llvm-mirror/lib/CodeGen/MachOWriter.cpp

429 lines
14 KiB
C++
Raw Normal View History

//===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Nate Begeman and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the target-independent Mach-O writer. This file writes
// out the Mach-O file in the following order:
//
// #1 FatHeader (universal-only)
// #2 FatArch (universal-only, 1 per universal arch)
// Per arch:
// #3 Header
// #4 Load Commands
// #5 Sections
// #6 Relocations
// #7 Symbols
// #8 Strings
//
//===----------------------------------------------------------------------===//
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/CodeGen/MachOWriter.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include <iostream>
using namespace llvm;
//===----------------------------------------------------------------------===//
// MachOCodeEmitter Implementation
//===----------------------------------------------------------------------===//
namespace llvm {
/// MachOCodeEmitter - This class is used by the MachOWriter to emit the code
/// for functions to the Mach-O file.
class MachOCodeEmitter : public MachineCodeEmitter {
MachOWriter &MOW;
/// MOS - The current section we're writing to
MachOWriter::MachOSection *MOS;
/// Relocations - These are the relocations that the function needs, as
/// emitted.
std::vector<MachineRelocation> Relocations;
/// MBBLocations - This vector is a mapping from MBB ID's to their address.
/// It is filled in by the StartMachineBasicBlock callback and queried by
/// the getMachineBasicBlockAddress callback.
std::vector<intptr_t> MBBLocations;
public:
MachOCodeEmitter(MachOWriter &mow) : MOW(mow) {}
void startFunction(MachineFunction &F);
bool finishFunction(MachineFunction &F);
void addRelocation(const MachineRelocation &MR) {
Relocations.push_back(MR);
}
virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
if (MBBLocations.size() <= (unsigned)MBB->getNumber())
MBBLocations.resize((MBB->getNumber()+1)*2);
MBBLocations[MBB->getNumber()] = getCurrentPCValue();
}
virtual intptr_t getConstantPoolEntryAddress(unsigned Index) const {
assert(0 && "CP not implementated yet!");
return 0;
}
virtual intptr_t getJumpTableEntryAddress(unsigned Index) const {
assert(0 && "JT not implementated yet!");
return 0;
}
virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
MBBLocations[MBB->getNumber()] && "MBB not emitted!");
return MBBLocations[MBB->getNumber()];
}
/// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE!
void startFunctionStub(unsigned StubSize) {
assert(0 && "JIT specific function called!");
abort();
}
void *finishFunctionStub(const Function *F) {
assert(0 && "JIT specific function called!");
abort();
return 0;
}
};
}
/// startFunction - This callback is invoked when a new machine function is
/// about to be emitted.
void MachOCodeEmitter::startFunction(MachineFunction &F) {
// Align the output buffer to the appropriate alignment, power of 2.
// FIXME: GENERICIZE!!
unsigned Align = 4;
// Get the Mach-O Section that this function belongs in.
MOS = &MOW.getTextSection();
// FIXME: better memory management
MOS->SectionData.reserve(4096);
BufferBegin = &(MOS->SectionData[0]);
BufferEnd = BufferBegin + MOS->SectionData.capacity();
CurBufferPtr = BufferBegin + MOS->size;
// Upgrade the section alignment if required.
if (MOS->align < Align) MOS->align = Align;
// Make sure we only relocate to this function's MBBs.
MBBLocations.clear();
}
/// finishFunction - This callback is invoked after the function is completely
/// finished.
bool MachOCodeEmitter::finishFunction(MachineFunction &F) {
MOS->size += CurBufferPtr - BufferBegin;
// Get a symbol for the function to add to the symbol table
MachOWriter::MachOSym FnSym(F.getFunction(), MOS->Index);
// Figure out the binding (linkage) of the symbol.
switch (F.getFunction()->getLinkage()) {
default:
// appending linkage is illegal for functions.
assert(0 && "Unknown linkage type!");
case GlobalValue::ExternalLinkage:
FnSym.n_type = MachOWriter::MachOSym::N_SECT | MachOWriter::MachOSym::N_EXT;
break;
case GlobalValue::InternalLinkage:
FnSym.n_type = MachOWriter::MachOSym::N_SECT;
break;
}
// Resolve the function's relocations either to concrete pointers in the case
// of branches from one block to another, or to target relocation entries.
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
MachineRelocation &MR = Relocations[i];
if (MR.isBasicBlock()) {
void *MBBAddr = (void *)getMachineBasicBlockAddress(MR.getBasicBlock());
MR.setResultPointer(MBBAddr);
MOW.TM.getJITInfo()->relocate(BufferBegin, &MR, 1, 0);
// FIXME: we basically want the JITInfo relocate() function to rewrite
// this guy right now, so we just write the correct displacement
// to the file.
} else {
// isString | isGV | isCPI | isJTI
// FIXME: do something smart here. We won't be able to relocate these
// until the sections are all layed out, but we still need to
// record them. Maybe emit TargetRelocations and then resolve
// those at file writing time?
std::cerr << "whee!\n";
}
}
Relocations.clear();
// Finally, add it to the symtab.
MOW.SymbolTable.push_back(FnSym);
return false;
}
//===----------------------------------------------------------------------===//
// MachOWriter Implementation
//===----------------------------------------------------------------------===//
MachOWriter::MachOWriter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) {
// FIXME: set cpu type and cpu subtype somehow from TM
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
isLittleEndian = TM.getTargetData()->isLittleEndian();
// Create the machine code emitter object for this target.
MCE = new MachOCodeEmitter(*this);
}
MachOWriter::~MachOWriter() {
delete MCE;
}
void MachOWriter::EmitGlobal(GlobalVariable *GV) {
// FIXME: do something smart here.
}
bool MachOWriter::runOnMachineFunction(MachineFunction &MF) {
// Nothing to do here, this is all done through the MCE object.
return false;
}
bool MachOWriter::doInitialization(Module &M) {
// Set the magic value, now that we know the pointer size and endianness
Header.setMagic(isLittleEndian, is64Bit);
// Set the file type
// FIXME: this only works for object files, we do not support the creation
// of dynamic libraries or executables at this time.
Header.filetype = MachOHeader::MH_OBJECT;
Mang = new Mangler(M);
return false;
}
/// doFinalization - Now that the module has been completely processed, emit
/// the Mach-O file to 'O'.
bool MachOWriter::doFinalization(Module &M) {
// Okay, the.text section has been completed, build the .data, .bss, and
// "common" sections next.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
EmitGlobal(I);
// Emit the header and load commands.
EmitHeaderAndLoadCommands();
// Emit the text and data sections.
EmitSections();
// Emit the relocation entry data for each section.
// FIXME: presumably this should be a virtual method, since different targets
// have different relocation types.
EmitRelocations();
// Emit the symbol table.
// FIXME: we don't handle debug info yet, we should probably do that.
EmitSymbolTable();
// Emit the string table for the sections we have.
EmitStringTable();
// We are done with the abstract symbols.
SectionList.clear();
SymbolTable.clear();
DynamicSymbolTable.clear();
// Release the name mangler object.
delete Mang; Mang = 0;
return false;
}
void MachOWriter::EmitHeaderAndLoadCommands() {
// Step #0: Fill in the segment load command size, since we need it to figure
// out the rest of the header fields
MachOSegment SEG("", is64Bit);
SEG.nsects = SectionList.size();
SEG.cmdsize = SEG.cmdSize(is64Bit) +
SEG.nsects * SectionList.begin()->cmdSize(is64Bit);
// Step #1: calculate the number of load commands. We always have at least
// one, for the LC_SEGMENT load command, plus two for the normal
// and dynamic symbol tables, if there are any symbols.
Header.ncmds = SymbolTable.empty() ? 1 : 3;
// Step #2: calculate the size of the load commands
Header.sizeofcmds = SEG.cmdsize;
if (!SymbolTable.empty())
Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize;
// Step #3: write the header to the file
// Local alias to shortenify coming code.
DataBuffer &FH = Header.HeaderData;
outword(FH, Header.magic);
outword(FH, Header.cputype);
outword(FH, Header.cpusubtype);
outword(FH, Header.filetype);
outword(FH, Header.ncmds);
outword(FH, Header.sizeofcmds);
outword(FH, Header.flags);
if (is64Bit)
outword(FH, Header.reserved);
// Step #4: Finish filling in the segment load command and write it out
for (std::list<MachOSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I)
SEG.filesize += I->size;
SEG.vmsize = SEG.filesize;
SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds;
outword(FH, SEG.cmd);
outword(FH, SEG.cmdsize);
outstring(FH, SEG.segname, 16);
outaddr(FH, SEG.vmaddr);
outaddr(FH, SEG.vmsize);
outaddr(FH, SEG.fileoff);
outaddr(FH, SEG.filesize);
outword(FH, SEG.maxprot);
outword(FH, SEG.initprot);
outword(FH, SEG.nsects);
outword(FH, SEG.flags);
// Step #5: Write out the section commands for each section
for (std::list<MachOSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
I->offset = SEG.fileoff; // FIXME: separate offset
outstring(FH, I->sectname, 16);
outstring(FH, I->segname, 16);
outaddr(FH, I->addr);
outaddr(FH, I->size);
outword(FH, I->offset);
outword(FH, I->align);
outword(FH, I->reloff);
outword(FH, I->nreloc);
outword(FH, I->flags);
outword(FH, I->reserved1);
outword(FH, I->reserved2);
if (is64Bit)
outword(FH, I->reserved3);
}
// Step #6: Emit LC_SYMTAB/LC_DYSYMTAB load commands
// FIXME: We'll need to scan over the symbol table and possibly do the sort
// here so that we can set the proper indices in the dysymtab load command for
// the index and number of external symbols defined in this module.
// FIXME: We'll also need to scan over all the symbols so that we can
// calculate the size of the string table.
// FIXME: add size of relocs
SymTab.symoff = SEG.fileoff + SEG.filesize;
SymTab.nsyms = SymbolTable.size();
SymTab.stroff = SymTab.symoff + SymTab.nsyms * MachOSym::entrySize();
SymTab.strsize = 10;
outword(FH, SymTab.cmd);
outword(FH, SymTab.cmdsize);
outword(FH, SymTab.symoff);
outword(FH, SymTab.nsyms);
outword(FH, SymTab.stroff);
outword(FH, SymTab.strsize);
// FIXME: set DySymTab fields appropriately
outword(FH, DySymTab.cmd);
outword(FH, DySymTab.cmdsize);
outword(FH, DySymTab.ilocalsym);
outword(FH, DySymTab.nlocalsym);
outword(FH, DySymTab.iextdefsym);
outword(FH, DySymTab.nextdefsym);
outword(FH, DySymTab.iundefsym);
outword(FH, DySymTab.nundefsym);
outword(FH, DySymTab.tocoff);
outword(FH, DySymTab.ntoc);
outword(FH, DySymTab.modtaboff);
outword(FH, DySymTab.nmodtab);
outword(FH, DySymTab.extrefsymoff);
outword(FH, DySymTab.nextrefsyms);
outword(FH, DySymTab.indirectsymoff);
outword(FH, DySymTab.nindirectsyms);
outword(FH, DySymTab.extreloff);
outword(FH, DySymTab.nextrel);
outword(FH, DySymTab.locreloff);
outword(FH, DySymTab.nlocrel);
O.write((char*)&FH[0], FH.size());
}
/// EmitSections - Now that we have constructed the file header and load
/// commands, emit the data for each section to the file.
void MachOWriter::EmitSections() {
for (std::list<MachOSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
O.write((char*)&I->SectionData[0], I->size);
}
}
void MachOWriter::EmitRelocations() {
// FIXME: this should probably be a pure virtual function, since the
// relocation types and layout of the relocations themselves are target
// specific.
}
/// EmitSymbolTable - Sort the symbols we encountered and assign them each a
/// string table index so that they appear in the correct order in the output
/// file.
void MachOWriter::EmitSymbolTable() {
// The order of the symbol table is:
// local symbols
// defined external symbols (sorted by name)
// undefined external symbols (sorted by name)
DataBuffer ST;
// FIXME: enforce the above ordering, presumably by sorting by name,
// then partitioning twice.
unsigned stringIndex;
for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
E = SymbolTable.end(); I != E; ++I) {
// FIXME: remove when we actually calculate these correctly
I->n_strx = 1;
StringTable.push_back(Mang->getValueName(I->GV));
// Emit nlist to buffer
outword(ST, I->n_strx);
outbyte(ST, I->n_type);
outbyte(ST, I->n_sect);
outhalf(ST, I->n_desc);
outaddr(ST, I->n_value);
}
O.write((char*)&ST[0], ST.size());
}
/// EmitStringTable - This method adds and emits a section for the Mach-O
/// string table.
void MachOWriter::EmitStringTable() {
// The order of the string table is:
// strings for external symbols
// strings for local symbols
// This is the symbol table, but backwards. This allows us to avoid a sorting
// the symbol table again; all we have to do is use a reverse iterator.
DataBuffer ST;
// Write out a leading zero byte when emitting string table, for n_strx == 0
// which means an empty string.
outbyte(ST, 0);
for (std::vector<std::string>::iterator I = StringTable.begin(),
E = StringTable.end(); I != E; ++I) {
// FIXME: do not arbitrarily cap symbols to 16 characters
// FIXME: do something more efficient than outstring
outstring(ST, *I, 16);
}
O.write((char*)&ST[0], ST.size());
}