ptr;
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
|
||||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
|
||||
|
||||
|
||||
/*
|
||||
* Initialize tables for YCC->RGB colorspace conversion.
|
||||
* This is taken directly from jdcolor.c; see that file for more info.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
build_ycc_rgb_table (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
int i;
|
||||
INT32 x;
|
||||
SHIFT_TEMPS
|
||||
|
||||
upsample->Cr_r_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
upsample->Cb_b_tab = (int *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(int));
|
||||
upsample->Cr_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
upsample->Cb_g_tab = (INT32 *)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(MAXJSAMPLE+1) * SIZEOF(INT32));
|
||||
|
||||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
|
||||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
|
||||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
|
||||
/* Cr=>R value is nearest int to 1.40200 * x */
|
||||
upsample->Cr_r_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cb=>B value is nearest int to 1.77200 * x */
|
||||
upsample->Cb_b_tab[i] = (int)
|
||||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
|
||||
/* Cr=>G value is scaled-up -0.71414 * x */
|
||||
upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
|
||||
/* Cb=>G value is scaled-up -0.34414 * x */
|
||||
/* We also add in ONE_HALF so that need not do it in inner loop */
|
||||
upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_merged_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
|
||||
/* Mark the spare buffer empty */
|
||||
upsample->spare_full = FALSE;
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
upsample->rows_to_go = cinfo->output_height;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion).
|
||||
*
|
||||
* The control routine just handles the row buffering considerations.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
merged_2v_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
/* 2:1 vertical sampling case: may need a spare row. */
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
JSAMPROW work_ptrs[2];
|
||||
JDIMENSION num_rows; /* number of rows returned to caller */
|
||||
|
||||
if (upsample->spare_full) {
|
||||
/* If we have a spare row saved from a previous cycle, just return it. */
|
||||
jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
|
||||
1, upsample->out_row_width);
|
||||
num_rows = 1;
|
||||
upsample->spare_full = FALSE;
|
||||
} else {
|
||||
/* Figure number of rows to return to caller. */
|
||||
num_rows = 2;
|
||||
/* Not more than the distance to the end of the image. */
|
||||
if (num_rows > upsample->rows_to_go)
|
||||
num_rows = upsample->rows_to_go;
|
||||
/* And not more than what the client can accept: */
|
||||
out_rows_avail -= *out_row_ctr;
|
||||
if (num_rows > out_rows_avail)
|
||||
num_rows = out_rows_avail;
|
||||
/* Create output pointer array for upsampler. */
|
||||
work_ptrs[0] = output_buf[*out_row_ctr];
|
||||
if (num_rows > 1) {
|
||||
work_ptrs[1] = output_buf[*out_row_ctr + 1];
|
||||
} else {
|
||||
work_ptrs[1] = upsample->spare_row;
|
||||
upsample->spare_full = TRUE;
|
||||
}
|
||||
/* Now do the upsampling. */
|
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
|
||||
}
|
||||
|
||||
/* Adjust counts */
|
||||
*out_row_ctr += num_rows;
|
||||
upsample->rows_to_go -= num_rows;
|
||||
/* When the buffer is emptied, declare this input row group consumed */
|
||||
if (! upsample->spare_full)
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
merged_1v_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
/* 1:1 vertical sampling case: much easier, never need a spare row. */
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
|
||||
/* Just do the upsampling. */
|
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
|
||||
output_buf + *out_row_ctr);
|
||||
/* Adjust counts */
|
||||
(*out_row_ctr)++;
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by the control routines to do
|
||||
* the actual upsampling/conversion. One row group is processed per call.
|
||||
*
|
||||
* Note: since we may be writing directly into application-supplied buffers,
|
||||
* we have to be honest about the output width; we can't assume the buffer
|
||||
* has been rounded up to an even width.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_merged_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
JSAMPROW inptr0, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr0 = input_buf[0][in_row_group_ctr];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr = output_buf[0];
|
||||
/* Loop for each pair of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 2 Y values and emit 2 pixels */
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr0++);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr += RGB_PIXELSIZE;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr0);
|
||||
outptr[RGB_RED] = range_limit[y + cred];
|
||||
outptr[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr[RGB_BLUE] = range_limit[y + cblue];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_merged_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr0, outptr1;
|
||||
JSAMPROW inptr00, inptr01, inptr1, inptr2;
|
||||
JDIMENSION col;
|
||||
/* copy these pointers into registers if possible */
|
||||
register JSAMPLE * range_limit = cinfo->sample_range_limit;
|
||||
int * Crrtab = upsample->Cr_r_tab;
|
||||
int * Cbbtab = upsample->Cb_b_tab;
|
||||
INT32 * Crgtab = upsample->Cr_g_tab;
|
||||
INT32 * Cbgtab = upsample->Cb_g_tab;
|
||||
SHIFT_TEMPS
|
||||
|
||||
inptr00 = input_buf[0][in_row_group_ctr*2];
|
||||
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
|
||||
inptr1 = input_buf[1][in_row_group_ctr];
|
||||
inptr2 = input_buf[2][in_row_group_ctr];
|
||||
outptr0 = output_buf[0];
|
||||
outptr1 = output_buf[1];
|
||||
/* Loop for each group of output pixels */
|
||||
for (col = cinfo->output_width >> 1; col > 0; col--) {
|
||||
/* Do the chroma part of the calculation */
|
||||
cb = GETJSAMPLE(*inptr1++);
|
||||
cr = GETJSAMPLE(*inptr2++);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
/* Fetch 4 Y values and emit 4 pixels */
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr0 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr00++);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr0 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr1 += RGB_PIXELSIZE;
|
||||
y = GETJSAMPLE(*inptr01++);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
outptr1 += RGB_PIXELSIZE;
|
||||
}
|
||||
/* If image width is odd, do the last output column separately */
|
||||
if (cinfo->output_width & 1) {
|
||||
cb = GETJSAMPLE(*inptr1);
|
||||
cr = GETJSAMPLE(*inptr2);
|
||||
cred = Crrtab[cr];
|
||||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
|
||||
cblue = Cbbtab[cb];
|
||||
y = GETJSAMPLE(*inptr00);
|
||||
outptr0[RGB_RED] = range_limit[y + cred];
|
||||
outptr0[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr0[RGB_BLUE] = range_limit[y + cblue];
|
||||
y = GETJSAMPLE(*inptr01);
|
||||
outptr1[RGB_RED] = range_limit[y + cred];
|
||||
outptr1[RGB_GREEN] = range_limit[y + cgreen];
|
||||
outptr1[RGB_BLUE] = range_limit[y + cblue];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for merged upsampling/color conversion.
|
||||
*
|
||||
* NB: this is called under the conditions determined by use_merged_upsample()
|
||||
* in jdmaster.c. That routine MUST correspond to the actual capabilities
|
||||
* of this module; no safety checks are made here.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_merged_upsampler (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample;
|
||||
|
||||
upsample = (my_upsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_upsampler));
|
||||
cinfo->upsample = (struct jpeg_upsampler *) upsample;
|
||||
upsample->pub.start_pass = start_pass_merged_upsample;
|
||||
upsample->pub.need_context_rows = FALSE;
|
||||
|
||||
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
|
||||
|
||||
if (cinfo->max_v_samp_factor == 2) {
|
||||
upsample->pub.upsample = merged_2v_upsample;
|
||||
upsample->upmethod = h2v2_merged_upsample;
|
||||
/* Allocate a spare row buffer */
|
||||
upsample->spare_row = (JSAMPROW)
|
||||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
|
||||
} else {
|
||||
upsample->pub.upsample = merged_1v_upsample;
|
||||
upsample->upmethod = h2v1_merged_upsample;
|
||||
/* No spare row needed */
|
||||
upsample->spare_row = NULL;
|
||||
}
|
||||
|
||||
build_ycc_rgb_table(cinfo);
|
||||
}
|
||||
|
||||
#endif /* UPSAMPLE_MERGING_SUPPORTED */
|
||||
290
3rdparty/libjpeg/jdpostct.c
vendored
290
3rdparty/libjpeg/jdpostct.c
vendored
@@ -1,290 +0,0 @@
|
||||
/*
|
||||
* jdpostct.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains the decompression postprocessing controller.
|
||||
* This controller manages the upsampling, color conversion, and color
|
||||
* quantization/reduction steps; specifically, it controls the buffering
|
||||
* between upsample/color conversion and color quantization/reduction.
|
||||
*
|
||||
* If no color quantization/reduction is required, then this module has no
|
||||
* work to do, and it just hands off to the upsample/color conversion code.
|
||||
* An integrated upsample/convert/quantize process would replace this module
|
||||
* entirely.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Private buffer controller object */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_d_post_controller pub; /* public fields */
|
||||
|
||||
/* Color quantization source buffer: this holds output data from
|
||||
* the upsample/color conversion step to be passed to the quantizer.
|
||||
* For two-pass color quantization, we need a full-image buffer;
|
||||
* for one-pass operation, a strip buffer is sufficient.
|
||||
*/
|
||||
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
|
||||
JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
|
||||
JDIMENSION strip_height; /* buffer size in rows */
|
||||
/* for two-pass mode only: */
|
||||
JDIMENSION starting_row; /* row # of first row in current strip */
|
||||
JDIMENSION next_row; /* index of next row to fill/empty in strip */
|
||||
} my_post_controller;
|
||||
|
||||
typedef my_post_controller * my_post_ptr;
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
METHODDEF(void) post_process_1pass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
METHODDEF(void) post_process_prepass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
METHODDEF(void) post_process_2pass
|
||||
JPP((j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for a processing pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
|
||||
switch (pass_mode) {
|
||||
case JBUF_PASS_THRU:
|
||||
if (cinfo->quantize_colors) {
|
||||
/* Single-pass processing with color quantization. */
|
||||
post->pub.post_process_data = post_process_1pass;
|
||||
/* We could be doing buffered-image output before starting a 2-pass
|
||||
* color quantization; in that case, jinit_d_post_controller did not
|
||||
* allocate a strip buffer. Use the virtual-array buffer as workspace.
|
||||
*/
|
||||
if (post->buffer == NULL) {
|
||||
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, post->whole_image,
|
||||
(JDIMENSION) 0, post->strip_height, TRUE);
|
||||
}
|
||||
} else {
|
||||
/* For single-pass processing without color quantization,
|
||||
* I have no work to do; just call the upsampler directly.
|
||||
*/
|
||||
post->pub.post_process_data = cinfo->upsample->upsample;
|
||||
}
|
||||
break;
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
case JBUF_SAVE_AND_PASS:
|
||||
/* First pass of 2-pass quantization */
|
||||
if (post->whole_image == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
post->pub.post_process_data = post_process_prepass;
|
||||
break;
|
||||
case JBUF_CRANK_DEST:
|
||||
/* Second pass of 2-pass quantization */
|
||||
if (post->whole_image == NULL)
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
post->pub.post_process_data = post_process_2pass;
|
||||
break;
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
default:
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
break;
|
||||
}
|
||||
post->starting_row = post->next_row = 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the one-pass (strip buffer) case.
|
||||
* This is used for color precision reduction as well as one-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_1pass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION num_rows, max_rows;
|
||||
|
||||
/* Fill the buffer, but not more than what we can dump out in one go. */
|
||||
/* Note we rely on the upsampler to detect bottom of image. */
|
||||
max_rows = out_rows_avail - *out_row_ctr;
|
||||
if (max_rows > post->strip_height)
|
||||
max_rows = post->strip_height;
|
||||
num_rows = 0;
|
||||
(*cinfo->upsample->upsample) (cinfo,
|
||||
input_buf, in_row_group_ctr, in_row_groups_avail,
|
||||
post->buffer, &num_rows, max_rows);
|
||||
/* Quantize and emit data. */
|
||||
(*cinfo->cquantize->color_quantize) (cinfo,
|
||||
post->buffer, output_buf + *out_row_ctr, (int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
}
|
||||
|
||||
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
|
||||
/*
|
||||
* Process some data in the first pass of 2-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_prepass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION old_next_row, num_rows;
|
||||
|
||||
/* Reposition virtual buffer if at start of strip. */
|
||||
if (post->next_row == 0) {
|
||||
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, post->whole_image,
|
||||
post->starting_row, post->strip_height, TRUE);
|
||||
}
|
||||
|
||||
/* Upsample some data (up to a strip height's worth). */
|
||||
old_next_row = post->next_row;
|
||||
(*cinfo->upsample->upsample) (cinfo,
|
||||
input_buf, in_row_group_ctr, in_row_groups_avail,
|
||||
post->buffer, &post->next_row, post->strip_height);
|
||||
|
||||
/* Allow quantizer to scan new data. No data is emitted, */
|
||||
/* but we advance out_row_ctr so outer loop can tell when we're done. */
|
||||
if (post->next_row > old_next_row) {
|
||||
num_rows = post->next_row - old_next_row;
|
||||
(*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
|
||||
(JSAMPARRAY) NULL, (int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
}
|
||||
|
||||
/* Advance if we filled the strip. */
|
||||
if (post->next_row >= post->strip_height) {
|
||||
post->starting_row += post->strip_height;
|
||||
post->next_row = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Process some data in the second pass of 2-pass quantization.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
post_process_2pass (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_post_ptr post = (my_post_ptr) cinfo->post;
|
||||
JDIMENSION num_rows, max_rows;
|
||||
|
||||
/* Reposition virtual buffer if at start of strip. */
|
||||
if (post->next_row == 0) {
|
||||
post->buffer = (*cinfo->mem->access_virt_sarray)
|
||||
((j_common_ptr) cinfo, post->whole_image,
|
||||
post->starting_row, post->strip_height, FALSE);
|
||||
}
|
||||
|
||||
/* Determine number of rows to emit. */
|
||||
num_rows = post->strip_height - post->next_row; /* available in strip */
|
||||
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
|
||||
if (num_rows > max_rows)
|
||||
num_rows = max_rows;
|
||||
/* We have to check bottom of image here, can't depend on upsampler. */
|
||||
max_rows = cinfo->output_height - post->starting_row;
|
||||
if (num_rows > max_rows)
|
||||
num_rows = max_rows;
|
||||
|
||||
/* Quantize and emit data. */
|
||||
(*cinfo->cquantize->color_quantize) (cinfo,
|
||||
post->buffer + post->next_row, output_buf + *out_row_ctr,
|
||||
(int) num_rows);
|
||||
*out_row_ctr += num_rows;
|
||||
|
||||
/* Advance if we filled the strip. */
|
||||
post->next_row += num_rows;
|
||||
if (post->next_row >= post->strip_height) {
|
||||
post->starting_row += post->strip_height;
|
||||
post->next_row = 0;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
|
||||
|
||||
/*
|
||||
* Initialize postprocessing controller.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
||||
{
|
||||
my_post_ptr post;
|
||||
|
||||
post = (my_post_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_post_controller));
|
||||
cinfo->post = (struct jpeg_d_post_controller *) post;
|
||||
post->pub.start_pass = start_pass_dpost;
|
||||
post->whole_image = NULL; /* flag for no virtual arrays */
|
||||
post->buffer = NULL; /* flag for no strip buffer */
|
||||
|
||||
/* Create the quantization buffer, if needed */
|
||||
if (cinfo->quantize_colors) {
|
||||
/* The buffer strip height is max_v_samp_factor, which is typically
|
||||
* an efficient number of rows for upsampling to return.
|
||||
* (In the presence of output rescaling, we might want to be smarter?)
|
||||
*/
|
||||
post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
|
||||
if (need_full_buffer) {
|
||||
/* Two-pass color quantization: need full-image storage. */
|
||||
/* We round up the number of rows to a multiple of the strip height. */
|
||||
#ifdef QUANT_2PASS_SUPPORTED
|
||||
post->whole_image = (*cinfo->mem->request_virt_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
||||
cinfo->output_width * cinfo->out_color_components,
|
||||
(JDIMENSION) jround_up((long) cinfo->output_height,
|
||||
(long) post->strip_height),
|
||||
post->strip_height);
|
||||
#else
|
||||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
||||
#endif /* QUANT_2PASS_SUPPORTED */
|
||||
} else {
|
||||
/* One-pass color quantization: just make a strip buffer. */
|
||||
post->buffer = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
cinfo->output_width * cinfo->out_color_components,
|
||||
post->strip_height);
|
||||
}
|
||||
}
|
||||
}
|
||||
361
3rdparty/libjpeg/jdsample.c
vendored
361
3rdparty/libjpeg/jdsample.c
vendored
@@ -1,361 +0,0 @@
|
||||
/*
|
||||
* jdsample.c
|
||||
*
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* Modified 2002-2008 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains upsampling routines.
|
||||
*
|
||||
* Upsampling input data is counted in "row groups". A row group
|
||||
* is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size)
|
||||
* sample rows of each component. Upsampling will normally produce
|
||||
* max_v_samp_factor pixel rows from each row group (but this could vary
|
||||
* if the upsampler is applying a scale factor of its own).
|
||||
*
|
||||
* An excellent reference for image resampling is
|
||||
* Digital Image Warping, George Wolberg, 1990.
|
||||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Pointer to routine to upsample a single component */
|
||||
typedef JMETHOD(void, upsample1_ptr,
|
||||
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Color conversion buffer. When using separate upsampling and color
|
||||
* conversion steps, this buffer holds one upsampled row group until it
|
||||
* has been color converted and output.
|
||||
* Note: we do not allocate any storage for component(s) which are full-size,
|
||||
* ie do not need rescaling. The corresponding entry of color_buf[] is
|
||||
* simply set to point to the input data array, thereby avoiding copying.
|
||||
*/
|
||||
JSAMPARRAY color_buf[MAX_COMPONENTS];
|
||||
|
||||
/* Per-component upsampling method pointers */
|
||||
upsample1_ptr methods[MAX_COMPONENTS];
|
||||
|
||||
int next_row_out; /* counts rows emitted from color_buf */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
|
||||
/* Height of an input row group for each component. */
|
||||
int rowgroup_height[MAX_COMPONENTS];
|
||||
|
||||
/* These arrays save pixel expansion factors so that int_expand need not
|
||||
* recompute them each time. They are unused for other upsampling methods.
|
||||
*/
|
||||
UINT8 h_expand[MAX_COMPONENTS];
|
||||
UINT8 v_expand[MAX_COMPONENTS];
|
||||
} my_upsampler;
|
||||
|
||||
typedef my_upsampler * my_upsample_ptr;
|
||||
|
||||
|
||||
/*
|
||||
* Initialize for an upsampling pass.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
start_pass_upsample (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
|
||||
/* Mark the conversion buffer empty */
|
||||
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||
/* Initialize total-height counter for detecting bottom of image */
|
||||
upsample->rows_to_go = cinfo->output_height;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Control routine to do upsampling (and color conversion).
|
||||
*
|
||||
* In this version we upsample each component independently.
|
||||
* We upsample one row group into the conversion buffer, then apply
|
||||
* color conversion a row at a time.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
sep_upsample (j_decompress_ptr cinfo,
|
||||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
|
||||
JDIMENSION in_row_groups_avail,
|
||||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
||||
JDIMENSION out_rows_avail)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
JDIMENSION num_rows;
|
||||
|
||||
/* Fill the conversion buffer, if it's empty */
|
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Invoke per-component upsample method. Notice we pass a POINTER
|
||||
* to color_buf[ci], so that fullsize_upsample can change it.
|
||||
*/
|
||||
(*upsample->methods[ci]) (cinfo, compptr,
|
||||
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
|
||||
upsample->color_buf + ci);
|
||||
}
|
||||
upsample->next_row_out = 0;
|
||||
}
|
||||
|
||||
/* Color-convert and emit rows */
|
||||
|
||||
/* How many we have in the buffer: */
|
||||
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
|
||||
/* Not more than the distance to the end of the image. Need this test
|
||||
* in case the image height is not a multiple of max_v_samp_factor:
|
||||
*/
|
||||
if (num_rows > upsample->rows_to_go)
|
||||
num_rows = upsample->rows_to_go;
|
||||
/* And not more than what the client can accept: */
|
||||
out_rows_avail -= *out_row_ctr;
|
||||
if (num_rows > out_rows_avail)
|
||||
num_rows = out_rows_avail;
|
||||
|
||||
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
|
||||
(JDIMENSION) upsample->next_row_out,
|
||||
output_buf + *out_row_ctr,
|
||||
(int) num_rows);
|
||||
|
||||
/* Adjust counts */
|
||||
*out_row_ctr += num_rows;
|
||||
upsample->rows_to_go -= num_rows;
|
||||
upsample->next_row_out += num_rows;
|
||||
/* When the buffer is emptied, declare this input row group consumed */
|
||||
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
|
||||
(*in_row_group_ctr)++;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These are the routines invoked by sep_upsample to upsample pixel values
|
||||
* of a single component. One row group is processed per call.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* For full-size components, we just make color_buf[ci] point at the
|
||||
* input buffer, and thus avoid copying any data. Note that this is
|
||||
* safe only because sep_upsample doesn't declare the input row group
|
||||
* "consumed" until we are done color converting and emitting it.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
*output_data_ptr = input_data;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This is a no-op version used for "uninteresting" components.
|
||||
* These components will not be referenced by color conversion.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
*output_data_ptr = NULL; /* safety check */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This version handles any integral sampling ratios.
|
||||
* This is not used for typical JPEG files, so it need not be fast.
|
||||
* Nor, for that matter, is it particularly accurate: the algorithm is
|
||||
* simple replication of the input pixel onto the corresponding output
|
||||
* pixels. The hi-falutin sampling literature refers to this as a
|
||||
* "box filter". A box filter tends to introduce visible artifacts,
|
||||
* so if you are actually going to use 3:1 or 4:1 sampling ratios
|
||||
* you would be well advised to improve this code.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
register int h;
|
||||
JSAMPROW outend;
|
||||
int h_expand, v_expand;
|
||||
int inrow, outrow;
|
||||
|
||||
h_expand = upsample->h_expand[compptr->component_index];
|
||||
v_expand = upsample->v_expand[compptr->component_index];
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
/* Generate one output row with proper horizontal expansion */
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
for (h = h_expand; h > 0; h--) {
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
}
|
||||
/* Generate any additional output rows by duplicating the first one */
|
||||
if (v_expand > 1) {
|
||||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
|
||||
v_expand-1, cinfo->output_width);
|
||||
}
|
||||
inrow++;
|
||||
outrow += v_expand;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
|
||||
* It's still a box filter.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
JSAMPROW outend;
|
||||
int outrow;
|
||||
|
||||
for (outrow = 0; outrow < cinfo->max_v_samp_factor; outrow++) {
|
||||
inptr = input_data[outrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
|
||||
* It's still a box filter.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
|
||||
{
|
||||
JSAMPARRAY output_data = *output_data_ptr;
|
||||
register JSAMPROW inptr, outptr;
|
||||
register JSAMPLE invalue;
|
||||
JSAMPROW outend;
|
||||
int inrow, outrow;
|
||||
|
||||
inrow = outrow = 0;
|
||||
while (outrow < cinfo->max_v_samp_factor) {
|
||||
inptr = input_data[inrow];
|
||||
outptr = output_data[outrow];
|
||||
outend = outptr + cinfo->output_width;
|
||||
while (outptr < outend) {
|
||||
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
||||
*outptr++ = invalue;
|
||||
*outptr++ = invalue;
|
||||
}
|
||||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
|
||||
1, cinfo->output_width);
|
||||
inrow++;
|
||||
outrow += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Module initialization routine for upsampling.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jinit_upsampler (j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample;
|
||||
int ci;
|
||||
jpeg_component_info * compptr;
|
||||
boolean need_buffer;
|
||||
int h_in_group, v_in_group, h_out_group, v_out_group;
|
||||
|
||||
upsample = (my_upsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
SIZEOF(my_upsampler));
|
||||
cinfo->upsample = (struct jpeg_upsampler *) upsample;
|
||||
upsample->pub.start_pass = start_pass_upsample;
|
||||
upsample->pub.upsample = sep_upsample;
|
||||
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
|
||||
|
||||
if (cinfo->CCIR601_sampling) /* this isn't supported */
|
||||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
||||
|
||||
/* Verify we can handle the sampling factors, select per-component methods,
|
||||
* and create storage as needed.
|
||||
*/
|
||||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
||||
ci++, compptr++) {
|
||||
/* Compute size of an "input group" after IDCT scaling. This many samples
|
||||
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
|
||||
*/
|
||||
h_in_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
|
||||
cinfo->min_DCT_h_scaled_size;
|
||||
v_in_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
|
||||
cinfo->min_DCT_v_scaled_size;
|
||||
h_out_group = cinfo->max_h_samp_factor;
|
||||
v_out_group = cinfo->max_v_samp_factor;
|
||||
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
|
||||
need_buffer = TRUE;
|
||||
if (! compptr->component_needed) {
|
||||
/* Don't bother to upsample an uninteresting component. */
|
||||
upsample->methods[ci] = noop_upsample;
|
||||
need_buffer = FALSE;
|
||||
} else if (h_in_group == h_out_group && v_in_group == v_out_group) {
|
||||
/* Fullsize components can be processed without any work. */
|
||||
upsample->methods[ci] = fullsize_upsample;
|
||||
need_buffer = FALSE;
|
||||
} else if (h_in_group * 2 == h_out_group &&
|
||||
v_in_group == v_out_group) {
|
||||
/* Special case for 2h1v upsampling */
|
||||
upsample->methods[ci] = h2v1_upsample;
|
||||
} else if (h_in_group * 2 == h_out_group &&
|
||||
v_in_group * 2 == v_out_group) {
|
||||
/* Special case for 2h2v upsampling */
|
||||
upsample->methods[ci] = h2v2_upsample;
|
||||
} else if ((h_out_group % h_in_group) == 0 &&
|
||||
(v_out_group % v_in_group) == 0) {
|
||||
/* Generic integral-factors upsampling method */
|
||||
upsample->methods[ci] = int_upsample;
|
||||
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
|
||||
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
|
||||
} else
|
||||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
||||
if (need_buffer) {
|
||||
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
||||
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||||
(JDIMENSION) jround_up((long) cinfo->output_width,
|
||||
(long) cinfo->max_h_samp_factor),
|
||||
(JDIMENSION) cinfo->max_v_samp_factor);
|
||||
}
|
||||
}
|
||||
}
|
||||
136
3rdparty/libjpeg/jdtrans.c
vendored
136
3rdparty/libjpeg/jdtrans.c
vendored
@@ -1,136 +0,0 @@
|
||||
/*
|
||||
* jdtrans.c
|
||||
*
|
||||
* Copyright (C) 1995-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains library routines for transcoding decompression,
|
||||
* that is, reading raw DCT coefficient arrays from an input JPEG file.
|
||||
* The routines in jdapimin.c will also be needed by a transcoder.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
|
||||
|
||||
|
||||
/*
|
||||
* Read the coefficient arrays from a JPEG file.
|
||||
* jpeg_read_header must be completed before calling this.
|
||||
*
|
||||
* The entire image is read into a set of virtual coefficient-block arrays,
|
||||
* one per component. The return value is a pointer to the array of
|
||||
* virtual-array descriptors. These can be manipulated directly via the
|
||||
* JPEG memory manager, or handed off to jpeg_write_coefficients().
|
||||
* To release the memory occupied by the virtual arrays, call
|
||||
* jpeg_finish_decompress() when done with the data.
|
||||
*
|
||||
* An alternative usage is to simply obtain access to the coefficient arrays
|
||||
* during a buffered-image-mode decompression operation. This is allowed
|
||||
* after any jpeg_finish_output() call. The arrays can be accessed until
|
||||
* jpeg_finish_decompress() is called. (Note that any call to the library
|
||||
* may reposition the arrays, so don't rely on access_virt_barray() results
|
||||
* to stay valid across library calls.)
|
||||
*
|
||||
* Returns NULL if suspended. This case need be checked only if
|
||||
* a suspending data source is used.
|
||||
*/
|
||||
|
||||
GLOBAL(jvirt_barray_ptr *)
|
||||
jpeg_read_coefficients (j_decompress_ptr cinfo)
|
||||
{
|
||||
if (cinfo->global_state == DSTATE_READY) {
|
||||
/* First call: initialize active modules */
|
||||
transdecode_master_selection(cinfo);
|
||||
cinfo->global_state = DSTATE_RDCOEFS;
|
||||
}
|
||||
if (cinfo->global_state == DSTATE_RDCOEFS) {
|
||||
/* Absorb whole file into the coef buffer */
|
||||
for (;;) {
|
||||
int retcode;
|
||||
/* Call progress monitor hook if present */
|
||||
if (cinfo->progress != NULL)
|
||||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
|
||||
/* Absorb some more input */
|
||||
retcode = (*cinfo->inputctl->consume_input) (cinfo);
|
||||
if (retcode == JPEG_SUSPENDED)
|
||||
return NULL;
|
||||
if (retcode == JPEG_REACHED_EOI)
|
||||
break;
|
||||
/* Advance progress counter if appropriate */
|
||||
if (cinfo->progress != NULL &&
|
||||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
|
||||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
|
||||
/* startup underestimated number of scans; ratchet up one scan */
|
||||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Set state so that jpeg_finish_decompress does the right thing */
|
||||
cinfo->global_state = DSTATE_STOPPING;
|
||||
}
|
||||
/* At this point we should be in state DSTATE_STOPPING if being used
|
||||
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
|
||||
* to the coefficients during a full buffered-image-mode decompression.
|
||||
*/
|
||||
if ((cinfo->global_state == DSTATE_STOPPING ||
|
||||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
|
||||
return cinfo->coef->coef_arrays;
|
||||
}
|
||||
/* Oops, improper usage */
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
return NULL; /* keep compiler happy */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Master selection of decompression modules for transcoding.
|
||||
* This substitutes for jdmaster.c's initialization of the full decompressor.
|
||||
*/
|
||||
|
||||
LOCAL(void)
|
||||
transdecode_master_selection (j_decompress_ptr cinfo)
|
||||
{
|
||||
/* This is effectively a buffered-image operation. */
|
||||
cinfo->buffered_image = TRUE;
|
||||
|
||||
/* Entropy decoding: either Huffman or arithmetic coding. */
|
||||
if (cinfo->arith_code)
|
||||
jinit_arith_decoder(cinfo);
|
||||
else {
|
||||
jinit_huff_decoder(cinfo);
|
||||
}
|
||||
|
||||
/* Always get a full-image coefficient buffer. */
|
||||
jinit_d_coef_controller(cinfo, TRUE);
|
||||
|
||||
/* We can now tell the memory manager to allocate virtual arrays. */
|
||||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
||||
|
||||
/* Initialize input side of decompressor to consume first scan. */
|
||||
(*cinfo->inputctl->start_input_pass) (cinfo);
|
||||
|
||||
/* Initialize progress monitoring. */
|
||||
if (cinfo->progress != NULL) {
|
||||
int nscans;
|
||||
/* Estimate number of scans to set pass_limit. */
|
||||
if (cinfo->progressive_mode) {
|
||||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
|
||||
nscans = 2 + 3 * cinfo->num_components;
|
||||
} else if (cinfo->inputctl->has_multiple_scans) {
|
||||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
|
||||
nscans = cinfo->num_components;
|
||||
} else {
|
||||
nscans = 1;
|
||||
}
|
||||
cinfo->progress->pass_counter = 0L;
|
||||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
|
||||
cinfo->progress->completed_passes = 0;
|
||||
cinfo->progress->total_passes = 1;
|
||||
}
|
||||
}
|
||||
252
3rdparty/libjpeg/jerror.c
vendored
252
3rdparty/libjpeg/jerror.c
vendored
@@ -1,252 +0,0 @@
|
||||
/*
|
||||
* jerror.c
|
||||
*
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains simple error-reporting and trace-message routines.
|
||||
* These are suitable for Unix-like systems and others where writing to
|
||||
* stderr is the right thing to do. Many applications will want to replace
|
||||
* some or all of these routines.
|
||||
*
|
||||
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
|
||||
* you get a Windows-specific hack to display error messages in a dialog box.
|
||||
* It ain't much, but it beats dropping error messages into the bit bucket,
|
||||
* which is what happens to output to stderr under most Windows C compilers.
|
||||
*
|
||||
* These routines are used by both the compression and decompression code.
|
||||
*/
|
||||
|
||||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jversion.h"
|
||||
#include "jerror.h"
|
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Create the message string table.
|
||||
* We do this from the master message list in jerror.h by re-reading
|
||||
* jerror.h with a suitable definition for macro JMESSAGE.
|
||||
* The message table is made an external symbol just in case any applications
|
||||
* want to refer to it directly.
|
||||
*/
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_std_message_table jMsgTable
|
||||
#endif
|
||||
|
||||
#define JMESSAGE(code,string) string ,
|
||||
|
||||
const char * const jpeg_std_message_table[] = {
|
||||
#include "jerror.h"
|
||||
NULL
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Error exit handler: must not return to caller.
|
||||
*
|
||||
* Applications may override this if they want to get control back after
|
||||
* an error. Typically one would longjmp somewhere instead of exiting.
|
||||
* The setjmp buffer can be made a private field within an expanded error
|
||||
* handler object. Note that the info needed to generate an error message
|
||||
* is stored in the error object, so you can generate the message now or
|
||||
* later, at your convenience.
|
||||
* You should make sure that the JPEG object is cleaned up (with jpeg_abort
|
||||
* or jpeg_destroy) at some point.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
error_exit (j_common_ptr cinfo)
|
||||
{
|
||||
/* Always display the message */
|
||||
(*cinfo->err->output_message) (cinfo);
|
||||
|
||||
/* Let the memory manager delete any temp files before we die */
|
||||
jpeg_destroy(cinfo);
|
||||
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Actual output of an error or trace message.
|
||||
* Applications may override this method to send JPEG messages somewhere
|
||||
* other than stderr.
|
||||
*
|
||||
* On Windows, printing to stderr is generally completely useless,
|
||||
* so we provide optional code to produce an error-dialog popup.
|
||||
* Most Windows applications will still prefer to override this routine,
|
||||
* but if they don't, it'll do something at least marginally useful.
|
||||
*
|
||||
* NOTE: to use the library in an environment that doesn't support the
|
||||
* C stdio library, you may have to delete the call to fprintf() entirely,
|
||||
* not just not use this routine.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
output_message (j_common_ptr cinfo)
|
||||
{
|
||||
char buffer[JMSG_LENGTH_MAX];
|
||||
|
||||
/* Create the message */
|
||||
(*cinfo->err->format_message) (cinfo, buffer);
|
||||
|
||||
#ifdef USE_WINDOWS_MESSAGEBOX
|
||||
/* Display it in a message dialog box */
|
||||
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
|
||||
MB_OK | MB_ICONERROR);
|
||||
#else
|
||||
/* Send it to stderr, adding a newline */
|
||||
fprintf(stderr, "%s\n", buffer);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Decide whether to emit a trace or warning message.
|
||||
* msg_level is one of:
|
||||
* -1: recoverable corrupt-data warning, may want to abort.
|
||||
* 0: important advisory messages (always display to user).
|
||||
* 1: first level of tracing detail.
|
||||
* 2,3,...: successively more detailed tracing messages.
|
||||
* An application might override this method if it wanted to abort on warnings
|
||||
* or change the policy about which messages to display.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
emit_message (j_common_ptr cinfo, int msg_level)
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
|
||||
if (msg_level < 0) {
|
||||
/* It's a warning message. Since corrupt files may generate many warnings,
|
||||
* the policy implemented here is to show only the first warning,
|
||||
* unless trace_level >= 3.
|
||||
*/
|
||||
if (err->num_warnings == 0 || err->trace_level >= 3)
|
||||
(*err->output_message) (cinfo);
|
||||
/* Always count warnings in num_warnings. */
|
||||
err->num_warnings++;
|
||||
} else {
|
||||
/* It's a trace message. Show it if trace_level >= msg_level. */
|
||||
if (err->trace_level >= msg_level)
|
||||
(*err->output_message) (cinfo);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Format a message string for the most recent JPEG error or message.
|
||||
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
|
||||
* characters. Note that no '\n' character is added to the string.
|
||||
* Few applications should need to override this method.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
format_message (j_common_ptr cinfo, char * buffer)
|
||||
{
|
||||
struct jpeg_error_mgr * err = cinfo->err;
|
||||
int msg_code = err->msg_code;
|
||||
const char * msgtext = NULL;
|
||||
const char * msgptr;
|
||||
char ch;
|
||||
boolean isstring;
|
||||
|
||||
/* Look up message string in proper table */
|
||||
if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
|
||||
msgtext = err->jpeg_message_table[msg_code];
|
||||
} else if (err->addon_message_table != NULL &&
|
||||
msg_code >= err->first_addon_message &&
|
||||
msg_code <= err->last_addon_message) {
|
||||
msgtext = err->addon_message_table[msg_code - err->first_addon_message];
|
||||
}
|
||||
|
||||
/* Defend against bogus message number */
|
||||
if (msgtext == NULL) {
|
||||
err->msg_parm.i[0] = msg_code;
|
||||
msgtext = err->jpeg_message_table[0];
|
||||
}
|
||||
|
||||
/* Check for string parameter, as indicated by %s in the message text */
|
||||
isstring = FALSE;
|
||||
msgptr = msgtext;
|
||||
while ((ch = *msgptr++) != '\0') {
|
||||
if (ch == '%') {
|
||||
if (*msgptr == 's') isstring = TRUE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Format the message into the passed buffer */
|
||||
if (isstring)
|
||||
sprintf(buffer, msgtext, err->msg_parm.s);
|
||||
else
|
||||
sprintf(buffer, msgtext,
|
||||
err->msg_parm.i[0], err->msg_parm.i[1],
|
||||
err->msg_parm.i[2], err->msg_parm.i[3],
|
||||
err->msg_parm.i[4], err->msg_parm.i[5],
|
||||
err->msg_parm.i[6], err->msg_parm.i[7]);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Reset error state variables at start of a new image.
|
||||
* This is called during compression startup to reset trace/error
|
||||
* processing to default state, without losing any application-specific
|
||||
* method pointers. An application might possibly want to override
|
||||
* this method if it has additional error processing state.
|
||||
*/
|
||||
|
||||
METHODDEF(void)
|
||||
reset_error_mgr (j_common_ptr cinfo)
|
||||
{
|
||||
cinfo->err->num_warnings = 0;
|
||||
/* trace_level is not reset since it is an application-supplied parameter */
|
||||
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fill in the standard error-handling methods in a jpeg_error_mgr object.
|
||||
* Typical call is:
|
||||
* struct jpeg_compress_struct cinfo;
|
||||
* struct jpeg_error_mgr err;
|
||||
*
|
||||
* cinfo.err = jpeg_std_error(&err);
|
||||
* after which the application may override some of the methods.
|
||||
*/
|
||||
|
||||
GLOBAL(struct jpeg_error_mgr *)
|
||||
jpeg_std_error (struct jpeg_error_mgr * err)
|
||||
{
|
||||
err->error_exit = error_exit;
|
||||
err->emit_message = emit_message;
|
||||
err->output_message = output_message;
|
||||
err->format_message = format_message;
|
||||
err->reset_error_mgr = reset_error_mgr;
|
||||
|
||||
err->trace_level = 0; /* default = no tracing */
|
||||
err->num_warnings = 0; /* no warnings emitted yet */
|
||||
err->msg_code = 0; /* may be useful as a flag for "no error" */
|
||||
|
||||
/* Initialize message table pointers */
|
||||
err->jpeg_message_table = jpeg_std_message_table;
|
||||
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
|
||||
|
||||
err->addon_message_table = NULL;
|
||||
err->first_addon_message = 0; /* for safety */
|
||||
err->last_addon_message = 0;
|
||||
|
||||
return err;
|
||||
}
|
||||
304
3rdparty/libjpeg/jerror.h
vendored
304
3rdparty/libjpeg/jerror.h
vendored
@@ -1,304 +0,0 @@
|
||||
/*
|
||||
* jerror.h
|
||||
*
|
||||
* Copyright (C) 1994-1997, Thomas G. Lane.
|
||||
* Modified 1997-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file defines the error and message codes for the JPEG library.
|
||||
* Edit this file to add new codes, or to translate the message strings to
|
||||
* some other language.
|
||||
* A set of error-reporting macros are defined too. Some applications using
|
||||
* the JPEG library may wish to include this file to get the error codes
|
||||
* and/or the macros.
|
||||
*/
|
||||
|
||||
/*
|
||||
* To define the enum list of message codes, include this file without
|
||||
* defining macro JMESSAGE. To create a message string table, include it
|
||||
* again with a suitable JMESSAGE definition (see jerror.c for an example).
|
||||
*/
|
||||
#ifndef JMESSAGE
|
||||
#ifndef JERROR_H
|
||||
/* First time through, define the enum list */
|
||||
#define JMAKE_ENUM_LIST
|
||||
#else
|
||||
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
|
||||
#define JMESSAGE(code,string)
|
||||
#endif /* JERROR_H */
|
||||
#endif /* JMESSAGE */
|
||||
|
||||
#ifdef JMAKE_ENUM_LIST
|
||||
|
||||
typedef enum {
|
||||
|
||||
#define JMESSAGE(code,string) code ,
|
||||
|
||||
#endif /* JMAKE_ENUM_LIST */
|
||||
|
||||
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
|
||||
|
||||
/* For maintenance convenience, list is alphabetical by message code name */
|
||||
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
|
||||
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
|
||||
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
|
||||
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
|
||||
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
|
||||
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
|
||||
JMESSAGE(JERR_BAD_DCTSIZE, "DCT scaled block size %dx%d not supported")
|
||||
JMESSAGE(JERR_BAD_DROP_SAMPLING,
|
||||
"Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c")
|
||||
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
|
||||
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
|
||||
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
|
||||
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
|
||||
JMESSAGE(JERR_BAD_LIB_VERSION,
|
||||
"Wrong JPEG library version: library is %d, caller expects %d")
|
||||
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
|
||||
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
|
||||
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
|
||||
JMESSAGE(JERR_BAD_PROGRESSION,
|
||||
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
|
||||
JMESSAGE(JERR_BAD_PROG_SCRIPT,
|
||||
"Invalid progressive parameters at scan script entry %d")
|
||||
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
|
||||
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
|
||||
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
|
||||
JMESSAGE(JERR_BAD_STRUCT_SIZE,
|
||||
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
|
||||
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
|
||||
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
|
||||
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
|
||||
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
|
||||
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
|
||||
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
|
||||
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
|
||||
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
|
||||
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
|
||||
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
|
||||
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
|
||||
JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
|
||||
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
|
||||
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
|
||||
JMESSAGE(JERR_FILE_READ, "Input file read error")
|
||||
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
|
||||
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
|
||||
JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
|
||||
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
|
||||
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
|
||||
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
|
||||
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
|
||||
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
|
||||
"Cannot transcode due to multiple use of quantization table %d")
|
||||
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
|
||||
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
|
||||
JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
|
||||
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
|
||||
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
|
||||
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
|
||||
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
|
||||
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
|
||||
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
|
||||
JMESSAGE(JERR_QUANT_COMPONENTS,
|
||||
"Cannot quantize more than %d color components")
|
||||
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
|
||||
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
|
||||
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
|
||||
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
|
||||
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
|
||||
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
|
||||
JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
|
||||
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
|
||||
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
|
||||
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
|
||||
JMESSAGE(JERR_TFILE_WRITE,
|
||||
"Write failed on temporary file --- out of disk space?")
|
||||
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
|
||||
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
|
||||
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
|
||||
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
|
||||
JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
|
||||
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
|
||||
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
|
||||
JMESSAGE(JMSG_VERSION, JVERSION)
|
||||
JMESSAGE(JTRC_16BIT_TABLES,
|
||||
"Caution: quantization tables are too coarse for baseline JPEG")
|
||||
JMESSAGE(JTRC_ADOBE,
|
||||
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
|
||||
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
|
||||
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
|
||||
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
|
||||
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
|
||||
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
|
||||
JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
|
||||
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
|
||||
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
|
||||
JMESSAGE(JTRC_EOI, "End Of Image")
|
||||
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
|
||||
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
|
||||
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
|
||||
"Warning: thumbnail image size does not match data length %u")
|
||||
JMESSAGE(JTRC_JFIF_EXTENSION,
|
||||
"JFIF extension marker: type 0x%02x, length %u")
|
||||
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
|
||||
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
|
||||
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
|
||||
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
|
||||
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
|
||||
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
|
||||
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
|
||||
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
|
||||
JMESSAGE(JTRC_RST, "RST%d")
|
||||
JMESSAGE(JTRC_SMOOTH_NOTIMPL,
|
||||
"Smoothing not supported with nonstandard sampling ratios")
|
||||
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
|
||||
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
|
||||
JMESSAGE(JTRC_SOI, "Start of Image")
|
||||
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
|
||||
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
|
||||
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
|
||||
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
|
||||
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
|
||||
JMESSAGE(JTRC_THUMB_JPEG,
|
||||
"JFIF extension marker: JPEG-compressed thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_THUMB_PALETTE,
|
||||
"JFIF extension marker: palette thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_THUMB_RGB,
|
||||
"JFIF extension marker: RGB thumbnail image, length %u")
|
||||
JMESSAGE(JTRC_UNKNOWN_IDS,
|
||||
"Unrecognized component IDs %d %d %d, assuming YCbCr")
|
||||
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
|
||||
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
|
||||
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
|
||||
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
|
||||
JMESSAGE(JWRN_BOGUS_PROGRESSION,
|
||||
"Inconsistent progression sequence for component %d coefficient %d")
|
||||
JMESSAGE(JWRN_EXTRANEOUS_DATA,
|
||||
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
|
||||
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
|
||||
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
|
||||
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
|
||||
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
|
||||
JMESSAGE(JWRN_MUST_RESYNC,
|
||||
"Corrupt JPEG data: found marker 0x%02x instead of RST%d")
|
||||
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
|
||||
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
|
||||
|
||||
#ifdef JMAKE_ENUM_LIST
|
||||
|
||||
JMSG_LASTMSGCODE
|
||||
} J_MESSAGE_CODE;
|
||||
|
||||
#undef JMAKE_ENUM_LIST
|
||||
#endif /* JMAKE_ENUM_LIST */
|
||||
|
||||
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
|
||||
#undef JMESSAGE
|
||||
|
||||
|
||||
#ifndef JERROR_H
|
||||
#define JERROR_H
|
||||
|
||||
/* Macros to simplify using the error and trace message stuff */
|
||||
/* The first parameter is either type of cinfo pointer */
|
||||
|
||||
/* Fatal errors (print message and exit) */
|
||||
#define ERREXIT(cinfo,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT1(cinfo,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT2(cinfo,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT3(cinfo,code,p1,p2,p3) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXIT6(cinfo,code,p1,p2,p3,p4,p5,p6) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(cinfo)->err->msg_parm.i[2] = (p3), \
|
||||
(cinfo)->err->msg_parm.i[3] = (p4), \
|
||||
(cinfo)->err->msg_parm.i[4] = (p5), \
|
||||
(cinfo)->err->msg_parm.i[5] = (p6), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
#define ERREXITS(cinfo,code,str) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
|
||||
|
||||
#define MAKESTMT(stuff) do { stuff } while (0)
|
||||
|
||||
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
|
||||
#define WARNMS(cinfo,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
#define WARNMS1(cinfo,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
#define WARNMS2(cinfo,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
|
||||
|
||||
/* Informational/debugging messages */
|
||||
#define TRACEMS(cinfo,lvl,code) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS1(cinfo,lvl,code,p1) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS2(cinfo,lvl,code,p1,p2) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
(cinfo)->err->msg_parm.i[0] = (p1), \
|
||||
(cinfo)->err->msg_parm.i[1] = (p2), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
|
||||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
|
||||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
|
||||
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
|
||||
(cinfo)->err->msg_code = (code); \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
|
||||
#define TRACEMSS(cinfo,lvl,code,str) \
|
||||
((cinfo)->err->msg_code = (code), \
|
||||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
|
||||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
|
||||
|
||||
#endif /* JERROR_H */
|
||||
174
3rdparty/libjpeg/jfdctflt.c
vendored
174
3rdparty/libjpeg/jfdctflt.c
vendored
@@ -1,174 +0,0 @@
|
||||
/*
|
||||
* jfdctflt.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* Modified 2003-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a floating-point implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* This implementation should be more accurate than either of the integer
|
||||
* DCT implementations. However, it may not give the same results on all
|
||||
* machines because of differences in roundoff behavior. Speed will depend
|
||||
* on the hardware's floating point capacity.
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with a fixed-point
|
||||
* implementation, accuracy is lost due to imprecise representation of the
|
||||
* scaled quantization values. However, that problem does not arise if
|
||||
* we use floating point arithmetic.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
|
||||
{
|
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
|
||||
FAST_FLOAT *dataptr;
|
||||
JSAMPROW elemptr;
|
||||
int ctr;
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
elemptr = sample_data[ctr] + start_col;
|
||||
|
||||
/* Load data into workspace */
|
||||
tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
|
||||
tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
|
||||
tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
|
||||
tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
|
||||
tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
|
||||
tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
|
||||
tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
|
||||
tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
/* Apply unsigned->signed conversion */
|
||||
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
|
||||
dataptr[4] = tmp10 - tmp11;
|
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */
|
||||
dataptr[3] = z13 - z2;
|
||||
dataptr[1] = z11 + z4;
|
||||
dataptr[7] = z11 - z4;
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
||||
|
||||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[DCTSIZE*6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
||||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
||||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
||||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
||||
dataptr[DCTSIZE*3] = z13 - z2;
|
||||
dataptr[DCTSIZE*1] = z11 + z4;
|
||||
dataptr[DCTSIZE*7] = z11 - z4;
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
||||
230
3rdparty/libjpeg/jfdctfst.c
vendored
230
3rdparty/libjpeg/jfdctfst.c
vendored
@@ -1,230 +0,0 @@
|
||||
/*
|
||||
* jfdctfst.c
|
||||
*
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* Modified 2003-2009 by Guido Vollbeding.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a fast, not so accurate integer implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
* on each column. Direct algorithms are also available, but they are
|
||||
* much more complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with fixed-point math,
|
||||
* accuracy is lost due to imprecise representation of the scaled
|
||||
* quantization values. The smaller the quantization table entry, the less
|
||||
* precise the scaled value, so this implementation does worse with high-
|
||||
* quality-setting files than with low-quality ones.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jfdctint.c for more details. However, we choose to descale
|
||||
* (right shift) multiplication products as soon as they are formed,
|
||||
* rather than carrying additional fractional bits into subsequent additions.
|
||||
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||
* everywhere except in the multiplications proper; this saves a good deal
|
||||
* of work on 16-bit-int machines.
|
||||
*
|
||||
* Again to save a few shifts, the intermediate results between pass 1 and
|
||||
* pass 2 are not upscaled, but are represented only to integral precision.
|
||||
*
|
||||
* A final compromise is to represent the multiplicative constants to only
|
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||
* machines, and may also reduce the cost of multiplication (since there
|
||||
* are fewer one-bits in the constants).
|
||||
*/
|
||||
|
||||
#define CONST_BITS 8
|
||||
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 8
|
||||
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
|
||||
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
|
||||
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
|
||||
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
|
||||
#else
|
||||
#define FIX_0_382683433 FIX(0.382683433)
|
||||
#define FIX_0_541196100 FIX(0.541196100)
|
||||
#define FIX_0_707106781 FIX(0.707106781)
|
||||
#define FIX_1_306562965 FIX(1.306562965)
|
||||
#endif
|
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||
* rounded result half the time...
|
||||
*/
|
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING
|
||||
#undef DESCALE
|
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||
* descale to yield a DCTELEM result.
|
||||
*/
|
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
||||
|
||||
|
||||
/*
|
||||
* Perform the forward DCT on one block of samples.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
|
||||
{
|
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||
DCTELEM z1, z2, z3, z4, z5, z11, z13;
|
||||
DCTELEM *dataptr;
|
||||
JSAMPROW elemptr;
|
||||
int ctr;
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process rows. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
elemptr = sample_data[ctr] + start_col;
|
||||
|
||||
/* Load data into workspace */
|
||||
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
|
||||
tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
|
||||
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
|
||||
tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
|
||||
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
|
||||
tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
|
||||
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
|
||||
tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
/* Apply unsigned->signed conversion */
|
||||
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
|
||||
dataptr[4] = tmp10 - tmp11;
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||
dataptr[2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[5] = z13 + z2; /* phase 6 */
|
||||
dataptr[3] = z13 - z2;
|
||||
dataptr[1] = z11 + z4;
|
||||
dataptr[7] = z11 - z4;
|
||||
|
||||
dataptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
|
||||
/* Pass 2: process columns. */
|
||||
|
||||
dataptr = data;
|
||||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
||||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
||||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
||||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
||||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
||||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
||||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
||||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
||||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = tmp0 + tmp3; /* phase 2 */
|
||||
tmp13 = tmp0 - tmp3;
|
||||
tmp11 = tmp1 + tmp2;
|
||||
tmp12 = tmp1 - tmp2;
|
||||
|
||||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
||||
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
||||
|
||||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
||||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
||||
dataptr[DCTSIZE*6] = tmp13 - z1;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp10 = tmp4 + tmp5; /* phase 2 */
|
||||
tmp11 = tmp5 + tmp6;
|
||||
tmp12 = tmp6 + tmp7;
|
||||
|
||||
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
||||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
||||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
||||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
||||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
||||
|
||||
z11 = tmp7 + z3; /* phase 5 */
|
||||
z13 = tmp7 - z3;
|
||||
|
||||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
||||
dataptr[DCTSIZE*3] = z13 - z2;
|
||||
dataptr[DCTSIZE*1] = z11 + z4;
|
||||
dataptr[DCTSIZE*7] = z11 - z4;
|
||||
|
||||
dataptr++; /* advance pointer to next column */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */
|
||||
4348
3rdparty/libjpeg/jfdctint.c
vendored
4348
3rdparty/libjpeg/jfdctint.c
vendored
File diff suppressed because it is too large
Load Diff
242
3rdparty/libjpeg/jidctflt.c
vendored
242
3rdparty/libjpeg/jidctflt.c
vendored
@@ -1,242 +0,0 @@
|
||||
/*
|
||||
* jidctflt.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a floating-point implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* This implementation should be more accurate than either of the integer
|
||||
* IDCT implementations. However, it may not give the same results on all
|
||||
* machines because of differences in roundoff behavior. Speed will depend
|
||||
* on the hardware's floating point capacity.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with a fixed-point
|
||||
* implementation, accuracy is lost due to imprecise representation of the
|
||||
* scaled quantization values. However, that problem does not arise if
|
||||
* we use floating point arithmetic.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_FLOAT_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a float result.
|
||||
*/
|
||||
|
||||
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
||||
FAST_FLOAT z5, z10, z11, z12, z13;
|
||||
JCOEFPTR inptr;
|
||||
FLOAT_MULT_TYPE * quantptr;
|
||||
FAST_FLOAT * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
||||
inptr[DCTSIZE*7] == 0) {
|
||||
/* AC terms all zero */
|
||||
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
wsptr[DCTSIZE*4] = dcval;
|
||||
wsptr[DCTSIZE*5] = dcval;
|
||||
wsptr[DCTSIZE*6] = dcval;
|
||||
wsptr[DCTSIZE*7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||
tmp11 = tmp0 - tmp2;
|
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
|
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */
|
||||
z10 = tmp6 - tmp5;
|
||||
z11 = tmp4 + tmp7;
|
||||
z12 = tmp4 - tmp7;
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
||||
wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
||||
wsptr[DCTSIZE*1] = tmp1 + tmp6;
|
||||
wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
||||
wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
||||
wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
||||
wsptr[DCTSIZE*4] = tmp3 + tmp4;
|
||||
wsptr[DCTSIZE*3] = tmp3 - tmp4;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* And testing floats for zero is relatively expensive, so we don't bother.
|
||||
*/
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = wsptr[0] + wsptr[4];
|
||||
tmp11 = wsptr[0] - wsptr[4];
|
||||
|
||||
tmp13 = wsptr[2] + wsptr[6];
|
||||
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
|
||||
|
||||
tmp0 = tmp10 + tmp13;
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z13 = wsptr[5] + wsptr[3];
|
||||
z10 = wsptr[5] - wsptr[3];
|
||||
z11 = wsptr[1] + wsptr[7];
|
||||
z12 = wsptr[1] - wsptr[7];
|
||||
|
||||
tmp7 = z11 + z13;
|
||||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
|
||||
|
||||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
||||
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
||||
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7;
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||||
|
||||
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_FLOAT_SUPPORTED */
|
||||
368
3rdparty/libjpeg/jidctfst.c
vendored
368
3rdparty/libjpeg/jidctfst.c
vendored
@@ -1,368 +0,0 @@
|
||||
/*
|
||||
* jidctfst.c
|
||||
*
|
||||
* Copyright (C) 1994-1998, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file contains a fast, not so accurate integer implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
||||
* on each row (or vice versa, but it's more convenient to emit a row at
|
||||
* a time). Direct algorithms are also available, but they are much more
|
||||
* complex and seem not to be any faster when reduced to code.
|
||||
*
|
||||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
||||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
||||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
||||
* JPEG textbook (see REFERENCES section in file README). The following code
|
||||
* is based directly on figure 4-8 in P&M.
|
||||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
||||
* possible to arrange the computation so that many of the multiplies are
|
||||
* simple scalings of the final outputs. These multiplies can then be
|
||||
* folded into the multiplications or divisions by the JPEG quantization
|
||||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
||||
* to be done in the DCT itself.
|
||||
* The primary disadvantage of this method is that with fixed-point math,
|
||||
* accuracy is lost due to imprecise representation of the scaled
|
||||
* quantization values. The smaller the quantization table entry, the less
|
||||
* precise the scaled value, so this implementation does worse with high-
|
||||
* quality-setting files than with low-quality ones.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdct.h" /* Private declarations for DCT subsystem */
|
||||
|
||||
#ifdef DCT_IFAST_SUPPORTED
|
||||
|
||||
|
||||
/*
|
||||
* This module is specialized to the case DCTSIZE = 8.
|
||||
*/
|
||||
|
||||
#if DCTSIZE != 8
|
||||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
||||
#endif
|
||||
|
||||
|
||||
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
||||
* see jidctint.c for more details. However, we choose to descale
|
||||
* (right shift) multiplication products as soon as they are formed,
|
||||
* rather than carrying additional fractional bits into subsequent additions.
|
||||
* This compromises accuracy slightly, but it lets us save a few shifts.
|
||||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
||||
* everywhere except in the multiplications proper; this saves a good deal
|
||||
* of work on 16-bit-int machines.
|
||||
*
|
||||
* The dequantized coefficients are not integers because the AA&N scaling
|
||||
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
|
||||
* so that the first and second IDCT rounds have the same input scaling.
|
||||
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
|
||||
* avoid a descaling shift; this compromises accuracy rather drastically
|
||||
* for small quantization table entries, but it saves a lot of shifts.
|
||||
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
|
||||
* so we use a much larger scaling factor to preserve accuracy.
|
||||
*
|
||||
* A final compromise is to represent the multiplicative constants to only
|
||||
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
||||
* machines, and may also reduce the cost of multiplication (since there
|
||||
* are fewer one-bits in the constants).
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define CONST_BITS 8
|
||||
#define PASS1_BITS 2
|
||||
#else
|
||||
#define CONST_BITS 8
|
||||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
||||
#endif
|
||||
|
||||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
||||
* causing a lot of useless floating-point operations at run time.
|
||||
* To get around this we use the following pre-calculated constants.
|
||||
* If you change CONST_BITS you may want to add appropriate values.
|
||||
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
||||
*/
|
||||
|
||||
#if CONST_BITS == 8
|
||||
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
|
||||
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
|
||||
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
|
||||
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
|
||||
#else
|
||||
#define FIX_1_082392200 FIX(1.082392200)
|
||||
#define FIX_1_414213562 FIX(1.414213562)
|
||||
#define FIX_1_847759065 FIX(1.847759065)
|
||||
#define FIX_2_613125930 FIX(2.613125930)
|
||||
#endif
|
||||
|
||||
|
||||
/* We can gain a little more speed, with a further compromise in accuracy,
|
||||
* by omitting the addition in a descaling shift. This yields an incorrectly
|
||||
* rounded result half the time...
|
||||
*/
|
||||
|
||||
#ifndef USE_ACCURATE_ROUNDING
|
||||
#undef DESCALE
|
||||
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
||||
#endif
|
||||
|
||||
|
||||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
||||
* descale to yield a DCTELEM result.
|
||||
*/
|
||||
|
||||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
||||
|
||||
|
||||
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
||||
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
|
||||
* multiplication will do. For 12-bit data, the multiplier table is
|
||||
* declared INT32, so a 32-bit multiply will be used.
|
||||
*/
|
||||
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
|
||||
#else
|
||||
#define DEQUANTIZE(coef,quantval) \
|
||||
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
|
||||
#endif
|
||||
|
||||
|
||||
/* Like DESCALE, but applies to a DCTELEM and produces an int.
|
||||
* We assume that int right shift is unsigned if INT32 right shift is.
|
||||
*/
|
||||
|
||||
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
||||
#define ISHIFT_TEMPS DCTELEM ishift_temp;
|
||||
#if BITS_IN_JSAMPLE == 8
|
||||
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
|
||||
#else
|
||||
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
|
||||
#endif
|
||||
#define IRIGHT_SHIFT(x,shft) \
|
||||
((ishift_temp = (x)) < 0 ? \
|
||||
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
|
||||
(ishift_temp >> (shft)))
|
||||
#else
|
||||
#define ISHIFT_TEMPS
|
||||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
||||
#endif
|
||||
|
||||
#ifdef USE_ACCURATE_ROUNDING
|
||||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
|
||||
#else
|
||||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Perform dequantization and inverse DCT on one block of coefficients.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
||||
JCOEFPTR coef_block,
|
||||
JSAMPARRAY output_buf, JDIMENSION output_col)
|
||||
{
|
||||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
||||
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
||||
DCTELEM z5, z10, z11, z12, z13;
|
||||
JCOEFPTR inptr;
|
||||
IFAST_MULT_TYPE * quantptr;
|
||||
int * wsptr;
|
||||
JSAMPROW outptr;
|
||||
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
||||
int ctr;
|
||||
int workspace[DCTSIZE2]; /* buffers data between passes */
|
||||
SHIFT_TEMPS /* for DESCALE */
|
||||
ISHIFT_TEMPS /* for IDESCALE */
|
||||
|
||||
/* Pass 1: process columns from input, store into work array. */
|
||||
|
||||
inptr = coef_block;
|
||||
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
|
||||
wsptr = workspace;
|
||||
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
||||
/* Due to quantization, we will usually find that many of the input
|
||||
* coefficients are zero, especially the AC terms. We can exploit this
|
||||
* by short-circuiting the IDCT calculation for any column in which all
|
||||
* the AC terms are zero. In that case each output is equal to the
|
||||
* DC coefficient (with scale factor as needed).
|
||||
* With typical images and quantization tables, half or more of the
|
||||
* column DCT calculations can be simplified this way.
|
||||
*/
|
||||
|
||||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
||||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
||||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
||||
inptr[DCTSIZE*7] == 0) {
|
||||
/* AC terms all zero */
|
||||
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
|
||||
wsptr[DCTSIZE*0] = dcval;
|
||||
wsptr[DCTSIZE*1] = dcval;
|
||||
wsptr[DCTSIZE*2] = dcval;
|
||||
wsptr[DCTSIZE*3] = dcval;
|
||||
wsptr[DCTSIZE*4] = dcval;
|
||||
wsptr[DCTSIZE*5] = dcval;
|
||||
wsptr[DCTSIZE*6] = dcval;
|
||||
wsptr[DCTSIZE*7] = dcval;
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
||||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
||||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
||||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
||||
|
||||
tmp10 = tmp0 + tmp2; /* phase 3 */
|
||||
tmp11 = tmp0 - tmp2;
|
||||
|
||||
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
||||
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
|
||||
|
||||
tmp0 = tmp10 + tmp13; /* phase 2 */
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
||||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
||||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
||||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
||||
|
||||
z13 = tmp6 + tmp5; /* phase 6 */
|
||||
z10 = tmp6 - tmp5;
|
||||
z11 = tmp4 + tmp7;
|
||||
z12 = tmp4 - tmp7;
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
||||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
|
||||
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
|
||||
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
|
||||
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
|
||||
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
|
||||
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
|
||||
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
|
||||
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
|
||||
|
||||
inptr++; /* advance pointers to next column */
|
||||
quantptr++;
|
||||
wsptr++;
|
||||
}
|
||||
|
||||
/* Pass 2: process rows from work array, store into output array. */
|
||||
/* Note that we must descale the results by a factor of 8 == 2**3, */
|
||||
/* and also undo the PASS1_BITS scaling. */
|
||||
|
||||
wsptr = workspace;
|
||||
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
||||
outptr = output_buf[ctr] + output_col;
|
||||
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
||||
* However, the column calculation has created many nonzero AC terms, so
|
||||
* the simplification applies less often (typically 5% to 10% of the time).
|
||||
* On machines with very fast multiplication, it's possible that the
|
||||
* test takes more time than it's worth. In that case this section
|
||||
* may be commented out.
|
||||
*/
|
||||
|
||||
#ifndef NO_ZERO_ROW_TEST
|
||||
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
|
||||
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
||||
/* AC terms all zero */
|
||||
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
outptr[0] = dcval;
|
||||
outptr[1] = dcval;
|
||||
outptr[2] = dcval;
|
||||
outptr[3] = dcval;
|
||||
outptr[4] = dcval;
|
||||
outptr[5] = dcval;
|
||||
outptr[6] = dcval;
|
||||
outptr[7] = dcval;
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Even part */
|
||||
|
||||
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
|
||||
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
|
||||
|
||||
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
|
||||
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
|
||||
- tmp13;
|
||||
|
||||
tmp0 = tmp10 + tmp13;
|
||||
tmp3 = tmp10 - tmp13;
|
||||
tmp1 = tmp11 + tmp12;
|
||||
tmp2 = tmp11 - tmp12;
|
||||
|
||||
/* Odd part */
|
||||
|
||||
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
|
||||
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
|
||||
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
|
||||
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
|
||||
|
||||
tmp7 = z11 + z13; /* phase 5 */
|
||||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
||||
|
||||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
||||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
||||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
||||
|
||||
tmp6 = tmp12 - tmp7; /* phase 2 */
|
||||
tmp5 = tmp11 - tmp6;
|
||||
tmp4 = tmp10 + tmp5;
|
||||
|
||||
/* Final output stage: scale down by a factor of 8 and range-limit */
|
||||
|
||||
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
|
||||
& RANGE_MASK];
|
||||
|
||||
wsptr += DCTSIZE; /* advance pointer to next row */
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* DCT_IFAST_SUPPORTED */
|
||||
5137
3rdparty/libjpeg/jidctint.c
vendored
5137
3rdparty/libjpeg/jidctint.c
vendored
File diff suppressed because it is too large
Load Diff
91
3rdparty/libjpeg/jinclude.h
vendored
91
3rdparty/libjpeg/jinclude.h
vendored
@@ -1,91 +0,0 @@
|
||||
/*
|
||||
* jinclude.h
|
||||
*
|
||||
* Copyright (C) 1991-1994, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file exists to provide a single place to fix any problems with
|
||||
* including the wrong system include files. (Common problems are taken
|
||||
* care of by the standard jconfig symbols, but on really weird systems
|
||||
* you may have to edit this file.)
|
||||
*
|
||||
* NOTE: this file is NOT intended to be included by applications using the
|
||||
* JPEG library. Most applications need only include jpeglib.h.
|
||||
*/
|
||||
|
||||
|
||||
/* Include auto-config file to find out which system include files we need. */
|
||||
|
||||
#include "jconfig.h" /* auto configuration options */
|
||||
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
|
||||
|
||||
/*
|
||||
* We need the NULL macro and size_t typedef.
|
||||
* On an ANSI-conforming system it is sufficient to include <stddef.h>.
|
||||
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
|
||||
* pull in <sys/types.h> as well.
|
||||
* Note that the core JPEG library does not require <stdio.h>;
|
||||
* only the default error handler and data source/destination modules do.
|
||||
* But we must pull it in because of the references to FILE in jpeglib.h.
|
||||
* You can remove those references if you want to compile without <stdio.h>.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_STDDEF_H
|
||||
#include <stddef.h>
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_STDLIB_H
|
||||
#include <stdlib.h>
|
||||
#endif
|
||||
|
||||
#ifdef NEED_SYS_TYPES_H
|
||||
#include <sys/types.h>
|
||||
#endif
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
* We need memory copying and zeroing functions, plus strncpy().
|
||||
* ANSI and System V implementations declare these in <string.h>.
|
||||
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
|
||||
* Some systems may declare memset and memcpy in <memory.h>.
|
||||
*
|
||||
* NOTE: we assume the size parameters to these functions are of type size_t.
|
||||
* Change the casts in these macros if not!
|
||||
*/
|
||||
|
||||
#ifdef NEED_BSD_STRINGS
|
||||
|
||||
#include <strings.h>
|
||||
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
|
||||
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
|
||||
|
||||
#else /* not BSD, assume ANSI/SysV string lib */
|
||||
|
||||
#include <string.h>
|
||||
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
|
||||
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* In ANSI C, and indeed any rational implementation, size_t is also the
|
||||
* type returned by sizeof(). However, it seems there are some irrational
|
||||
* implementations out there, in which sizeof() returns an int even though
|
||||
* size_t is defined as long or unsigned long. To ensure consistent results
|
||||
* we always use this SIZEOF() macro in place of using sizeof() directly.
|
||||
*/
|
||||
|
||||
#define SIZEOF(object) ((size_t) sizeof(object))
|
||||
|
||||
/*
|
||||
* The modules that use fread() and fwrite() always invoke them through
|
||||
* these macros. On some systems you may need to twiddle the argument casts.
|
||||
* CAUTION: argument order is different from underlying functions!
|
||||
*/
|
||||
|
||||
#define JFREAD(file,buf,sizeofbuf) \
|
||||
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
||||
#define JFWRITE(file,buf,sizeofbuf) \
|
||||
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
|
||||
167
3rdparty/libjpeg/jmemansi.c
vendored
167
3rdparty/libjpeg/jmemansi.c
vendored
@@ -1,167 +0,0 @@
|
||||
/*
|
||||
* jmemansi.c
|
||||
*
|
||||
* Copyright (C) 1992-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file provides a simple generic implementation of the system-
|
||||
* dependent portion of the JPEG memory manager. This implementation
|
||||
* assumes that you have the ANSI-standard library routine tmpfile().
|
||||
* Also, the problem of determining the amount of memory available
|
||||
* is shoved onto the user.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||
extern void * malloc JPP((size_t size));
|
||||
extern void free JPP((void *ptr));
|
||||
#endif
|
||||
|
||||
#ifndef SEEK_SET /* pre-ANSI systems may not define this; */
|
||||
#define SEEK_SET 0 /* if not, assume 0 is correct */
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library
|
||||
* routines malloc() and free().
|
||||
*/
|
||||
|
||||
GLOBAL(void *)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: although we include FAR keywords in the routine declarations,
|
||||
* this file won't actually work in 80x86 small/medium model; at least,
|
||||
* you probably won't be able to process useful-size images in only 64KB.
|
||||
*/
|
||||
|
||||
GLOBAL(void FAR *)
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
* It's impossible to do this in a portable way; our current solution is
|
||||
* to make the user tell us (with a default value set at compile time).
|
||||
* If you can actually get the available space, it's a good idea to subtract
|
||||
* a slop factor of 5% or so.
|
||||
*/
|
||||
|
||||
#ifndef DEFAULT_MAX_MEM /* so can override from makefile */
|
||||
#define DEFAULT_MAX_MEM 1000000L /* default: one megabyte */
|
||||
#endif
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
return cinfo->mem->max_memory_to_use - already_allocated;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Backing store objects are only used when the value returned by
|
||||
* jpeg_mem_available is less than the total space needed. You can dispense
|
||||
* with these routines if you have plenty of virtual memory; see jmemnobs.c.
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFREAD(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(cinfo, JERR_TFILE_READ);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFWRITE(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(cinfo, JERR_TFILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
|
||||
{
|
||||
fclose(info->temp_file);
|
||||
/* Since this implementation uses tmpfile() to create the file,
|
||||
* no explicit file deletion is needed.
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object.
|
||||
*
|
||||
* This version uses tmpfile(), which constructs a suitable file name
|
||||
* behind the scenes. We don't have to use info->temp_name[] at all;
|
||||
* indeed, we can't even find out the actual name of the temp file.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
if ((info->temp_file = tmpfile()) == NULL)
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, "");
|
||||
info->read_backing_store = read_backing_store;
|
||||
info->write_backing_store = write_backing_store;
|
||||
info->close_backing_store = close_backing_store;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
||||
289
3rdparty/libjpeg/jmemmac.c
vendored
289
3rdparty/libjpeg/jmemmac.c
vendored
@@ -1,289 +0,0 @@
|
||||
/*
|
||||
* jmemmac.c
|
||||
*
|
||||
* Copyright (C) 1992-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* jmemmac.c provides an Apple Macintosh implementation of the system-
|
||||
* dependent portion of the JPEG memory manager.
|
||||
*
|
||||
* If you use jmemmac.c, then you must define USE_MAC_MEMMGR in the
|
||||
* JPEG_INTERNALS part of jconfig.h.
|
||||
*
|
||||
* jmemmac.c uses the Macintosh toolbox routines NewPtr and DisposePtr
|
||||
* instead of malloc and free. It accurately determines the amount of
|
||||
* memory available by using CompactMem. Notice that if left to its
|
||||
* own devices, this code can chew up all available space in the
|
||||
* application's zone, with the exception of the rather small "slop"
|
||||
* factor computed in jpeg_mem_available(). The application can ensure
|
||||
* that more space is left over by reducing max_memory_to_use.
|
||||
*
|
||||
* Large images are swapped to disk using temporary files and System 7.0+'s
|
||||
* temporary folder functionality.
|
||||
*
|
||||
* Note that jmemmac.c depends on two features of MacOS that were first
|
||||
* introduced in System 7: FindFolder and the FSSpec-based calls.
|
||||
* If your application uses jmemmac.c and is run under System 6 or earlier,
|
||||
* and the jpeg library decides it needs a temporary file, it will abort,
|
||||
* printing error messages about requiring System 7. (If no temporary files
|
||||
* are created, it will run fine.)
|
||||
*
|
||||
* If you want to use jmemmac.c in an application that might be used with
|
||||
* System 6 or earlier, then you should remove dependencies on FindFolder
|
||||
* and the FSSpec calls. You will need to replace FindFolder with some
|
||||
* other mechanism for finding a place to put temporary files, and you
|
||||
* should replace the FSSpec calls with their HFS equivalents:
|
||||
*
|
||||
* FSpDelete -> HDelete
|
||||
* FSpGetFInfo -> HGetFInfo
|
||||
* FSpCreate -> HCreate
|
||||
* FSpOpenDF -> HOpen *** Note: not HOpenDF ***
|
||||
* FSMakeFSSpec -> (fill in spec by hand.)
|
||||
*
|
||||
* (Use HOpen instead of HOpenDF. HOpen is just a glue-interface to PBHOpen,
|
||||
* which is on all HFS macs. HOpenDF is a System 7 addition which avoids the
|
||||
* ages-old problem of names starting with a period.)
|
||||
*
|
||||
* Contributed by Sam Bushell (jsam@iagu.on.net) and
|
||||
* Dan Gildor (gyld@in-touch.com).
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifndef USE_MAC_MEMMGR /* make sure user got configuration right */
|
||||
You forgot to define USE_MAC_MEMMGR in jconfig.h. /* deliberate syntax error */
|
||||
#endif
|
||||
|
||||
#include <Memory.h> /* we use the MacOS memory manager */
|
||||
#include <Files.h> /* we use the MacOS File stuff */
|
||||
#include <Folders.h> /* we use the MacOS HFS stuff */
|
||||
#include <Script.h> /* for smSystemScript */
|
||||
#include <Gestalt.h> /* we use Gestalt to test for specific functionality */
|
||||
|
||||
#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
|
||||
#define TEMP_FILE_NAME "JPG%03d.TMP"
|
||||
#endif
|
||||
|
||||
static int next_file_num; /* to distinguish among several temp files */
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the MacOS library
|
||||
* routines NewPtr() and DisposePtr(), which allocate fixed-address
|
||||
* storage. Unfortunately, the IJG library isn't smart enough to cope
|
||||
* with relocatable storage.
|
||||
*/
|
||||
|
||||
GLOBAL(void *)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *) NewPtr(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
DisposePtr((Ptr) object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: we include FAR keywords in the routine declarations simply for
|
||||
* consistency with the rest of the IJG code; FAR should expand to empty
|
||||
* on rational architectures like the Mac.
|
||||
*/
|
||||
|
||||
GLOBAL(void FAR *)
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) NewPtr(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
DisposePtr((Ptr) object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
long limit = cinfo->mem->max_memory_to_use - already_allocated;
|
||||
long slop, mem;
|
||||
|
||||
/* Don't ask for more than what application has told us we may use */
|
||||
if (max_bytes_needed > limit && limit > 0)
|
||||
max_bytes_needed = limit;
|
||||
/* Find whether there's a big enough free block in the heap.
|
||||
* CompactMem tries to create a contiguous block of the requested size,
|
||||
* and then returns the size of the largest free block (which could be
|
||||
* much more or much less than we asked for).
|
||||
* We add some slop to ensure we don't use up all available memory.
|
||||
*/
|
||||
slop = max_bytes_needed / 16 + 32768L;
|
||||
mem = CompactMem(max_bytes_needed + slop) - slop;
|
||||
if (mem < 0)
|
||||
mem = 0; /* sigh, couldn't even get the slop */
|
||||
/* Don't take more than the application says we can have */
|
||||
if (mem > limit && limit > 0)
|
||||
mem = limit;
|
||||
return mem;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Backing store objects are only used when the value returned by
|
||||
* jpeg_mem_available is less than the total space needed. You can dispense
|
||||
* with these routines if you have plenty of virtual memory; see jmemnobs.c.
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
long bytes = byte_count;
|
||||
long retVal;
|
||||
|
||||
if ( SetFPos ( info->temp_file, fsFromStart, file_offset ) != noErr )
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
|
||||
retVal = FSRead ( info->temp_file, &bytes,
|
||||
(unsigned char *) buffer_address );
|
||||
if ( retVal != noErr || bytes != byte_count )
|
||||
ERREXIT(cinfo, JERR_TFILE_READ);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
long bytes = byte_count;
|
||||
long retVal;
|
||||
|
||||
if ( SetFPos ( info->temp_file, fsFromStart, file_offset ) != noErr )
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
|
||||
retVal = FSWrite ( info->temp_file, &bytes,
|
||||
(unsigned char *) buffer_address );
|
||||
if ( retVal != noErr || bytes != byte_count )
|
||||
ERREXIT(cinfo, JERR_TFILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
|
||||
{
|
||||
FSClose ( info->temp_file );
|
||||
FSpDelete ( &(info->tempSpec) );
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object.
|
||||
*
|
||||
* This version uses FindFolder to find the Temporary Items folder,
|
||||
* and puts the temporary file in there.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
short tmpRef, vRefNum;
|
||||
long dirID;
|
||||
FInfo finderInfo;
|
||||
FSSpec theSpec;
|
||||
Str255 fName;
|
||||
OSErr osErr;
|
||||
long gestaltResponse = 0;
|
||||
|
||||
/* Check that FSSpec calls are available. */
|
||||
osErr = Gestalt( gestaltFSAttr, &gestaltResponse );
|
||||
if ( ( osErr != noErr )
|
||||
|| !( gestaltResponse & (1<<gestaltHasFSSpecCalls) ) )
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, "- System 7.0 or later required");
|
||||
/* TO DO: add a proper error message to jerror.h. */
|
||||
|
||||
/* Check that FindFolder is available. */
|
||||
osErr = Gestalt( gestaltFindFolderAttr, &gestaltResponse );
|
||||
if ( ( osErr != noErr )
|
||||
|| !( gestaltResponse & (1<<gestaltFindFolderPresent) ) )
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, "- System 7.0 or later required.");
|
||||
/* TO DO: add a proper error message to jerror.h. */
|
||||
|
||||
osErr = FindFolder ( kOnSystemDisk, kTemporaryFolderType, kCreateFolder,
|
||||
&vRefNum, &dirID );
|
||||
if ( osErr != noErr )
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, "- temporary items folder unavailable");
|
||||
/* TO DO: Try putting the temp files somewhere else. */
|
||||
|
||||
/* Keep generating file names till we find one that's not in use */
|
||||
for (;;) {
|
||||
next_file_num++; /* advance counter */
|
||||
|
||||
sprintf(info->temp_name, TEMP_FILE_NAME, next_file_num);
|
||||
strcpy ( (Ptr)fName+1, info->temp_name );
|
||||
*fName = strlen (info->temp_name);
|
||||
osErr = FSMakeFSSpec ( vRefNum, dirID, fName, &theSpec );
|
||||
|
||||
if ( (osErr = FSpGetFInfo ( &theSpec, &finderInfo ) ) != noErr )
|
||||
break;
|
||||
}
|
||||
|
||||
osErr = FSpCreate ( &theSpec, '????', '????', smSystemScript );
|
||||
if ( osErr != noErr )
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
|
||||
|
||||
osErr = FSpOpenDF ( &theSpec, fsRdWrPerm, &(info->temp_file) );
|
||||
if ( osErr != noErr )
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
|
||||
|
||||
info->tempSpec = theSpec;
|
||||
|
||||
info->read_backing_store = read_backing_store;
|
||||
info->write_backing_store = write_backing_store;
|
||||
info->close_backing_store = close_backing_store;
|
||||
TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
next_file_num = 0;
|
||||
|
||||
/* max_memory_to_use will be initialized to FreeMem()'s result;
|
||||
* the calling application might later reduce it, for example
|
||||
* to leave room to invoke multiple JPEG objects.
|
||||
* Note that FreeMem returns the total number of free bytes;
|
||||
* it may not be possible to allocate a single block of this size.
|
||||
*/
|
||||
return FreeMem();
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
||||
1118
3rdparty/libjpeg/jmemmgr.c
vendored
1118
3rdparty/libjpeg/jmemmgr.c
vendored
File diff suppressed because it is too large
Load Diff
276
3rdparty/libjpeg/jmemname.c
vendored
276
3rdparty/libjpeg/jmemname.c
vendored
@@ -1,276 +0,0 @@
|
||||
/*
|
||||
* jmemname.c
|
||||
*
|
||||
* Copyright (C) 1992-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file provides a generic implementation of the system-dependent
|
||||
* portion of the JPEG memory manager. This implementation assumes that
|
||||
* you must explicitly construct a name for each temp file.
|
||||
* Also, the problem of determining the amount of memory available
|
||||
* is shoved onto the user.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||
extern void * malloc JPP((size_t size));
|
||||
extern void free JPP((void *ptr));
|
||||
#endif
|
||||
|
||||
#ifndef SEEK_SET /* pre-ANSI systems may not define this; */
|
||||
#define SEEK_SET 0 /* if not, assume 0 is correct */
|
||||
#endif
|
||||
|
||||
#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
|
||||
#define READ_BINARY "r"
|
||||
#define RW_BINARY "w+"
|
||||
#else
|
||||
#ifdef VMS /* VMS is very nonstandard */
|
||||
#define READ_BINARY "rb", "ctx=stm"
|
||||
#define RW_BINARY "w+b", "ctx=stm"
|
||||
#else /* standard ANSI-compliant case */
|
||||
#define READ_BINARY "rb"
|
||||
#define RW_BINARY "w+b"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Selection of a file name for a temporary file.
|
||||
* This is system-dependent!
|
||||
*
|
||||
* The code as given is suitable for most Unix systems, and it is easily
|
||||
* modified for most non-Unix systems. Some notes:
|
||||
* 1. The temp file is created in the directory named by TEMP_DIRECTORY.
|
||||
* The default value is /usr/tmp, which is the conventional place for
|
||||
* creating large temp files on Unix. On other systems you'll probably
|
||||
* want to change the file location. You can do this by editing the
|
||||
* #define, or (preferred) by defining TEMP_DIRECTORY in jconfig.h.
|
||||
*
|
||||
* 2. If you need to change the file name as well as its location,
|
||||
* you can override the TEMP_FILE_NAME macro. (Note that this is
|
||||
* actually a printf format string; it must contain %s and %d.)
|
||||
* Few people should need to do this.
|
||||
*
|
||||
* 3. mktemp() is used to ensure that multiple processes running
|
||||
* simultaneously won't select the same file names. If your system
|
||||
* doesn't have mktemp(), define NO_MKTEMP to do it the hard way.
|
||||
* (If you don't have <errno.h>, also define NO_ERRNO_H.)
|
||||
*
|
||||
* 4. You probably want to define NEED_SIGNAL_CATCHER so that cjpeg.c/djpeg.c
|
||||
* will cause the temp files to be removed if you stop the program early.
|
||||
*/
|
||||
|
||||
#ifndef TEMP_DIRECTORY /* can override from jconfig.h or Makefile */
|
||||
#define TEMP_DIRECTORY "/usr/tmp/" /* recommended setting for Unix */
|
||||
#endif
|
||||
|
||||
static int next_file_num; /* to distinguish among several temp files */
|
||||
|
||||
#ifdef NO_MKTEMP
|
||||
|
||||
#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
|
||||
#define TEMP_FILE_NAME "%sJPG%03d.TMP"
|
||||
#endif
|
||||
|
||||
#ifndef NO_ERRNO_H
|
||||
#include <errno.h> /* to define ENOENT */
|
||||
#endif
|
||||
|
||||
/* ANSI C specifies that errno is a macro, but on older systems it's more
|
||||
* likely to be a plain int variable. And not all versions of errno.h
|
||||
* bother to declare it, so we have to in order to be most portable. Thus:
|
||||
*/
|
||||
#ifndef errno
|
||||
extern int errno;
|
||||
#endif
|
||||
|
||||
|
||||
LOCAL(void)
|
||||
select_file_name (char * fname)
|
||||
{
|
||||
FILE * tfile;
|
||||
|
||||
/* Keep generating file names till we find one that's not in use */
|
||||
for (;;) {
|
||||
next_file_num++; /* advance counter */
|
||||
sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num);
|
||||
if ((tfile = fopen(fname, READ_BINARY)) == NULL) {
|
||||
/* fopen could have failed for a reason other than the file not
|
||||
* being there; for example, file there but unreadable.
|
||||
* If <errno.h> isn't available, then we cannot test the cause.
|
||||
*/
|
||||
#ifdef ENOENT
|
||||
if (errno != ENOENT)
|
||||
continue;
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
fclose(tfile); /* oops, it's there; close tfile & try again */
|
||||
}
|
||||
}
|
||||
|
||||
#else /* ! NO_MKTEMP */
|
||||
|
||||
/* Note that mktemp() requires the initial filename to end in six X's */
|
||||
#ifndef TEMP_FILE_NAME /* can override from jconfig.h or Makefile */
|
||||
#define TEMP_FILE_NAME "%sJPG%dXXXXXX"
|
||||
#endif
|
||||
|
||||
LOCAL(void)
|
||||
select_file_name (char * fname)
|
||||
{
|
||||
next_file_num++; /* advance counter */
|
||||
sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num);
|
||||
mktemp(fname); /* make sure file name is unique */
|
||||
/* mktemp replaces the trailing XXXXXX with a unique string of characters */
|
||||
}
|
||||
|
||||
#endif /* NO_MKTEMP */
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library
|
||||
* routines malloc() and free().
|
||||
*/
|
||||
|
||||
GLOBAL(void *)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: although we include FAR keywords in the routine declarations,
|
||||
* this file won't actually work in 80x86 small/medium model; at least,
|
||||
* you probably won't be able to process useful-size images in only 64KB.
|
||||
*/
|
||||
|
||||
GLOBAL(void FAR *)
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
* It's impossible to do this in a portable way; our current solution is
|
||||
* to make the user tell us (with a default value set at compile time).
|
||||
* If you can actually get the available space, it's a good idea to subtract
|
||||
* a slop factor of 5% or so.
|
||||
*/
|
||||
|
||||
#ifndef DEFAULT_MAX_MEM /* so can override from makefile */
|
||||
#define DEFAULT_MAX_MEM 1000000L /* default: one megabyte */
|
||||
#endif
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
return cinfo->mem->max_memory_to_use - already_allocated;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Backing store objects are only used when the value returned by
|
||||
* jpeg_mem_available is less than the total space needed. You can dispense
|
||||
* with these routines if you have plenty of virtual memory; see jmemnobs.c.
|
||||
*/
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFREAD(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(cinfo, JERR_TFILE_READ);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count)
|
||||
{
|
||||
if (fseek(info->temp_file, file_offset, SEEK_SET))
|
||||
ERREXIT(cinfo, JERR_TFILE_SEEK);
|
||||
if (JFWRITE(info->temp_file, buffer_address, byte_count)
|
||||
!= (size_t) byte_count)
|
||||
ERREXIT(cinfo, JERR_TFILE_WRITE);
|
||||
}
|
||||
|
||||
|
||||
METHODDEF(void)
|
||||
close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
|
||||
{
|
||||
fclose(info->temp_file); /* close the file */
|
||||
unlink(info->temp_name); /* delete the file */
|
||||
/* If your system doesn't have unlink(), use remove() instead.
|
||||
* remove() is the ANSI-standard name for this function, but if
|
||||
* your system was ANSI you'd be using jmemansi.c, right?
|
||||
*/
|
||||
TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
select_file_name(info->temp_name);
|
||||
if ((info->temp_file = fopen(info->temp_name, RW_BINARY)) == NULL)
|
||||
ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
|
||||
info->read_backing_store = read_backing_store;
|
||||
info->write_backing_store = write_backing_store;
|
||||
info->close_backing_store = close_backing_store;
|
||||
TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
next_file_num = 0; /* initialize temp file name generator */
|
||||
return DEFAULT_MAX_MEM; /* default for max_memory_to_use */
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
||||
109
3rdparty/libjpeg/jmemnobs.c
vendored
109
3rdparty/libjpeg/jmemnobs.c
vendored
@@ -1,109 +0,0 @@
|
||||
/*
|
||||
* jmemnobs.c
|
||||
*
|
||||
* Copyright (C) 1992-1996, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This file provides a really simple implementation of the system-
|
||||
* dependent portion of the JPEG memory manager. This implementation
|
||||
* assumes that no backing-store files are needed: all required space
|
||||
* can be obtained from malloc().
|
||||
* This is very portable in the sense that it'll compile on almost anything,
|
||||
* but you'd better have lots of main memory (or virtual memory) if you want
|
||||
* to process big images.
|
||||
* Note that the max_memory_to_use option is ignored by this implementation.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jmemsys.h" /* import the system-dependent declarations */
|
||||
|
||||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
|
||||
extern void * malloc JPP((size_t size));
|
||||
extern void free JPP((void *ptr));
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Memory allocation and freeing are controlled by the regular library
|
||||
* routines malloc() and free().
|
||||
*/
|
||||
|
||||
GLOBAL(void *)
|
||||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* "Large" objects are treated the same as "small" ones.
|
||||
* NB: although we include FAR keywords in the routine declarations,
|
||||
* this file won't actually work in 80x86 small/medium model; at least,
|
||||
* you probably won't be able to process useful-size images in only 64KB.
|
||||
*/
|
||||
|
||||
GLOBAL(void FAR *)
|
||||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
|
||||
{
|
||||
return (void FAR *) malloc(sizeofobject);
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
|
||||
{
|
||||
free(object);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine computes the total memory space available for allocation.
|
||||
* Here we always say, "we got all you want bud!"
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
|
||||
long max_bytes_needed, long already_allocated)
|
||||
{
|
||||
return max_bytes_needed;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Backing store (temporary file) management.
|
||||
* Since jpeg_mem_available always promised the moon,
|
||||
* this should never be called and we can just error out.
|
||||
*/
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
|
||||
long total_bytes_needed)
|
||||
{
|
||||
ERREXIT(cinfo, JERR_NO_BACKING_STORE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. Here, there isn't any.
|
||||
*/
|
||||
|
||||
GLOBAL(long)
|
||||
jpeg_mem_init (j_common_ptr cinfo)
|
||||
{
|
||||
return 0; /* just set max_memory_to_use to 0 */
|
||||
}
|
||||
|
||||
GLOBAL(void)
|
||||
jpeg_mem_term (j_common_ptr cinfo)
|
||||
{
|
||||
/* no work */
|
||||
}
|
||||
198
3rdparty/libjpeg/jmemsys.h
vendored
198
3rdparty/libjpeg/jmemsys.h
vendored
@@ -1,198 +0,0 @@
|
||||
/*
|
||||
* jmemsys.h
|
||||
*
|
||||
* Copyright (C) 1992-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* For conditions of distribution and use, see the accompanying README file.
|
||||
*
|
||||
* This include file defines the interface between the system-independent
|
||||
* and system-dependent portions of the JPEG memory manager. No other
|
||||
* modules need include it. (The system-independent portion is jmemmgr.c;
|
||||
* there are several different versions of the system-dependent portion.)
|
||||
*
|
||||
* This file works as-is for the system-dependent memory managers supplied
|
||||
* in the IJG distribution. You may need to modify it if you write a
|
||||
* custom memory manager. If system-dependent changes are needed in
|
||||
* this file, the best method is to #ifdef them based on a configuration
|
||||
* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
|
||||
* and USE_MAC_MEMMGR.
|
||||
*/
|
||||
|
||||
|
||||
/* Short forms of external names for systems with brain-damaged linkers. */
|
||||
|
||||
#ifdef NEED_SHORT_EXTERNAL_NAMES
|
||||
#define jpeg_get_small jGetSmall
|
||||
#define jpeg_free_small jFreeSmall
|
||||
#define jpeg_get_large jGetLarge
|
||||
#define jpeg_free_large jFreeLarge
|
||||
#define jpeg_mem_available jMemAvail
|
||||
#define jpeg_open_backing_store jOpenBackStore
|
||||
#define jpeg_mem_init jMemInit
|
||||
#define jpeg_mem_term jMemTerm
|
||||
#endif /* NEED_SHORT_EXTERNAL_NAMES */
|
||||
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release small chunks of
|
||||
* memory. (Typically the total amount requested through jpeg_get_small is
|
||||
* no more than 20K or so; this will be requested in chunks of a few K each.)
|
||||
* Behavior should be the same as for the standard library functions malloc
|
||||
* and free; in particular, jpeg_get_small must return NULL on failure.
|
||||
* On most systems, these ARE malloc and free. jpeg_free_small is passed the
|
||||
* size of the object being freed, just in case it's needed.
|
||||
* On an 80x86 machine using small-data memory model, these manage near heap.
|
||||
*/
|
||||
|
||||
EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
|
||||
EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
|
||||
size_t sizeofobject));
|
||||
|
||||
/*
|
||||
* These two functions are used to allocate and release large chunks of
|
||||
* memory (up to the total free space designated by jpeg_mem_available).
|
||||
* The interface is the same as above, except that on an 80x86 machine,
|
||||
* far pointers are used. On most other machines these are identical to
|
||||
* the jpeg_get/free_small routines; but we keep them separate anyway,
|
||||
* in case a different allocation strategy is desirable for large chunks.
|
||||
*/
|
||||
|
||||
EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
|
||||
size_t sizeofobject));
|
||||
EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
|
||||
size_t sizeofobject));
|
||||
|
||||
/*
|
||||
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
|
||||
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that
|
||||
* matter, but that case should never come into play). This macro is needed
|
||||
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
|
||||
* On those machines, we expect that jconfig.h will provide a proper value.
|
||||
* On machines with 32-bit flat address spaces, any large constant may be used.
|
||||
*
|
||||
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
|
||||
* size_t and will be a multiple of sizeof(align_type).
|
||||
*/
|
||||
|
||||
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
|
||||
#define MAX_ALLOC_CHUNK 1000000000L
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This routine computes the total space still available for allocation by
|
||||
* jpeg_get_large. If more space than this is needed, backing store will be
|
||||
* used. NOTE: any memory already allocated must not be counted.
|
||||
*
|
||||
* There is a minimum space requirement, corresponding to the minimum
|
||||
* feasible buffer sizes; jmemmgr.c will request that much space even if
|
||||
* jpeg_mem_available returns zero. The maximum space needed, enough to hold
|
||||
* all working storage in memory, is also passed in case it is useful.
|
||||
* Finally, the total space already allocated is passed. If no better
|
||||
* method is available, cinfo->mem->max_memory_to_use - already_allocated
|
||||
* is often a suitable calculation.
|
||||
*
|
||||
* It is OK for jpeg_mem_available to underestimate the space available
|
||||
* (that'll just lead to more backing-store access than is really necessary).
|
||||
* However, an overestimate will lead to failure. Hence it's wise to subtract
|
||||
* a slop factor from the true available space. 5% should be enough.
|
||||
*
|
||||
* On machines with lots of virtual memory, any large constant may be returned.
|
||||
* Conversely, zero may be returned to always use the minimum amount of memory.
|
||||
*/
|
||||
|
||||
EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
|
||||
long min_bytes_needed,
|
||||
long max_bytes_needed,
|
||||
long already_allocated));
|
||||
|
||||
|
||||
/*
|
||||
* This structure holds whatever state is needed to access a single
|
||||
* backing-store object. The read/write/close method pointers are called
|
||||
* by jmemmgr.c to manipulate the backing-store object; all other fields
|
||||
* are private to the system-dependent backing store routines.
|
||||
*/
|
||||
|
||||
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
|
||||
|
||||
|
||||
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
|
||||
|
||||
typedef unsigned short XMSH; /* type of extended-memory handles */
|
||||
typedef unsigned short EMSH; /* type of expanded-memory handles */
|
||||
|
||||
typedef union {
|
||||
short file_handle; /* DOS file handle if it's a temp file */
|
||||
XMSH xms_handle; /* handle if it's a chunk of XMS */
|
||||
EMSH ems_handle; /* handle if it's a chunk of EMS */
|
||||
} handle_union;
|
||||
|
||||
#endif /* USE_MSDOS_MEMMGR */
|
||||
|
||||
#ifdef USE_MAC_MEMMGR /* Mac-specific junk */
|
||||
#include <Files.h>
|
||||
#endif /* USE_MAC_MEMMGR */
|
||||
|
||||
|
||||
typedef struct backing_store_struct * backing_store_ptr;
|
||||
|
||||
typedef struct backing_store_struct {
|
||||
/* Methods for reading/writing/closing this backing-store object */
|
||||
JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
void FAR * buffer_address,
|
||||
long file_offset, long byte_count));
|
||||
JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
|
||||
backing_store_ptr info));
|
||||
|
||||
/* Private fields for system-dependent backing-store management */
|
||||
#ifdef USE_MSDOS_MEMMGR
|
||||
/* For the MS-DOS manager (jmemdos.c), we need: */
|
||||
handle_union handle; /* reference to backing-store storage object */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
|
||||
#else
|
||||
#ifdef USE_MAC_MEMMGR
|
||||
/* For the Mac manager (jmemmac.c), we need: */
|
||||
short temp_file; /* file reference number to temp file */
|
||||
FSSpec tempSpec; /* the FSSpec for the temp file */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
|
||||
#else
|
||||
/* For a typical implementation with temp files, we need: */
|
||||
FILE * temp_file; /* stdio reference to temp file */
|
||||
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
|
||||
#endif
|
||||
#endif
|
||||
} backing_store_info;
|
||||
|
||||
|
||||
/*
|
||||
* Initial opening of a backing-store object. This must fill in the
|
||||
* read/write/close pointers in the object. The read/write routines
|
||||
* may take an error exit if the specified maximum file size is exceeded.
|
||||
* (If jpeg_mem_available always returns a large value, this routine can
|
||||
* just take an error exit.)
|
||||
*/
|
||||
|
||||
EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
|
||||
backing_store_ptr info,
|
||||
long total_bytes_needed));
|
||||
|
||||
|
||||
/*
|
||||
* These routines take care of any system-dependent initialization and
|
||||
* cleanup required. jpeg_mem_init will be called before anything is
|
||||
* allocated (and, therefore, nothing in cinfo is of use except the error
|
||||
* manager pointer). It should return a suitable default value for
|
||||
* max_memory_to_use; this may subsequently be overridden by the surrounding
|
||||
* application. (Note that max_memory_to_use is only important if
|
||||
* jpeg_mem_available chooses to consult it ... no one else will.)
|
||||
* jpeg_mem_term may assume that all requested memory has been freed and that
|
||||
* all opened backing-store objects have been closed.
|
||||
*/
|
||||
|
||||
EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
|
||||
EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user