mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-16 08:29:08 +00:00
208 lines
8.4 KiB
C++
208 lines
8.4 KiB
C++
|
//===- Expressions.cpp - Expression Analysis Utilities ----------------------=//
|
||
|
//
|
||
|
// This file defines a package of expression analysis utilties:
|
||
|
//
|
||
|
// ClassifyExpression: Analyze an expression to determine the complexity of the
|
||
|
// expression, and which other variables it depends on.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Analysis/Expressions.h"
|
||
|
#include "llvm/Optimizations/ConstantHandling.h"
|
||
|
#include "llvm/ConstantPool.h"
|
||
|
#include "llvm/Method.h"
|
||
|
#include "llvm/BasicBlock.h"
|
||
|
|
||
|
using namespace opt; // Get all the constant handling stuff
|
||
|
|
||
|
// getIntegralConstant - Wrapper around the ConstPoolInt member of the same
|
||
|
// name. This method first checks to see if the desired constant is already in
|
||
|
// the constant pool. If it is, it is quickly recycled, otherwise a new one
|
||
|
// is allocated and added to the constant pool.
|
||
|
//
|
||
|
static ConstPoolInt *getIntegralConstant(ConstantPool &CP, unsigned char V,
|
||
|
const Type *Ty) {
|
||
|
// FIXME: Lookup prexisting constant in table!
|
||
|
|
||
|
ConstPoolInt *CPI = ConstPoolInt::get(Ty, V);
|
||
|
CP.insert(CPI);
|
||
|
return CPI;
|
||
|
}
|
||
|
|
||
|
static ConstPoolUInt *getUnsignedConstant(ConstantPool &CP, uint64_t V) {
|
||
|
// FIXME: Lookup prexisting constant in table!
|
||
|
|
||
|
ConstPoolUInt *CPUI = new ConstPoolUInt(Type::ULongTy, V);
|
||
|
CP.insert(CPUI);
|
||
|
return CPUI;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Add - Helper function to make later code simpler. Basically it just adds
|
||
|
// the two constants together, inserts the result into the constant pool, and
|
||
|
// returns it. Of course life is not simple, and this is no exception. Factors
|
||
|
// that complicate matters:
|
||
|
// 1. Either argument may be null. If this is the case, the null argument is
|
||
|
// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
|
||
|
// 2. Types get in the way. We want to do arithmetic operations without
|
||
|
// regard for the underlying types. It is assumed that the constants are
|
||
|
// integral constants. The new value takes the type of the left argument.
|
||
|
// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
|
||
|
// is false, a null return value indicates a value of 0.
|
||
|
//
|
||
|
inline const ConstPoolInt *Add(ConstantPool &CP, const ConstPoolInt *Arg1,
|
||
|
const ConstPoolInt *Arg2, bool DefOne = false) {
|
||
|
if (DefOne == false) { // Handle degenerate cases first...
|
||
|
if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0
|
||
|
if (Arg2 == 0) return Arg1;
|
||
|
} else { // These aren't degenerate... :(
|
||
|
if (Arg1 == 0 && Arg2 == 0) return getIntegralConstant(CP, 2, Type::UIntTy);
|
||
|
if (Arg1 == 0) Arg1 = getIntegralConstant(CP, 1, Arg2->getType());
|
||
|
if (Arg2 == 0) Arg2 = getIntegralConstant(CP, 1, Arg2->getType());
|
||
|
}
|
||
|
|
||
|
assert(Arg1 && Arg2 && "No null arguments should exist now!");
|
||
|
|
||
|
// FIXME: Make types compatible!
|
||
|
|
||
|
// Actually perform the computation now!
|
||
|
ConstPoolVal *Result = *Arg1 + *Arg2;
|
||
|
assert(Result && Result->getType()->isIntegral() && "Couldn't perform add!");
|
||
|
ConstPoolInt *ResultI = (ConstPoolInt*)Result;
|
||
|
|
||
|
// Check to see if the result is one of the special cases that we want to
|
||
|
// recognize...
|
||
|
if (ResultI->equals(DefOne ? 1 : 0)) {
|
||
|
// Yes it is, simply delete the constant and return null.
|
||
|
delete ResultI;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
CP.insert(ResultI);
|
||
|
return ResultI;
|
||
|
}
|
||
|
|
||
|
|
||
|
ExprAnalysisResult ExprAnalysisResult::operator+(const ConstPoolInt *NewOff) {
|
||
|
if (NewOff == 0) return *this; // No change!
|
||
|
|
||
|
ConstantPool &CP = (ConstantPool&)NewOff->getParent()->getConstantPool();
|
||
|
return ExprAnalysisResult(Scale, Var, Add(CP, Offset, NewOff));
|
||
|
}
|
||
|
|
||
|
|
||
|
// Mult - Helper function to make later code simpler. Basically it just
|
||
|
// multiplies the two constants together, inserts the result into the constant
|
||
|
// pool, and returns it. Of course life is not simple, and this is no
|
||
|
// exception. Factors that complicate matters:
|
||
|
// 1. Either argument may be null. If this is the case, the null argument is
|
||
|
// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
|
||
|
// 2. Types get in the way. We want to do arithmetic operations without
|
||
|
// regard for the underlying types. It is assumed that the constants are
|
||
|
// integral constants.
|
||
|
// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
|
||
|
// is false, a null return value indicates a value of 0.
|
||
|
//
|
||
|
inline const ConstPoolInt *Mult(ConstantPool &CP, const ConstPoolInt *Arg1,
|
||
|
const ConstPoolInt *Arg2, bool DefOne = false) {
|
||
|
if (DefOne == false) { // Handle degenerate cases first...
|
||
|
if (Arg1 == 0 || Arg2 == 0) return 0; // 0 * x == 0
|
||
|
} else { // These aren't degenerate... :(
|
||
|
if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0
|
||
|
if (Arg2 == 0) return Arg1;
|
||
|
}
|
||
|
assert(Arg1 && Arg2 && "No null arguments should exist now!");
|
||
|
|
||
|
// FIXME: Make types compatible!
|
||
|
|
||
|
// Actually perform the computation now!
|
||
|
ConstPoolVal *Result = *Arg1 * *Arg2;
|
||
|
assert(Result && Result->getType()->isIntegral() && "Couldn't perform mult!");
|
||
|
ConstPoolInt *ResultI = (ConstPoolInt*)Result;
|
||
|
|
||
|
// Check to see if the result is one of the special cases that we want to
|
||
|
// recognize...
|
||
|
if (ResultI->equals(DefOne ? 1 : 0)) {
|
||
|
// Yes it is, simply delete the constant and return null.
|
||
|
delete ResultI;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
CP.insert(ResultI);
|
||
|
return ResultI;
|
||
|
}
|
||
|
|
||
|
|
||
|
// ClassifyExpression: Analyze an expression to determine the complexity of the
|
||
|
// expression, and which other values it depends on.
|
||
|
//
|
||
|
// Note that this analysis cannot get into infinite loops because it treats PHI
|
||
|
// nodes as being an unknown linear expression.
|
||
|
//
|
||
|
ExprAnalysisResult ClassifyExpression(Value *Expr) {
|
||
|
assert(Expr != 0 && "Can't classify a null expression!");
|
||
|
switch (Expr->getValueType()) {
|
||
|
case Value::InstructionVal: break; // Instruction... hmmm... investigate.
|
||
|
case Value::TypeVal: case Value::BasicBlockVal:
|
||
|
case Value::MethodVal: case Value::ModuleVal:
|
||
|
assert(0 && "Unexpected expression type to classify!");
|
||
|
case Value::MethodArgumentVal: // Method arg: nothing known, return var
|
||
|
return Expr;
|
||
|
case Value::ConstantVal: // Constant value, just return constant
|
||
|
ConstPoolVal *CPV = Expr->castConstantAsserting();
|
||
|
if (CPV->getType()->isIntegral()) { // It's an integral constant!
|
||
|
ConstPoolInt *CPI = (ConstPoolInt*)Expr;
|
||
|
return ExprAnalysisResult(CPI->equals(0) ? 0 : (ConstPoolInt*)Expr);
|
||
|
}
|
||
|
return Expr;
|
||
|
}
|
||
|
|
||
|
Instruction *I = Expr->castInstructionAsserting();
|
||
|
ConstantPool &CP = I->getParent()->getParent()->getConstantPool();
|
||
|
|
||
|
switch (I->getOpcode()) { // Handle each instruction type seperately
|
||
|
case Instruction::Add: {
|
||
|
ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0)));
|
||
|
ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1)));
|
||
|
if (LeftTy.ExprType > RightTy.ExprType)
|
||
|
swap(LeftTy, RightTy); // Make left be simpler than right
|
||
|
|
||
|
switch (LeftTy.ExprType) {
|
||
|
case ExprAnalysisResult::Constant:
|
||
|
return RightTy + LeftTy.Offset;
|
||
|
case ExprAnalysisResult::Linear: // RHS side must be linear or scaled
|
||
|
case ExprAnalysisResult::ScaledLinear: // RHS must be scaled
|
||
|
if (LeftTy.Var != RightTy.Var) // Are they the same variables?
|
||
|
return ExprAnalysisResult(I); // if not, we don't know anything!
|
||
|
|
||
|
const ConstPoolInt *NewScale = Add(CP, LeftTy.Scale, RightTy.Scale,true);
|
||
|
const ConstPoolInt *NewOffset = Add(CP, LeftTy.Offset, RightTy.Offset);
|
||
|
return ExprAnalysisResult(NewScale, LeftTy.Var, NewOffset);
|
||
|
}
|
||
|
} // end case Instruction::Add
|
||
|
|
||
|
case Instruction::Shl: {
|
||
|
ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1)));
|
||
|
if (RightTy.ExprType != ExprAnalysisResult::Constant)
|
||
|
break; // TODO: Can get some info if it's (<unsigned> X + <offset>)
|
||
|
|
||
|
ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0)));
|
||
|
if (RightTy.Offset == 0) return LeftTy; // shl x, 0 = x
|
||
|
assert(RightTy.Offset->getType() == Type::UByteTy &&
|
||
|
"Shift amount must always be a unsigned byte!");
|
||
|
uint64_t ShiftAmount = ((ConstPoolUInt*)RightTy.Offset)->getValue();
|
||
|
ConstPoolUInt *Multiplier = getUnsignedConstant(CP, 1ULL << ShiftAmount);
|
||
|
|
||
|
return ExprAnalysisResult(Mult(CP, LeftTy.Scale, Multiplier, true),
|
||
|
LeftTy.Var,
|
||
|
Mult(CP, LeftTy.Offset, Multiplier));
|
||
|
} // end case Instruction::Shl
|
||
|
|
||
|
// TODO: Handle CAST, SUB, MULT (at least!)
|
||
|
|
||
|
} // end switch
|
||
|
|
||
|
// Otherwise, I don't know anything about this value!
|
||
|
return ExprAnalysisResult(I);
|
||
|
}
|