llvm-mirror/lib/Analysis/Expressions.cpp

208 lines
8.4 KiB
C++
Raw Normal View History

//===- Expressions.cpp - Expression Analysis Utilities ----------------------=//
//
// This file defines a package of expression analysis utilties:
//
// ClassifyExpression: Analyze an expression to determine the complexity of the
// expression, and which other variables it depends on.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Expressions.h"
#include "llvm/Optimizations/ConstantHandling.h"
#include "llvm/ConstantPool.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
using namespace opt; // Get all the constant handling stuff
// getIntegralConstant - Wrapper around the ConstPoolInt member of the same
// name. This method first checks to see if the desired constant is already in
// the constant pool. If it is, it is quickly recycled, otherwise a new one
// is allocated and added to the constant pool.
//
static ConstPoolInt *getIntegralConstant(ConstantPool &CP, unsigned char V,
const Type *Ty) {
// FIXME: Lookup prexisting constant in table!
ConstPoolInt *CPI = ConstPoolInt::get(Ty, V);
CP.insert(CPI);
return CPI;
}
static ConstPoolUInt *getUnsignedConstant(ConstantPool &CP, uint64_t V) {
// FIXME: Lookup prexisting constant in table!
ConstPoolUInt *CPUI = new ConstPoolUInt(Type::ULongTy, V);
CP.insert(CPUI);
return CPUI;
}
// Add - Helper function to make later code simpler. Basically it just adds
// the two constants together, inserts the result into the constant pool, and
// returns it. Of course life is not simple, and this is no exception. Factors
// that complicate matters:
// 1. Either argument may be null. If this is the case, the null argument is
// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
// 2. Types get in the way. We want to do arithmetic operations without
// regard for the underlying types. It is assumed that the constants are
// integral constants. The new value takes the type of the left argument.
// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
// is false, a null return value indicates a value of 0.
//
inline const ConstPoolInt *Add(ConstantPool &CP, const ConstPoolInt *Arg1,
const ConstPoolInt *Arg2, bool DefOne = false) {
if (DefOne == false) { // Handle degenerate cases first...
if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0
if (Arg2 == 0) return Arg1;
} else { // These aren't degenerate... :(
if (Arg1 == 0 && Arg2 == 0) return getIntegralConstant(CP, 2, Type::UIntTy);
if (Arg1 == 0) Arg1 = getIntegralConstant(CP, 1, Arg2->getType());
if (Arg2 == 0) Arg2 = getIntegralConstant(CP, 1, Arg2->getType());
}
assert(Arg1 && Arg2 && "No null arguments should exist now!");
// FIXME: Make types compatible!
// Actually perform the computation now!
ConstPoolVal *Result = *Arg1 + *Arg2;
assert(Result && Result->getType()->isIntegral() && "Couldn't perform add!");
ConstPoolInt *ResultI = (ConstPoolInt*)Result;
// Check to see if the result is one of the special cases that we want to
// recognize...
if (ResultI->equals(DefOne ? 1 : 0)) {
// Yes it is, simply delete the constant and return null.
delete ResultI;
return 0;
}
CP.insert(ResultI);
return ResultI;
}
ExprAnalysisResult ExprAnalysisResult::operator+(const ConstPoolInt *NewOff) {
if (NewOff == 0) return *this; // No change!
ConstantPool &CP = (ConstantPool&)NewOff->getParent()->getConstantPool();
return ExprAnalysisResult(Scale, Var, Add(CP, Offset, NewOff));
}
// Mult - Helper function to make later code simpler. Basically it just
// multiplies the two constants together, inserts the result into the constant
// pool, and returns it. Of course life is not simple, and this is no
// exception. Factors that complicate matters:
// 1. Either argument may be null. If this is the case, the null argument is
// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
// 2. Types get in the way. We want to do arithmetic operations without
// regard for the underlying types. It is assumed that the constants are
// integral constants.
// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
// is false, a null return value indicates a value of 0.
//
inline const ConstPoolInt *Mult(ConstantPool &CP, const ConstPoolInt *Arg1,
const ConstPoolInt *Arg2, bool DefOne = false) {
if (DefOne == false) { // Handle degenerate cases first...
if (Arg1 == 0 || Arg2 == 0) return 0; // 0 * x == 0
} else { // These aren't degenerate... :(
if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0
if (Arg2 == 0) return Arg1;
}
assert(Arg1 && Arg2 && "No null arguments should exist now!");
// FIXME: Make types compatible!
// Actually perform the computation now!
ConstPoolVal *Result = *Arg1 * *Arg2;
assert(Result && Result->getType()->isIntegral() && "Couldn't perform mult!");
ConstPoolInt *ResultI = (ConstPoolInt*)Result;
// Check to see if the result is one of the special cases that we want to
// recognize...
if (ResultI->equals(DefOne ? 1 : 0)) {
// Yes it is, simply delete the constant and return null.
delete ResultI;
return 0;
}
CP.insert(ResultI);
return ResultI;
}
// ClassifyExpression: Analyze an expression to determine the complexity of the
// expression, and which other values it depends on.
//
// Note that this analysis cannot get into infinite loops because it treats PHI
// nodes as being an unknown linear expression.
//
ExprAnalysisResult ClassifyExpression(Value *Expr) {
assert(Expr != 0 && "Can't classify a null expression!");
switch (Expr->getValueType()) {
case Value::InstructionVal: break; // Instruction... hmmm... investigate.
case Value::TypeVal: case Value::BasicBlockVal:
case Value::MethodVal: case Value::ModuleVal:
assert(0 && "Unexpected expression type to classify!");
case Value::MethodArgumentVal: // Method arg: nothing known, return var
return Expr;
case Value::ConstantVal: // Constant value, just return constant
ConstPoolVal *CPV = Expr->castConstantAsserting();
if (CPV->getType()->isIntegral()) { // It's an integral constant!
ConstPoolInt *CPI = (ConstPoolInt*)Expr;
return ExprAnalysisResult(CPI->equals(0) ? 0 : (ConstPoolInt*)Expr);
}
return Expr;
}
Instruction *I = Expr->castInstructionAsserting();
ConstantPool &CP = I->getParent()->getParent()->getConstantPool();
switch (I->getOpcode()) { // Handle each instruction type seperately
case Instruction::Add: {
ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0)));
ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1)));
if (LeftTy.ExprType > RightTy.ExprType)
swap(LeftTy, RightTy); // Make left be simpler than right
switch (LeftTy.ExprType) {
case ExprAnalysisResult::Constant:
return RightTy + LeftTy.Offset;
case ExprAnalysisResult::Linear: // RHS side must be linear or scaled
case ExprAnalysisResult::ScaledLinear: // RHS must be scaled
if (LeftTy.Var != RightTy.Var) // Are they the same variables?
return ExprAnalysisResult(I); // if not, we don't know anything!
const ConstPoolInt *NewScale = Add(CP, LeftTy.Scale, RightTy.Scale,true);
const ConstPoolInt *NewOffset = Add(CP, LeftTy.Offset, RightTy.Offset);
return ExprAnalysisResult(NewScale, LeftTy.Var, NewOffset);
}
} // end case Instruction::Add
case Instruction::Shl: {
ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1)));
if (RightTy.ExprType != ExprAnalysisResult::Constant)
break; // TODO: Can get some info if it's (<unsigned> X + <offset>)
ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0)));
if (RightTy.Offset == 0) return LeftTy; // shl x, 0 = x
assert(RightTy.Offset->getType() == Type::UByteTy &&
"Shift amount must always be a unsigned byte!");
uint64_t ShiftAmount = ((ConstPoolUInt*)RightTy.Offset)->getValue();
ConstPoolUInt *Multiplier = getUnsignedConstant(CP, 1ULL << ShiftAmount);
return ExprAnalysisResult(Mult(CP, LeftTy.Scale, Multiplier, true),
LeftTy.Var,
Mult(CP, LeftTy.Offset, Multiplier));
} // end case Instruction::Shl
// TODO: Handle CAST, SUB, MULT (at least!)
} // end switch
// Otherwise, I don't know anything about this value!
return ExprAnalysisResult(I);
}