llvm-mirror/lib/CodeGen/PeepholeOptimizer.cpp

466 lines
15 KiB
C++
Raw Normal View History

//===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Perform peephole optimizations on the machine code:
//
// - Optimize Extensions
//
// Optimization of sign / zero extension instructions. It may be extended to
// handle other instructions with similar properties.
//
// On some targets, some instructions, e.g. X86 sign / zero extension, may
// leave the source value in the lower part of the result. This optimization
// will replace some uses of the pre-extension value with uses of the
// sub-register of the results.
//
// - Optimize Comparisons
//
// Optimization of comparison instructions. For instance, in this code:
//
// sub r1, 1
// cmp r1, 0
// bz L1
//
// If the "sub" instruction all ready sets (or could be modified to set) the
// same flag that the "cmp" instruction sets and that "bz" uses, then we can
// eliminate the "cmp" instruction.
//
// - Optimize Bitcast pairs:
//
// v1 = bitcast v0
// v2 = bitcast v1
// = v2
// =>
// v1 = bitcast v0
// = v0
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "peephole-opt"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
// Optimize Extensions
static cl::opt<bool>
Aggressive("aggressive-ext-opt", cl::Hidden,
cl::desc("Aggressive extension optimization"));
static cl::opt<bool>
DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
cl::desc("Disable the peephole optimizer"));
STATISTIC(NumReuse, "Number of extension results reused");
STATISTIC(NumBitcasts, "Number of bitcasts eliminated");
STATISTIC(NumCmps, "Number of compares eliminated");
STATISTIC(NumImmFold, "Number of move immediate foled");
namespace {
class PeepholeOptimizer : public MachineFunctionPass {
const TargetMachine *TM;
const TargetInstrInfo *TII;
MachineRegisterInfo *MRI;
MachineDominatorTree *DT; // Machine dominator tree
public:
static char ID; // Pass identification
PeepholeOptimizer() : MachineFunctionPass(ID) {
initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
if (Aggressive) {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
}
private:
bool OptimizeBitcastInstr(MachineInstr *MI, MachineBasicBlock *MBB);
bool OptimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
bool OptimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
SmallPtrSet<MachineInstr*, 8> &LocalMIs);
bool isMoveImmediate(MachineInstr *MI,
SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
bool FoldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
};
}
char PeepholeOptimizer::ID = 0;
INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
"Peephole Optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
"Peephole Optimizations", false, false)
FunctionPass *llvm::createPeepholeOptimizerPass() {
return new PeepholeOptimizer();
}
/// OptimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
/// a single register and writes a single register and it does not modify the
/// source, and if the source value is preserved as a sub-register of the
/// result, then replace all reachable uses of the source with the subreg of the
/// result.
///
/// Do not generate an EXTRACT that is used only in a debug use, as this changes
/// the code. Since this code does not currently share EXTRACTs, just ignore all
/// debug uses.
bool PeepholeOptimizer::
OptimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
unsigned SrcReg, DstReg, SubIdx;
if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
return false;
if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
TargetRegisterInfo::isPhysicalRegister(SrcReg))
return false;
MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(SrcReg);
if (++UI == MRI->use_nodbg_end())
// No other uses.
return false;
// The source has other uses. See if we can replace the other uses with use of
// the result of the extension.
SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
UI = MRI->use_nodbg_begin(DstReg);
for (MachineRegisterInfo::use_nodbg_iterator UE = MRI->use_nodbg_end();
UI != UE; ++UI)
ReachedBBs.insert(UI->getParent());
// Uses that are in the same BB of uses of the result of the instruction.
SmallVector<MachineOperand*, 8> Uses;
// Uses that the result of the instruction can reach.
SmallVector<MachineOperand*, 8> ExtendedUses;
bool ExtendLife = true;
UI = MRI->use_nodbg_begin(SrcReg);
for (MachineRegisterInfo::use_nodbg_iterator UE = MRI->use_nodbg_end();
UI != UE; ++UI) {
MachineOperand &UseMO = UI.getOperand();
MachineInstr *UseMI = &*UI;
if (UseMI == MI)
continue;
if (UseMI->isPHI()) {
ExtendLife = false;
continue;
}
// It's an error to translate this:
//
// %reg1025 = <sext> %reg1024
// ...
// %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
//
// into this:
//
// %reg1025 = <sext> %reg1024
// ...
// %reg1027 = COPY %reg1025:4
// %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
//
// The problem here is that SUBREG_TO_REG is there to assert that an
// implicit zext occurs. It doesn't insert a zext instruction. If we allow
// the COPY here, it will give us the value after the <sext>, not the
// original value of %reg1024 before <sext>.
if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
continue;
MachineBasicBlock *UseMBB = UseMI->getParent();
if (UseMBB == MBB) {
// Local uses that come after the extension.
if (!LocalMIs.count(UseMI))
Uses.push_back(&UseMO);
} else if (ReachedBBs.count(UseMBB)) {
// Non-local uses where the result of the extension is used. Always
// replace these unless it's a PHI.
Uses.push_back(&UseMO);
} else if (Aggressive && DT->dominates(MBB, UseMBB)) {
// We may want to extend the live range of the extension result in order
// to replace these uses.
ExtendedUses.push_back(&UseMO);
} else {
// Both will be live out of the def MBB anyway. Don't extend live range of
// the extension result.
ExtendLife = false;
break;
}
}
if (ExtendLife && !ExtendedUses.empty())
// Extend the liveness of the extension result.
std::copy(ExtendedUses.begin(), ExtendedUses.end(),
std::back_inserter(Uses));
// Now replace all uses.
bool Changed = false;
if (!Uses.empty()) {
SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
// Look for PHI uses of the extended result, we don't want to extend the
// liveness of a PHI input. It breaks all kinds of assumptions down
// stream. A PHI use is expected to be the kill of its source values.
UI = MRI->use_nodbg_begin(DstReg);
for (MachineRegisterInfo::use_nodbg_iterator
UE = MRI->use_nodbg_end(); UI != UE; ++UI)
if (UI->isPHI())
PHIBBs.insert(UI->getParent());
const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
MachineOperand *UseMO = Uses[i];
MachineInstr *UseMI = UseMO->getParent();
MachineBasicBlock *UseMBB = UseMI->getParent();
if (PHIBBs.count(UseMBB))
continue;
unsigned NewVR = MRI->createVirtualRegister(RC);
BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
TII->get(TargetOpcode::COPY), NewVR)
.addReg(DstReg, 0, SubIdx);
UseMO->setReg(NewVR);
++NumReuse;
Changed = true;
}
}
return Changed;
}
/// OptimizeBitcastInstr - If the instruction is a bitcast instruction A that
/// cannot be optimized away during isel (e.g. ARM::VMOVSR, which bitcast
/// a value cross register classes), and the source is defined by another
/// bitcast instruction B. And if the register class of source of B matches
/// the register class of instruction A, then it is legal to replace all uses
/// of the def of A with source of B. e.g.
/// %vreg0<def> = VMOVSR %vreg1
/// %vreg3<def> = VMOVRS %vreg0
/// Replace all uses of vreg3 with vreg1.
bool PeepholeOptimizer::OptimizeBitcastInstr(MachineInstr *MI,
MachineBasicBlock *MBB) {
unsigned NumDefs = MI->getDesc().getNumDefs();
unsigned NumSrcs = MI->getDesc().getNumOperands() - NumDefs;
if (NumDefs != 1)
return false;
unsigned Def = 0;
unsigned Src = 0;
for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (MO.isDef())
Def = Reg;
else if (Src)
// Multiple sources?
return false;
else
Src = Reg;
}
assert(Def && Src && "Malformed bitcast instruction!");
MachineInstr *DefMI = MRI->getVRegDef(Src);
if (!DefMI || !DefMI->getDesc().isBitcast())
return false;
unsigned SrcDef = 0;
unsigned SrcSrc = 0;
NumDefs = DefMI->getDesc().getNumDefs();
NumSrcs = DefMI->getDesc().getNumOperands() - NumDefs;
if (NumDefs != 1)
return false;
for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
const MachineOperand &MO = DefMI->getOperand(i);
if (!MO.isReg() || MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (MO.isDef())
SrcDef = Reg;
else if (SrcSrc)
// Multiple sources?
return false;
else
SrcSrc = Reg;
}
if (MRI->getRegClass(SrcSrc) != MRI->getRegClass(Def))
return false;
MRI->replaceRegWith(Def, SrcSrc);
MRI->clearKillFlags(SrcSrc);
MI->eraseFromParent();
++NumBitcasts;
return true;
}
/// OptimizeCmpInstr - If the instruction is a compare and the previous
/// instruction it's comparing against all ready sets (or could be modified to
/// set) the same flag as the compare, then we can remove the comparison and use
/// the flag from the previous instruction.
bool PeepholeOptimizer::OptimizeCmpInstr(MachineInstr *MI,
MachineBasicBlock *MBB) {
// If this instruction is a comparison against zero and isn't comparing a
// physical register, we can try to optimize it.
unsigned SrcReg;
int CmpMask, CmpValue;
if (!TII->AnalyzeCompare(MI, SrcReg, CmpMask, CmpValue) ||
TargetRegisterInfo::isPhysicalRegister(SrcReg))
return false;
// Attempt to optimize the comparison instruction.
if (TII->OptimizeCompareInstr(MI, SrcReg, CmpMask, CmpValue, MRI)) {
++NumCmps;
return true;
}
return false;
}
bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
const MCInstrDesc &MCID = MI->getDesc();
if (!MCID.isMoveImmediate())
return false;
if (MCID.getNumDefs() != 1)
return false;
unsigned Reg = MI->getOperand(0).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
ImmDefMIs.insert(std::make_pair(Reg, MI));
ImmDefRegs.insert(Reg);
return true;
}
return false;
}
/// FoldImmediate - Try folding register operands that are defined by move
/// immediate instructions, i.e. a trivial constant folding optimization, if
/// and only if the def and use are in the same BB.
bool PeepholeOptimizer::FoldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
if (ImmDefRegs.count(Reg) == 0)
continue;
DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
assert(II != ImmDefMIs.end());
if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
++NumImmFold;
return true;
}
}
return false;
}
bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
if (DisablePeephole)
return false;
TM = &MF.getTarget();
TII = TM->getInstrInfo();
MRI = &MF.getRegInfo();
DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : 0;
bool Changed = false;
SmallPtrSet<MachineInstr*, 8> LocalMIs;
SmallSet<unsigned, 4> ImmDefRegs;
DenseMap<unsigned, MachineInstr*> ImmDefMIs;
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock *MBB = &*I;
bool SeenMoveImm = false;
LocalMIs.clear();
ImmDefRegs.clear();
ImmDefMIs.clear();
bool First = true;
MachineBasicBlock::iterator PMII;
for (MachineBasicBlock::iterator
MII = I->begin(), MIE = I->end(); MII != MIE; ) {
MachineInstr *MI = &*MII;
LocalMIs.insert(MI);
if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
MI->isKill() || MI->isInlineAsm() || MI->isDebugValue() ||
MI->hasUnmodeledSideEffects()) {
++MII;
continue;
}
const MCInstrDesc &MCID = MI->getDesc();
if (MCID.isBitcast()) {
if (OptimizeBitcastInstr(MI, MBB)) {
// MI is deleted.
Changed = true;
MII = First ? I->begin() : llvm::next(PMII);
continue;
}
} else if (MCID.isCompare()) {
if (OptimizeCmpInstr(MI, MBB)) {
// MI is deleted.
Changed = true;
MII = First ? I->begin() : llvm::next(PMII);
continue;
}
}
if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
SeenMoveImm = true;
} else {
Changed |= OptimizeExtInstr(MI, MBB, LocalMIs);
if (SeenMoveImm)
Changed |= FoldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
}
First = false;
PMII = MII;
++MII;
}
}
return Changed;
}