mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-15 07:59:33 +00:00
429 lines
14 KiB
C++
429 lines
14 KiB
C++
|
//===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file was developed by Nate Begeman and is distributed under the
|
||
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements the target-independent Mach-O writer. This file writes
|
||
|
// out the Mach-O file in the following order:
|
||
|
//
|
||
|
// #1 FatHeader (universal-only)
|
||
|
// #2 FatArch (universal-only, 1 per universal arch)
|
||
|
// Per arch:
|
||
|
// #3 Header
|
||
|
// #4 Load Commands
|
||
|
// #5 Sections
|
||
|
// #6 Relocations
|
||
|
// #7 Symbols
|
||
|
// #8 Strings
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Module.h"
|
||
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
||
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
||
|
#include "llvm/CodeGen/MachineRelocation.h"
|
||
|
#include "llvm/CodeGen/MachOWriter.h"
|
||
|
#include "llvm/Target/TargetData.h"
|
||
|
#include "llvm/Target/TargetJITInfo.h"
|
||
|
#include "llvm/Target/TargetMachine.h"
|
||
|
#include "llvm/Support/Mangler.h"
|
||
|
#include <iostream>
|
||
|
using namespace llvm;
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// MachOCodeEmitter Implementation
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
namespace llvm {
|
||
|
/// MachOCodeEmitter - This class is used by the MachOWriter to emit the code
|
||
|
/// for functions to the Mach-O file.
|
||
|
class MachOCodeEmitter : public MachineCodeEmitter {
|
||
|
MachOWriter &MOW;
|
||
|
|
||
|
/// MOS - The current section we're writing to
|
||
|
MachOWriter::MachOSection *MOS;
|
||
|
|
||
|
/// Relocations - These are the relocations that the function needs, as
|
||
|
/// emitted.
|
||
|
std::vector<MachineRelocation> Relocations;
|
||
|
|
||
|
/// MBBLocations - This vector is a mapping from MBB ID's to their address.
|
||
|
/// It is filled in by the StartMachineBasicBlock callback and queried by
|
||
|
/// the getMachineBasicBlockAddress callback.
|
||
|
std::vector<intptr_t> MBBLocations;
|
||
|
|
||
|
public:
|
||
|
MachOCodeEmitter(MachOWriter &mow) : MOW(mow) {}
|
||
|
|
||
|
void startFunction(MachineFunction &F);
|
||
|
bool finishFunction(MachineFunction &F);
|
||
|
|
||
|
void addRelocation(const MachineRelocation &MR) {
|
||
|
Relocations.push_back(MR);
|
||
|
}
|
||
|
|
||
|
virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
|
||
|
if (MBBLocations.size() <= (unsigned)MBB->getNumber())
|
||
|
MBBLocations.resize((MBB->getNumber()+1)*2);
|
||
|
MBBLocations[MBB->getNumber()] = getCurrentPCValue();
|
||
|
}
|
||
|
|
||
|
virtual intptr_t getConstantPoolEntryAddress(unsigned Index) const {
|
||
|
assert(0 && "CP not implementated yet!");
|
||
|
return 0;
|
||
|
}
|
||
|
virtual intptr_t getJumpTableEntryAddress(unsigned Index) const {
|
||
|
assert(0 && "JT not implementated yet!");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
|
||
|
assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
|
||
|
MBBLocations[MBB->getNumber()] && "MBB not emitted!");
|
||
|
return MBBLocations[MBB->getNumber()];
|
||
|
}
|
||
|
|
||
|
/// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE!
|
||
|
void startFunctionStub(unsigned StubSize) {
|
||
|
assert(0 && "JIT specific function called!");
|
||
|
abort();
|
||
|
}
|
||
|
void *finishFunctionStub(const Function *F) {
|
||
|
assert(0 && "JIT specific function called!");
|
||
|
abort();
|
||
|
return 0;
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
|
||
|
/// startFunction - This callback is invoked when a new machine function is
|
||
|
/// about to be emitted.
|
||
|
void MachOCodeEmitter::startFunction(MachineFunction &F) {
|
||
|
// Align the output buffer to the appropriate alignment, power of 2.
|
||
|
// FIXME: GENERICIZE!!
|
||
|
unsigned Align = 4;
|
||
|
|
||
|
// Get the Mach-O Section that this function belongs in.
|
||
|
MOS = &MOW.getTextSection();
|
||
|
|
||
|
// FIXME: better memory management
|
||
|
MOS->SectionData.reserve(4096);
|
||
|
BufferBegin = &(MOS->SectionData[0]);
|
||
|
BufferEnd = BufferBegin + MOS->SectionData.capacity();
|
||
|
CurBufferPtr = BufferBegin + MOS->size;
|
||
|
|
||
|
// Upgrade the section alignment if required.
|
||
|
if (MOS->align < Align) MOS->align = Align;
|
||
|
|
||
|
// Make sure we only relocate to this function's MBBs.
|
||
|
MBBLocations.clear();
|
||
|
}
|
||
|
|
||
|
/// finishFunction - This callback is invoked after the function is completely
|
||
|
/// finished.
|
||
|
bool MachOCodeEmitter::finishFunction(MachineFunction &F) {
|
||
|
MOS->size += CurBufferPtr - BufferBegin;
|
||
|
|
||
|
// Get a symbol for the function to add to the symbol table
|
||
|
MachOWriter::MachOSym FnSym(F.getFunction(), MOS->Index);
|
||
|
|
||
|
// Figure out the binding (linkage) of the symbol.
|
||
|
switch (F.getFunction()->getLinkage()) {
|
||
|
default:
|
||
|
// appending linkage is illegal for functions.
|
||
|
assert(0 && "Unknown linkage type!");
|
||
|
case GlobalValue::ExternalLinkage:
|
||
|
FnSym.n_type = MachOWriter::MachOSym::N_SECT | MachOWriter::MachOSym::N_EXT;
|
||
|
break;
|
||
|
case GlobalValue::InternalLinkage:
|
||
|
FnSym.n_type = MachOWriter::MachOSym::N_SECT;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// Resolve the function's relocations either to concrete pointers in the case
|
||
|
// of branches from one block to another, or to target relocation entries.
|
||
|
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
|
||
|
MachineRelocation &MR = Relocations[i];
|
||
|
if (MR.isBasicBlock()) {
|
||
|
void *MBBAddr = (void *)getMachineBasicBlockAddress(MR.getBasicBlock());
|
||
|
MR.setResultPointer(MBBAddr);
|
||
|
MOW.TM.getJITInfo()->relocate(BufferBegin, &MR, 1, 0);
|
||
|
// FIXME: we basically want the JITInfo relocate() function to rewrite
|
||
|
// this guy right now, so we just write the correct displacement
|
||
|
// to the file.
|
||
|
} else {
|
||
|
// isString | isGV | isCPI | isJTI
|
||
|
// FIXME: do something smart here. We won't be able to relocate these
|
||
|
// until the sections are all layed out, but we still need to
|
||
|
// record them. Maybe emit TargetRelocations and then resolve
|
||
|
// those at file writing time?
|
||
|
std::cerr << "whee!\n";
|
||
|
}
|
||
|
}
|
||
|
Relocations.clear();
|
||
|
|
||
|
// Finally, add it to the symtab.
|
||
|
MOW.SymbolTable.push_back(FnSym);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// MachOWriter Implementation
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
MachOWriter::MachOWriter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) {
|
||
|
// FIXME: set cpu type and cpu subtype somehow from TM
|
||
|
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
|
||
|
isLittleEndian = TM.getTargetData()->isLittleEndian();
|
||
|
|
||
|
// Create the machine code emitter object for this target.
|
||
|
MCE = new MachOCodeEmitter(*this);
|
||
|
}
|
||
|
|
||
|
MachOWriter::~MachOWriter() {
|
||
|
delete MCE;
|
||
|
}
|
||
|
|
||
|
void MachOWriter::EmitGlobal(GlobalVariable *GV) {
|
||
|
// FIXME: do something smart here.
|
||
|
}
|
||
|
|
||
|
|
||
|
bool MachOWriter::runOnMachineFunction(MachineFunction &MF) {
|
||
|
// Nothing to do here, this is all done through the MCE object.
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool MachOWriter::doInitialization(Module &M) {
|
||
|
// Set the magic value, now that we know the pointer size and endianness
|
||
|
Header.setMagic(isLittleEndian, is64Bit);
|
||
|
|
||
|
// Set the file type
|
||
|
// FIXME: this only works for object files, we do not support the creation
|
||
|
// of dynamic libraries or executables at this time.
|
||
|
Header.filetype = MachOHeader::MH_OBJECT;
|
||
|
|
||
|
Mang = new Mangler(M);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// doFinalization - Now that the module has been completely processed, emit
|
||
|
/// the Mach-O file to 'O'.
|
||
|
bool MachOWriter::doFinalization(Module &M) {
|
||
|
// Okay, the.text section has been completed, build the .data, .bss, and
|
||
|
// "common" sections next.
|
||
|
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
|
||
|
I != E; ++I)
|
||
|
EmitGlobal(I);
|
||
|
|
||
|
// Emit the header and load commands.
|
||
|
EmitHeaderAndLoadCommands();
|
||
|
|
||
|
// Emit the text and data sections.
|
||
|
EmitSections();
|
||
|
|
||
|
// Emit the relocation entry data for each section.
|
||
|
// FIXME: presumably this should be a virtual method, since different targets
|
||
|
// have different relocation types.
|
||
|
EmitRelocations();
|
||
|
|
||
|
// Emit the symbol table.
|
||
|
// FIXME: we don't handle debug info yet, we should probably do that.
|
||
|
EmitSymbolTable();
|
||
|
|
||
|
// Emit the string table for the sections we have.
|
||
|
EmitStringTable();
|
||
|
|
||
|
// We are done with the abstract symbols.
|
||
|
SectionList.clear();
|
||
|
SymbolTable.clear();
|
||
|
DynamicSymbolTable.clear();
|
||
|
|
||
|
// Release the name mangler object.
|
||
|
delete Mang; Mang = 0;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void MachOWriter::EmitHeaderAndLoadCommands() {
|
||
|
// Step #0: Fill in the segment load command size, since we need it to figure
|
||
|
// out the rest of the header fields
|
||
|
MachOSegment SEG("", is64Bit);
|
||
|
SEG.nsects = SectionList.size();
|
||
|
SEG.cmdsize = SEG.cmdSize(is64Bit) +
|
||
|
SEG.nsects * SectionList.begin()->cmdSize(is64Bit);
|
||
|
|
||
|
// Step #1: calculate the number of load commands. We always have at least
|
||
|
// one, for the LC_SEGMENT load command, plus two for the normal
|
||
|
// and dynamic symbol tables, if there are any symbols.
|
||
|
Header.ncmds = SymbolTable.empty() ? 1 : 3;
|
||
|
|
||
|
// Step #2: calculate the size of the load commands
|
||
|
Header.sizeofcmds = SEG.cmdsize;
|
||
|
if (!SymbolTable.empty())
|
||
|
Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize;
|
||
|
|
||
|
// Step #3: write the header to the file
|
||
|
// Local alias to shortenify coming code.
|
||
|
DataBuffer &FH = Header.HeaderData;
|
||
|
outword(FH, Header.magic);
|
||
|
outword(FH, Header.cputype);
|
||
|
outword(FH, Header.cpusubtype);
|
||
|
outword(FH, Header.filetype);
|
||
|
outword(FH, Header.ncmds);
|
||
|
outword(FH, Header.sizeofcmds);
|
||
|
outword(FH, Header.flags);
|
||
|
if (is64Bit)
|
||
|
outword(FH, Header.reserved);
|
||
|
|
||
|
// Step #4: Finish filling in the segment load command and write it out
|
||
|
for (std::list<MachOSection>::iterator I = SectionList.begin(),
|
||
|
E = SectionList.end(); I != E; ++I)
|
||
|
SEG.filesize += I->size;
|
||
|
SEG.vmsize = SEG.filesize;
|
||
|
SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds;
|
||
|
|
||
|
outword(FH, SEG.cmd);
|
||
|
outword(FH, SEG.cmdsize);
|
||
|
outstring(FH, SEG.segname, 16);
|
||
|
outaddr(FH, SEG.vmaddr);
|
||
|
outaddr(FH, SEG.vmsize);
|
||
|
outaddr(FH, SEG.fileoff);
|
||
|
outaddr(FH, SEG.filesize);
|
||
|
outword(FH, SEG.maxprot);
|
||
|
outword(FH, SEG.initprot);
|
||
|
outword(FH, SEG.nsects);
|
||
|
outword(FH, SEG.flags);
|
||
|
|
||
|
// Step #5: Write out the section commands for each section
|
||
|
for (std::list<MachOSection>::iterator I = SectionList.begin(),
|
||
|
E = SectionList.end(); I != E; ++I) {
|
||
|
I->offset = SEG.fileoff; // FIXME: separate offset
|
||
|
outstring(FH, I->sectname, 16);
|
||
|
outstring(FH, I->segname, 16);
|
||
|
outaddr(FH, I->addr);
|
||
|
outaddr(FH, I->size);
|
||
|
outword(FH, I->offset);
|
||
|
outword(FH, I->align);
|
||
|
outword(FH, I->reloff);
|
||
|
outword(FH, I->nreloc);
|
||
|
outword(FH, I->flags);
|
||
|
outword(FH, I->reserved1);
|
||
|
outword(FH, I->reserved2);
|
||
|
if (is64Bit)
|
||
|
outword(FH, I->reserved3);
|
||
|
}
|
||
|
|
||
|
// Step #6: Emit LC_SYMTAB/LC_DYSYMTAB load commands
|
||
|
// FIXME: We'll need to scan over the symbol table and possibly do the sort
|
||
|
// here so that we can set the proper indices in the dysymtab load command for
|
||
|
// the index and number of external symbols defined in this module.
|
||
|
// FIXME: We'll also need to scan over all the symbols so that we can
|
||
|
// calculate the size of the string table.
|
||
|
// FIXME: add size of relocs
|
||
|
SymTab.symoff = SEG.fileoff + SEG.filesize;
|
||
|
SymTab.nsyms = SymbolTable.size();
|
||
|
SymTab.stroff = SymTab.symoff + SymTab.nsyms * MachOSym::entrySize();
|
||
|
SymTab.strsize = 10;
|
||
|
outword(FH, SymTab.cmd);
|
||
|
outword(FH, SymTab.cmdsize);
|
||
|
outword(FH, SymTab.symoff);
|
||
|
outword(FH, SymTab.nsyms);
|
||
|
outword(FH, SymTab.stroff);
|
||
|
outword(FH, SymTab.strsize);
|
||
|
|
||
|
// FIXME: set DySymTab fields appropriately
|
||
|
outword(FH, DySymTab.cmd);
|
||
|
outword(FH, DySymTab.cmdsize);
|
||
|
outword(FH, DySymTab.ilocalsym);
|
||
|
outword(FH, DySymTab.nlocalsym);
|
||
|
outword(FH, DySymTab.iextdefsym);
|
||
|
outword(FH, DySymTab.nextdefsym);
|
||
|
outword(FH, DySymTab.iundefsym);
|
||
|
outword(FH, DySymTab.nundefsym);
|
||
|
outword(FH, DySymTab.tocoff);
|
||
|
outword(FH, DySymTab.ntoc);
|
||
|
outword(FH, DySymTab.modtaboff);
|
||
|
outword(FH, DySymTab.nmodtab);
|
||
|
outword(FH, DySymTab.extrefsymoff);
|
||
|
outword(FH, DySymTab.nextrefsyms);
|
||
|
outword(FH, DySymTab.indirectsymoff);
|
||
|
outword(FH, DySymTab.nindirectsyms);
|
||
|
outword(FH, DySymTab.extreloff);
|
||
|
outword(FH, DySymTab.nextrel);
|
||
|
outword(FH, DySymTab.locreloff);
|
||
|
outword(FH, DySymTab.nlocrel);
|
||
|
|
||
|
O.write((char*)&FH[0], FH.size());
|
||
|
}
|
||
|
|
||
|
/// EmitSections - Now that we have constructed the file header and load
|
||
|
/// commands, emit the data for each section to the file.
|
||
|
void MachOWriter::EmitSections() {
|
||
|
for (std::list<MachOSection>::iterator I = SectionList.begin(),
|
||
|
E = SectionList.end(); I != E; ++I) {
|
||
|
O.write((char*)&I->SectionData[0], I->size);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void MachOWriter::EmitRelocations() {
|
||
|
// FIXME: this should probably be a pure virtual function, since the
|
||
|
// relocation types and layout of the relocations themselves are target
|
||
|
// specific.
|
||
|
}
|
||
|
|
||
|
/// EmitSymbolTable - Sort the symbols we encountered and assign them each a
|
||
|
/// string table index so that they appear in the correct order in the output
|
||
|
/// file.
|
||
|
void MachOWriter::EmitSymbolTable() {
|
||
|
// The order of the symbol table is:
|
||
|
// local symbols
|
||
|
// defined external symbols (sorted by name)
|
||
|
// undefined external symbols (sorted by name)
|
||
|
DataBuffer ST;
|
||
|
|
||
|
// FIXME: enforce the above ordering, presumably by sorting by name,
|
||
|
// then partitioning twice.
|
||
|
unsigned stringIndex;
|
||
|
for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
|
||
|
E = SymbolTable.end(); I != E; ++I) {
|
||
|
// FIXME: remove when we actually calculate these correctly
|
||
|
I->n_strx = 1;
|
||
|
StringTable.push_back(Mang->getValueName(I->GV));
|
||
|
// Emit nlist to buffer
|
||
|
outword(ST, I->n_strx);
|
||
|
outbyte(ST, I->n_type);
|
||
|
outbyte(ST, I->n_sect);
|
||
|
outhalf(ST, I->n_desc);
|
||
|
outaddr(ST, I->n_value);
|
||
|
}
|
||
|
|
||
|
O.write((char*)&ST[0], ST.size());
|
||
|
}
|
||
|
|
||
|
/// EmitStringTable - This method adds and emits a section for the Mach-O
|
||
|
/// string table.
|
||
|
void MachOWriter::EmitStringTable() {
|
||
|
// The order of the string table is:
|
||
|
// strings for external symbols
|
||
|
// strings for local symbols
|
||
|
// This is the symbol table, but backwards. This allows us to avoid a sorting
|
||
|
// the symbol table again; all we have to do is use a reverse iterator.
|
||
|
DataBuffer ST;
|
||
|
|
||
|
// Write out a leading zero byte when emitting string table, for n_strx == 0
|
||
|
// which means an empty string.
|
||
|
outbyte(ST, 0);
|
||
|
|
||
|
for (std::vector<std::string>::iterator I = StringTable.begin(),
|
||
|
E = StringTable.end(); I != E; ++I) {
|
||
|
// FIXME: do not arbitrarily cap symbols to 16 characters
|
||
|
// FIXME: do something more efficient than outstring
|
||
|
outstring(ST, *I, 16);
|
||
|
}
|
||
|
O.write((char*)&ST[0], ST.size());
|
||
|
}
|