2008-11-19 23:18:57 +00:00
|
|
|
//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This implements the ScheduleDAG class, which is a base class used by
|
|
|
|
// scheduling implementation classes.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "pre-RA-sched"
|
|
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
2008-11-20 01:41:34 +00:00
|
|
|
#include <climits>
|
2008-11-19 23:18:57 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
|
|
|
|
const TargetMachine &tm)
|
|
|
|
: DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) {
|
|
|
|
TII = TM.getInstrInfo();
|
|
|
|
MF = BB->getParent();
|
|
|
|
TRI = TM.getRegisterInfo();
|
|
|
|
TLI = TM.getTargetLowering();
|
|
|
|
ConstPool = MF->getConstantPool();
|
|
|
|
}
|
|
|
|
|
|
|
|
ScheduleDAG::~ScheduleDAG() {}
|
|
|
|
|
|
|
|
/// CalculateDepths - compute depths using algorithms for the longest
|
|
|
|
/// paths in the DAG
|
|
|
|
void ScheduleDAG::CalculateDepths() {
|
|
|
|
unsigned DAGSize = SUnits.size();
|
|
|
|
std::vector<SUnit*> WorkList;
|
|
|
|
WorkList.reserve(DAGSize);
|
|
|
|
|
|
|
|
// Initialize the data structures
|
|
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
|
|
SUnit *SU = &SUnits[i];
|
|
|
|
unsigned Degree = SU->Preds.size();
|
|
|
|
// Temporarily use the Depth field as scratch space for the degree count.
|
|
|
|
SU->Depth = Degree;
|
|
|
|
|
|
|
|
// Is it a node without dependencies?
|
|
|
|
if (Degree == 0) {
|
2008-12-09 16:37:48 +00:00
|
|
|
assert(SU->Preds.empty() && "SUnit should have no predecessors");
|
|
|
|
// Collect leaf nodes
|
|
|
|
WorkList.push_back(SU);
|
2008-11-19 23:18:57 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Process nodes in the topological order
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
SUnit *SU = WorkList.back();
|
|
|
|
WorkList.pop_back();
|
|
|
|
unsigned SUDepth = 0;
|
|
|
|
|
|
|
|
// Use dynamic programming:
|
|
|
|
// When current node is being processed, all of its dependencies
|
|
|
|
// are already processed.
|
|
|
|
// So, just iterate over all predecessors and take the longest path
|
|
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
|
|
I != E; ++I) {
|
|
|
|
unsigned PredDepth = I->Dep->Depth;
|
|
|
|
if (PredDepth+1 > SUDepth) {
|
2008-12-09 16:37:48 +00:00
|
|
|
SUDepth = PredDepth + 1;
|
2008-11-19 23:18:57 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SU->Depth = SUDepth;
|
|
|
|
|
|
|
|
// Update degrees of all nodes depending on current SUnit
|
|
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
|
|
I != E; ++I) {
|
|
|
|
SUnit *SU = I->Dep;
|
|
|
|
if (!--SU->Depth)
|
|
|
|
// If all dependencies of the node are processed already,
|
|
|
|
// then the longest path for the node can be computed now
|
|
|
|
WorkList.push_back(SU);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CalculateHeights - compute heights using algorithms for the longest
|
|
|
|
/// paths in the DAG
|
|
|
|
void ScheduleDAG::CalculateHeights() {
|
|
|
|
unsigned DAGSize = SUnits.size();
|
|
|
|
std::vector<SUnit*> WorkList;
|
|
|
|
WorkList.reserve(DAGSize);
|
|
|
|
|
|
|
|
// Initialize the data structures
|
|
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
|
|
SUnit *SU = &SUnits[i];
|
|
|
|
unsigned Degree = SU->Succs.size();
|
|
|
|
// Temporarily use the Height field as scratch space for the degree count.
|
|
|
|
SU->Height = Degree;
|
|
|
|
|
|
|
|
// Is it a node without dependencies?
|
|
|
|
if (Degree == 0) {
|
2008-12-09 16:37:48 +00:00
|
|
|
assert(SU->Succs.empty() && "Something wrong");
|
|
|
|
assert(WorkList.empty() && "Should be empty");
|
|
|
|
// Collect leaf nodes
|
|
|
|
WorkList.push_back(SU);
|
2008-11-19 23:18:57 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Process nodes in the topological order
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
SUnit *SU = WorkList.back();
|
|
|
|
WorkList.pop_back();
|
|
|
|
unsigned SUHeight = 0;
|
|
|
|
|
|
|
|
// Use dynamic programming:
|
|
|
|
// When current node is being processed, all of its dependencies
|
|
|
|
// are already processed.
|
|
|
|
// So, just iterate over all successors and take the longest path
|
|
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
|
|
I != E; ++I) {
|
|
|
|
unsigned SuccHeight = I->Dep->Height;
|
|
|
|
if (SuccHeight+1 > SUHeight) {
|
2008-12-09 16:37:48 +00:00
|
|
|
SUHeight = SuccHeight + 1;
|
2008-11-19 23:18:57 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SU->Height = SUHeight;
|
|
|
|
|
|
|
|
// Update degrees of all nodes depending on current SUnit
|
|
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
|
|
I != E; ++I) {
|
|
|
|
SUnit *SU = I->Dep;
|
|
|
|
if (!--SU->Height)
|
|
|
|
// If all dependencies of the node are processed already,
|
|
|
|
// then the longest path for the node can be computed now
|
|
|
|
WorkList.push_back(SU);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// dump - dump the schedule.
|
|
|
|
void ScheduleDAG::dumpSchedule() const {
|
|
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
|
|
|
if (SUnit *SU = Sequence[i])
|
|
|
|
SU->dump(this);
|
|
|
|
else
|
|
|
|
cerr << "**** NOOP ****\n";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Run - perform scheduling.
|
|
|
|
///
|
|
|
|
void ScheduleDAG::Run() {
|
|
|
|
Schedule();
|
|
|
|
|
|
|
|
DOUT << "*** Final schedule ***\n";
|
|
|
|
DEBUG(dumpSchedule());
|
|
|
|
DOUT << "\n";
|
|
|
|
}
|
|
|
|
|
|
|
|
/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
|
|
|
|
/// a group of nodes flagged together.
|
|
|
|
void SUnit::dump(const ScheduleDAG *G) const {
|
|
|
|
cerr << "SU(" << NodeNum << "): ";
|
|
|
|
G->dumpNode(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void SUnit::dumpAll(const ScheduleDAG *G) const {
|
|
|
|
dump(G);
|
|
|
|
|
|
|
|
cerr << " # preds left : " << NumPredsLeft << "\n";
|
|
|
|
cerr << " # succs left : " << NumSuccsLeft << "\n";
|
|
|
|
cerr << " Latency : " << Latency << "\n";
|
|
|
|
cerr << " Depth : " << Depth << "\n";
|
|
|
|
cerr << " Height : " << Height << "\n";
|
|
|
|
|
|
|
|
if (Preds.size() != 0) {
|
|
|
|
cerr << " Predecessors:\n";
|
|
|
|
for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
|
|
|
|
I != E; ++I) {
|
|
|
|
if (I->isCtrl)
|
|
|
|
cerr << " ch #";
|
|
|
|
else
|
|
|
|
cerr << " val #";
|
|
|
|
cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
|
2008-11-21 02:18:56 +00:00
|
|
|
if (I->isArtificial)
|
2008-11-19 23:18:57 +00:00
|
|
|
cerr << " *";
|
|
|
|
cerr << "\n";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (Succs.size() != 0) {
|
|
|
|
cerr << " Successors:\n";
|
|
|
|
for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
|
|
|
|
I != E; ++I) {
|
|
|
|
if (I->isCtrl)
|
|
|
|
cerr << " ch #";
|
|
|
|
else
|
|
|
|
cerr << " val #";
|
|
|
|
cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
|
2008-11-21 02:18:56 +00:00
|
|
|
if (I->isArtificial)
|
2008-11-19 23:18:57 +00:00
|
|
|
cerr << " *";
|
|
|
|
cerr << "\n";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cerr << "\n";
|
|
|
|
}
|
2008-11-20 01:26:25 +00:00
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
/// VerifySchedule - Verify that all SUnits were scheduled and that
|
|
|
|
/// their state is consistent.
|
|
|
|
///
|
|
|
|
void ScheduleDAG::VerifySchedule(bool isBottomUp) {
|
|
|
|
bool AnyNotSched = false;
|
|
|
|
unsigned DeadNodes = 0;
|
|
|
|
unsigned Noops = 0;
|
|
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
|
|
if (!SUnits[i].isScheduled) {
|
|
|
|
if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
|
|
|
|
++DeadNodes;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (!AnyNotSched)
|
|
|
|
cerr << "*** Scheduling failed! ***\n";
|
|
|
|
SUnits[i].dump(this);
|
|
|
|
cerr << "has not been scheduled!\n";
|
|
|
|
AnyNotSched = true;
|
|
|
|
}
|
|
|
|
if (SUnits[i].isScheduled && SUnits[i].Cycle > (unsigned)INT_MAX) {
|
|
|
|
if (!AnyNotSched)
|
|
|
|
cerr << "*** Scheduling failed! ***\n";
|
|
|
|
SUnits[i].dump(this);
|
|
|
|
cerr << "has an unexpected Cycle value!\n";
|
|
|
|
AnyNotSched = true;
|
|
|
|
}
|
|
|
|
if (isBottomUp) {
|
|
|
|
if (SUnits[i].NumSuccsLeft != 0) {
|
|
|
|
if (!AnyNotSched)
|
|
|
|
cerr << "*** Scheduling failed! ***\n";
|
|
|
|
SUnits[i].dump(this);
|
|
|
|
cerr << "has successors left!\n";
|
|
|
|
AnyNotSched = true;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (SUnits[i].NumPredsLeft != 0) {
|
|
|
|
if (!AnyNotSched)
|
|
|
|
cerr << "*** Scheduling failed! ***\n";
|
|
|
|
SUnits[i].dump(this);
|
|
|
|
cerr << "has predecessors left!\n";
|
|
|
|
AnyNotSched = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
|
|
|
|
if (!Sequence[i])
|
|
|
|
++Noops;
|
|
|
|
assert(!AnyNotSched);
|
|
|
|
assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
|
|
|
|
"The number of nodes scheduled doesn't match the expected number!");
|
|
|
|
}
|
|
|
|
#endif
|
2008-11-25 00:52:40 +00:00
|
|
|
|
|
|
|
/// InitDAGTopologicalSorting - create the initial topological
|
|
|
|
/// ordering from the DAG to be scheduled.
|
|
|
|
///
|
|
|
|
/// The idea of the algorithm is taken from
|
|
|
|
/// "Online algorithms for managing the topological order of
|
|
|
|
/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
|
|
|
|
/// This is the MNR algorithm, which was first introduced by
|
|
|
|
/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
|
|
|
|
/// "Maintaining a topological order under edge insertions".
|
|
|
|
///
|
|
|
|
/// Short description of the algorithm:
|
|
|
|
///
|
|
|
|
/// Topological ordering, ord, of a DAG maps each node to a topological
|
|
|
|
/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
|
|
|
|
///
|
|
|
|
/// This means that if there is a path from the node X to the node Z,
|
|
|
|
/// then ord(X) < ord(Z).
|
|
|
|
///
|
|
|
|
/// This property can be used to check for reachability of nodes:
|
|
|
|
/// if Z is reachable from X, then an insertion of the edge Z->X would
|
|
|
|
/// create a cycle.
|
|
|
|
///
|
|
|
|
/// The algorithm first computes a topological ordering for the DAG by
|
|
|
|
/// initializing the Index2Node and Node2Index arrays and then tries to keep
|
|
|
|
/// the ordering up-to-date after edge insertions by reordering the DAG.
|
|
|
|
///
|
|
|
|
/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
|
|
|
|
/// the nodes reachable from Y, and then shifts them using Shift to lie
|
|
|
|
/// immediately after X in Index2Node.
|
|
|
|
void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
|
|
|
|
unsigned DAGSize = SUnits.size();
|
|
|
|
std::vector<SUnit*> WorkList;
|
|
|
|
WorkList.reserve(DAGSize);
|
|
|
|
|
|
|
|
Index2Node.resize(DAGSize);
|
|
|
|
Node2Index.resize(DAGSize);
|
|
|
|
|
|
|
|
// Initialize the data structures.
|
|
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
|
|
SUnit *SU = &SUnits[i];
|
|
|
|
int NodeNum = SU->NodeNum;
|
|
|
|
unsigned Degree = SU->Succs.size();
|
|
|
|
// Temporarily use the Node2Index array as scratch space for degree counts.
|
|
|
|
Node2Index[NodeNum] = Degree;
|
|
|
|
|
|
|
|
// Is it a node without dependencies?
|
|
|
|
if (Degree == 0) {
|
|
|
|
assert(SU->Succs.empty() && "SUnit should have no successors");
|
|
|
|
// Collect leaf nodes.
|
|
|
|
WorkList.push_back(SU);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int Id = DAGSize;
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
SUnit *SU = WorkList.back();
|
|
|
|
WorkList.pop_back();
|
|
|
|
Allocate(SU->NodeNum, --Id);
|
|
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
|
|
I != E; ++I) {
|
|
|
|
SUnit *SU = I->Dep;
|
|
|
|
if (!--Node2Index[SU->NodeNum])
|
|
|
|
// If all dependencies of the node are processed already,
|
|
|
|
// then the node can be computed now.
|
|
|
|
WorkList.push_back(SU);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Visited.resize(DAGSize);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
// Check correctness of the ordering
|
|
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
|
|
SUnit *SU = &SUnits[i];
|
|
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
|
|
I != E; ++I) {
|
|
|
|
assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
|
|
|
|
"Wrong topological sorting");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/// AddPred - Updates the topological ordering to accomodate an edge
|
|
|
|
/// to be added from SUnit X to SUnit Y.
|
|
|
|
void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
|
|
|
|
int UpperBound, LowerBound;
|
|
|
|
LowerBound = Node2Index[Y->NodeNum];
|
|
|
|
UpperBound = Node2Index[X->NodeNum];
|
|
|
|
bool HasLoop = false;
|
|
|
|
// Is Ord(X) < Ord(Y) ?
|
|
|
|
if (LowerBound < UpperBound) {
|
|
|
|
// Update the topological order.
|
|
|
|
Visited.reset();
|
|
|
|
DFS(Y, UpperBound, HasLoop);
|
|
|
|
assert(!HasLoop && "Inserted edge creates a loop!");
|
|
|
|
// Recompute topological indexes.
|
|
|
|
Shift(Visited, LowerBound, UpperBound);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// RemovePred - Updates the topological ordering to accomodate an
|
|
|
|
/// an edge to be removed from the specified node N from the predecessors
|
|
|
|
/// of the current node M.
|
|
|
|
void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
|
|
|
|
// InitDAGTopologicalSorting();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
|
|
|
|
/// all nodes affected by the edge insertion. These nodes will later get new
|
|
|
|
/// topological indexes by means of the Shift method.
|
2008-12-09 16:37:48 +00:00
|
|
|
void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
|
|
|
|
bool& HasLoop) {
|
2008-11-25 00:52:40 +00:00
|
|
|
std::vector<const SUnit*> WorkList;
|
|
|
|
WorkList.reserve(SUnits.size());
|
|
|
|
|
|
|
|
WorkList.push_back(SU);
|
|
|
|
while (!WorkList.empty()) {
|
|
|
|
SU = WorkList.back();
|
|
|
|
WorkList.pop_back();
|
|
|
|
Visited.set(SU->NodeNum);
|
|
|
|
for (int I = SU->Succs.size()-1; I >= 0; --I) {
|
|
|
|
int s = SU->Succs[I].Dep->NodeNum;
|
|
|
|
if (Node2Index[s] == UpperBound) {
|
|
|
|
HasLoop = true;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Visit successors if not already and in affected region.
|
|
|
|
if (!Visited.test(s) && Node2Index[s] < UpperBound) {
|
|
|
|
WorkList.push_back(SU->Succs[I].Dep);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Shift - Renumber the nodes so that the topological ordering is
|
|
|
|
/// preserved.
|
|
|
|
void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
|
2008-12-09 16:37:48 +00:00
|
|
|
int UpperBound) {
|
2008-11-25 00:52:40 +00:00
|
|
|
std::vector<int> L;
|
|
|
|
int shift = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = LowerBound; i <= UpperBound; ++i) {
|
|
|
|
// w is node at topological index i.
|
|
|
|
int w = Index2Node[i];
|
|
|
|
if (Visited.test(w)) {
|
|
|
|
// Unmark.
|
|
|
|
Visited.reset(w);
|
|
|
|
L.push_back(w);
|
|
|
|
shift = shift + 1;
|
|
|
|
} else {
|
|
|
|
Allocate(w, i - shift);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (unsigned j = 0; j < L.size(); ++j) {
|
|
|
|
Allocate(L[j], i - shift);
|
|
|
|
i = i + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
|
|
|
|
/// create a cycle.
|
|
|
|
bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
|
|
|
|
if (IsReachable(TargetSU, SU))
|
|
|
|
return true;
|
|
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
|
|
I != E; ++I)
|
|
|
|
if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// IsReachable - Checks if SU is reachable from TargetSU.
|
2008-12-09 16:37:48 +00:00
|
|
|
bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
|
|
|
|
const SUnit *TargetSU) {
|
2008-11-25 00:52:40 +00:00
|
|
|
// If insertion of the edge SU->TargetSU would create a cycle
|
|
|
|
// then there is a path from TargetSU to SU.
|
|
|
|
int UpperBound, LowerBound;
|
|
|
|
LowerBound = Node2Index[TargetSU->NodeNum];
|
|
|
|
UpperBound = Node2Index[SU->NodeNum];
|
|
|
|
bool HasLoop = false;
|
|
|
|
// Is Ord(TargetSU) < Ord(SU) ?
|
|
|
|
if (LowerBound < UpperBound) {
|
|
|
|
Visited.reset();
|
|
|
|
// There may be a path from TargetSU to SU. Check for it.
|
|
|
|
DFS(TargetSU, UpperBound, HasLoop);
|
|
|
|
}
|
|
|
|
return HasLoop;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Allocate - assign the topological index to the node n.
|
|
|
|
void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
|
|
|
|
Node2Index[n] = index;
|
|
|
|
Index2Node[index] = n;
|
|
|
|
}
|
|
|
|
|
|
|
|
ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
|
|
|
|
std::vector<SUnit> &sunits)
|
|
|
|
: SUnits(sunits) {}
|