Files
archived-llvm/test/CodeGen/SystemZ/swift-return.ll
Francis Visoiu Mistrih c030038e73 [FastISel] Skip creating unnecessary vregs for arguments
This behavior was added in r130928 for both FastISel and SD, and then
disabled in r131156 for FastISel.

This re-enables it for FastISel with the corresponding fix.

This is triggered only when FastISel can't lower the arguments and falls
back to SelectionDAG for it.

FastISel contains a map of "register fixups" where at the end of the
selection phase it replaces all uses of a register with another
register that FastISel sometimes pre-assigned. Code at the end of
SelectionDAGISel::runOnMachineFunction is doing the replacement at the
very end of the function, while other pieces that come in before that
look through the MachineFunction and assume everything is done. In this
case, the real issue is that the code emitting COPY instructions for the
liveins (physreg to vreg) (EmitLiveInCopies) is checking if the vreg
assigned to the physreg is used, and if it's not, it will skip the COPY.
If a register wasn't replaced with its assigned fixup yet, the copy will
be skipped and we'll end up with uses of undefined registers.

This fix moves the replacement of registers before the emission of
copies for the live-ins.

The initial motivation for this fix is to enable tail calls for
swiftself functions, which were blocked because we couldn't prove that
the swiftself argument (which is callee-save) comes from a function
argument (live-in), because there was an extra copy (vreg to vreg).

A few tests are affected by this:

* llvm/test/CodeGen/AArch64/swifterror.ll: we used to spill x21
(callee-save) but never reload it because it's attached to the return.
We now don't even spill it anymore.
* llvm/test/CodeGen/*/swiftself.ll: we tail-call now.
* llvm/test/CodeGen/AMDGPU/mubuf-legalize-operands.ll: I believe this
test was not really testing the right thing, but it worked because the
same registers were re-used.
* llvm/test/CodeGen/ARM/cmpxchg-O0.ll: regalloc changes
* llvm/test/CodeGen/ARM/swifterror.ll: get rid of a copy
* llvm/test/CodeGen/Mips/*: get rid of spills and copies
* llvm/test/CodeGen/SystemZ/swift-return.ll: smaller stack
* llvm/test/CodeGen/X86/atomic-unordered.ll: smaller stack
* llvm/test/CodeGen/X86/swifterror.ll: same as AArch64
* llvm/test/DebugInfo/X86/dbg-declare-arg.ll: stack size changed

Differential Revision: https://reviews.llvm.org/D62361

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362963 91177308-0d34-0410-b5e6-96231b3b80d8
2019-06-10 16:53:37 +00:00

202 lines
6.3 KiB
LLVM

; RUN: llc < %s -mtriple=s390x-linux-gnu -verify-machineinstrs | FileCheck %s
; RUN: llc < %s -mtriple=s390x-linux-gnu -O0 -verify-machineinstrs | FileCheck --check-prefix=CHECK-O0 %s
@var = global i32 0
; Test how llvm handles return type of {i16, i8}. The return value will be
; passed in %r2 and %r3.
; CHECK-LABEL: test:
; CHECK: st %r2
; CHECK: brasl %r14, gen
; CHECK-DAG: lhr %{{r[0,2]+}}, %r2
; CHECK-DAG: lbr %{{r[0,2]+}}, %r3
; CHECK: ar %r2, %r0
; CHECK-O0-LABEL: test
; CHECK-O0: st %r2
; CHECK-O0: brasl %r14, gen
; CHECK-O0-DAG: lhr %[[REG1:r[0-9]+]], %r2
; CHECK-O0-DAG: lbr %[[REG2:r[0-9]+]], %r3
; CHECK-O0: ar %[[REG1]], %[[REG2]]
; CHECK-O0: lr %r2, %[[REG1]]
define i16 @test(i32 %key) {
entry:
%key.addr = alloca i32, align 4
store i32 %key, i32* %key.addr, align 4
%0 = load i32, i32* %key.addr, align 4
%call = call swiftcc { i16, i8 } @gen(i32 %0)
%v3 = extractvalue { i16, i8 } %call, 0
%v1 = sext i16 %v3 to i32
%v5 = extractvalue { i16, i8 } %call, 1
%v2 = sext i8 %v5 to i32
%add = add nsw i32 %v1, %v2
%conv = trunc i32 %add to i16
ret i16 %conv
}
declare swiftcc { i16, i8 } @gen(i32)
; If we can't pass every return value in registers, we will pass everything
; in memroy. The caller provides space for the return value and passes
; the address in %r2. The first input argument will be in %r3.
; CHECK-LABEL: test2:
; CHECK: lr %r3, %r2
; CHECK-DAG: la %r2, 160(%r15)
; CHECK: brasl %r14, gen2
; CHECK: l %r2, 160(%r15)
; CHECK: a %r2, 164(%r15)
; CHECK: a %r2, 168(%r15)
; CHECK: a %r2, 172(%r15)
; CHECK: a %r2, 176(%r15)
; CHECK-O0-LABEL: test2:
; CHECK-O0: st %r2, [[SPILL1:[0-9]+]](%r15)
; CHECK-O0: l %r3, [[SPILL1]](%r15)
; CHECK-O0: la %r2, 160(%r15)
; CHECK-O0: brasl %r14, gen2
; CHECK-O0-DAG: l %r{{.*}}, 176(%r15)
; CHECK-O0-DAG: l %r{{.*}}, 172(%r15)
; CHECK-O0-DAG: l %r{{.*}}, 168(%r15)
; CHECK-O0-DAG: l %r{{.*}}, 164(%r15)
; CHECK-O0-DAG: l %r{{.*}}, 160(%r15)
; CHECK-O0: ar
; CHECK-O0: ar
; CHECK-O0: ar
; CHECK-O0: ar
; CHECK-O0: lr %r2
define i32 @test2(i32 %key) #0 {
entry:
%key.addr = alloca i32, align 4
store i32 %key, i32* %key.addr, align 4
%0 = load i32, i32* %key.addr, align 4
%call = call swiftcc { i32, i32, i32, i32, i32 } @gen2(i32 %0)
%v3 = extractvalue { i32, i32, i32, i32, i32 } %call, 0
%v5 = extractvalue { i32, i32, i32, i32, i32 } %call, 1
%v6 = extractvalue { i32, i32, i32, i32, i32 } %call, 2
%v7 = extractvalue { i32, i32, i32, i32, i32 } %call, 3
%v8 = extractvalue { i32, i32, i32, i32, i32 } %call, 4
%add = add nsw i32 %v3, %v5
%add1 = add nsw i32 %add, %v6
%add2 = add nsw i32 %add1, %v7
%add3 = add nsw i32 %add2, %v8
ret i32 %add3
}
; The address of the return value is passed in %r2.
; On return, %r2 will contain the adddress that has been passed in by the caller in %r2.
; CHECK-LABEL: gen2:
; CHECK: st %r3, 16(%r2)
; CHECK: st %r3, 12(%r2)
; CHECK: st %r3, 8(%r2)
; CHECK: st %r3, 4(%r2)
; CHECK: st %r3, 0(%r2)
; CHECK-O0-LABEL: gen2:
; CHECK-O0-DAG: st %r3, 16(%r2)
; CHECK-O0-DAG: st %r3, 12(%r2)
; CHECK-O0-DAG: st %r3, 8(%r2)
; CHECK-O0-DAG: st %r3, 4(%r2)
; CHECK-O0-DAG: st %r3, 0(%r2)
define swiftcc { i32, i32, i32, i32, i32 } @gen2(i32 %key) {
%Y = insertvalue { i32, i32, i32, i32, i32 } undef, i32 %key, 0
%Z = insertvalue { i32, i32, i32, i32, i32 } %Y, i32 %key, 1
%Z2 = insertvalue { i32, i32, i32, i32, i32 } %Z, i32 %key, 2
%Z3 = insertvalue { i32, i32, i32, i32, i32 } %Z2, i32 %key, 3
%Z4 = insertvalue { i32, i32, i32, i32, i32 } %Z3, i32 %key, 4
ret { i32, i32, i32, i32, i32 } %Z4
}
; The return value {i32, i32, i32, i32} will be returned via registers
; %r2, %r3, %r4, %r5.
; CHECK-LABEL: test3:
; CHECK: brasl %r14, gen3
; CHECK: ar %r2, %r3
; CHECK: ar %r2, %r4
; CHECK: ar %r2, %r5
; CHECK-O0-LABEL: test3:
; CHECK-O0: brasl %r14, gen3
; CHECK-O0: ar %r2, %r3
; CHECK-O0: ar %r2, %r4
; CHECK-O0: ar %r2, %r5
define i32 @test3(i32 %key) #0 {
entry:
%key.addr = alloca i32, align 4
store i32 %key, i32* %key.addr, align 4
%0 = load i32, i32* %key.addr, align 4
%call = call swiftcc { i32, i32, i32, i32 } @gen3(i32 %0)
%v3 = extractvalue { i32, i32, i32, i32 } %call, 0
%v5 = extractvalue { i32, i32, i32, i32 } %call, 1
%v6 = extractvalue { i32, i32, i32, i32 } %call, 2
%v7 = extractvalue { i32, i32, i32, i32 } %call, 3
%add = add nsw i32 %v3, %v5
%add1 = add nsw i32 %add, %v6
%add2 = add nsw i32 %add1, %v7
ret i32 %add2
}
declare swiftcc { i32, i32, i32, i32 } @gen3(i32 %key)
; The return value {float, float, float, float} will be returned via registers
; %f0, %f2, %f4, %f6.
; CHECK-LABEL: test4:
; CHECK: brasl %r14, gen4
; CHECK: aebr %f0, %f2
; CHECK: aebr %f0, %f4
; CHECK: aebr %f0, %f6
; CHECK-O0-LABEL: test4:
; CHECK-O0: brasl %r14, gen4
; CHECK-O0: aebr %f0, %f2
; CHECK-O0: aebr %f0, %f4
; CHECK-O0: aebr %f0, %f6
define float @test4(float %key) #0 {
entry:
%key.addr = alloca float, align 4
store float %key, float* %key.addr, align 4
%0 = load float, float* %key.addr, align 4
%call = call swiftcc { float, float, float, float } @gen4(float %0)
%v3 = extractvalue { float, float, float, float } %call, 0
%v5 = extractvalue { float, float, float, float } %call, 1
%v6 = extractvalue { float, float, float, float } %call, 2
%v7 = extractvalue { float, float, float, float } %call, 3
%add = fadd float %v3, %v5
%add1 = fadd float %add, %v6
%add2 = fadd float %add1, %v7
ret float %add2
}
declare swiftcc { float, float, float, float } @gen4(float %key)
; CHECK-LABEL: consume_i1_ret:
; CHECK: brasl %r14, produce_i1_ret
; CHECK: nilf %r2, 1
; CHECK: nilf %r3, 1
; CHECK: nilf %r4, 1
; CHECK: nilf %r5, 1
; CHECK-O0-LABEL: consume_i1_ret:
; CHECK-O0: brasl %r14, produce_i1_ret
; CHECK-O0: nilf %r2, 1
; CHECK-O0: nilf %r3, 1
; CHECK-O0: nilf %r4, 1
; CHECK-O0: nilf %r5, 1
define void @consume_i1_ret() {
%call = call swiftcc { i1, i1, i1, i1 } @produce_i1_ret()
%v3 = extractvalue { i1, i1, i1, i1 } %call, 0
%v5 = extractvalue { i1, i1, i1, i1 } %call, 1
%v6 = extractvalue { i1, i1, i1, i1 } %call, 2
%v7 = extractvalue { i1, i1, i1, i1 } %call, 3
%val = zext i1 %v3 to i32
store volatile i32 %val, i32* @var
%val2 = zext i1 %v5 to i32
store volatile i32 %val2, i32* @var
%val3 = zext i1 %v6 to i32
store volatile i32 %val3, i32* @var
%val4 = zext i1 %v7 to i32
store i32 %val4, i32* @var
ret void
}
declare swiftcc { i1, i1, i1, i1 } @produce_i1_ret()