llvm-mirror/include/llvm/CodeGen/RegAllocPBQP.h

285 lines
10 KiB
C
Raw Normal View History

//===-- RegAllocPBQP.h ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PBQPBuilder interface, for classes which build PBQP
// instances to represent register allocation problems, and the RegAllocPBQP
// interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_REGALLOCPBQP_H
#define LLVM_CODEGEN_REGALLOCPBQP_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/PBQP/Graph.h"
#include "llvm/CodeGen/PBQP/Solution.h"
#include <map>
namespace llvm {
class LiveInterval;
class MachineFunction;
class MachineLoopInfo;
/// This class wraps up a PBQP instance representing a register allocation
/// problem, plus the structures necessary to map back from the PBQP solution
/// to a register allocation solution. (i.e. The PBQP-node <--> vreg map,
/// and the PBQP option <--> storage location map).
class PBQPRAProblem {
public:
typedef SmallVector<unsigned, 16> AllowedSet;
PBQP::Graph& getGraph() { return graph; }
const PBQP::Graph& getGraph() const { return graph; }
/// Record the mapping between the given virtual register and PBQP node,
/// and the set of allowed pregs for the vreg.
///
/// If you are extending
/// PBQPBuilder you are unlikely to need this: Nodes and options for all
/// vregs will already have been set up for you by the base class.
template <typename AllowedRegsItr>
void recordVReg(unsigned vreg, PBQP::Graph::NodeItr node,
AllowedRegsItr arBegin, AllowedRegsItr arEnd) {
assert(node2VReg.find(node) == node2VReg.end() && "Re-mapping node.");
assert(vreg2Node.find(vreg) == vreg2Node.end() && "Re-mapping vreg.");
assert(allowedSets[vreg].empty() && "vreg already has pregs.");
node2VReg[node] = vreg;
vreg2Node[vreg] = node;
std::copy(arBegin, arEnd, std::back_inserter(allowedSets[vreg]));
}
/// Get the virtual register corresponding to the given PBQP node.
unsigned getVRegForNode(PBQP::Graph::ConstNodeItr node) const;
/// Get the PBQP node corresponding to the given virtual register.
PBQP::Graph::NodeItr getNodeForVReg(unsigned vreg) const;
/// Returns true if the given PBQP option represents a physical register,
/// false otherwise.
bool isPRegOption(unsigned vreg, unsigned option) const {
// At present we only have spills or pregs, so anything that's not a
// spill is a preg. (This might be extended one day to support remat).
return !isSpillOption(vreg, option);
}
/// Returns true if the given PBQP option represents spilling, false
/// otherwise.
bool isSpillOption(unsigned vreg, unsigned option) const {
// We hardcode option zero as the spill option.
return option == 0;
}
/// Returns the allowed set for the given virtual register.
const AllowedSet& getAllowedSet(unsigned vreg) const;
/// Get PReg for option.
unsigned getPRegForOption(unsigned vreg, unsigned option) const;
private:
typedef std::map<PBQP::Graph::ConstNodeItr, unsigned,
PBQP::NodeItrComparator> Node2VReg;
typedef DenseMap<unsigned, PBQP::Graph::NodeItr> VReg2Node;
typedef std::map<unsigned, AllowedSet> AllowedSetMap;
PBQP::Graph graph;
Node2VReg node2VReg;
VReg2Node vreg2Node;
AllowedSetMap allowedSets;
};
/// Builds PBQP instances to represent register allocation problems. Includes
/// spill, interference and coalescing costs by default. You can extend this
/// class to support additional constraints for your architecture.
class PBQPBuilder {
private:
PBQPBuilder(const PBQPBuilder&) {}
void operator=(const PBQPBuilder&) {}
public:
typedef std::set<unsigned> RegSet;
/// Default constructor.
PBQPBuilder() {}
/// Clean up a PBQPBuilder.
virtual ~PBQPBuilder() {}
/// Build a PBQP instance to represent the register allocation problem for
/// the given MachineFunction.
virtual std::auto_ptr<PBQPRAProblem> build(
MachineFunction *mf,
const LiveIntervals *lis,
const MachineLoopInfo *loopInfo,
const RegSet &vregs);
private:
void addSpillCosts(PBQP::Vector &costVec, PBQP::PBQPNum spillCost);
void addInterferenceCosts(PBQP::Matrix &costMat,
const PBQPRAProblem::AllowedSet &vr1Allowed,
const PBQPRAProblem::AllowedSet &vr2Allowed,
const TargetRegisterInfo *tri);
};
/// Extended builder which adds coalescing constraints to a problem.
class PBQPBuilderWithCoalescing : public PBQPBuilder {
public:
/// Build a PBQP instance to represent the register allocation problem for
/// the given MachineFunction.
virtual std::auto_ptr<PBQPRAProblem> build(
MachineFunction *mf,
const LiveIntervals *lis,
const MachineLoopInfo *loopInfo,
const RegSet &vregs);
private:
void addPhysRegCoalesce(PBQP::Vector &costVec, unsigned pregOption,
PBQP::PBQPNum benefit);
void addVirtRegCoalesce(PBQP::Matrix &costMat,
const PBQPRAProblem::AllowedSet &vr1Allowed,
const PBQPRAProblem::AllowedSet &vr2Allowed,
PBQP::PBQPNum benefit);
};
///
/// PBQP based allocators solve the register allocation problem by mapping
/// register allocation problems to Partitioned Boolean Quadratic
/// Programming problems.
class RegAllocPBQP : public MachineFunctionPass {
public:
static char ID;
/// Construct a PBQP register allocator.
RegAllocPBQP(std::auto_ptr<PBQPBuilder> b) : MachineFunctionPass(ID), builder(b) {}
/// Return the pass name.
virtual const char* getPassName() const {
return "PBQP Register Allocator";
}
/// PBQP analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &au) const;
/// Perform register allocation
virtual bool runOnMachineFunction(MachineFunction &MF);
private:
typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
typedef std::vector<const LiveInterval*> Node2LIMap;
typedef std::vector<unsigned> AllowedSet;
typedef std::vector<AllowedSet> AllowedSetMap;
typedef std::pair<unsigned, unsigned> RegPair;
typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
typedef std::set<unsigned> RegSet;
std::auto_ptr<PBQPBuilder> builder;
MachineFunction *mf;
const TargetMachine *tm;
const TargetRegisterInfo *tri;
const TargetInstrInfo *tii;
const MachineLoopInfo *loopInfo;
MachineRegisterInfo *mri;
RenderMachineFunction *rmf;
LiveIntervals *lis;
LiveStacks *lss;
VirtRegMap *vrm;
LI2NodeMap li2Node;
Node2LIMap node2LI;
AllowedSetMap allowedSets;
RegSet vregsToAlloc, emptyIntervalVRegs;
NodeVector problemNodes;
/// Builds a PBQP cost vector.
template <typename RegContainer>
PBQP::Vector buildCostVector(unsigned vReg,
const RegContainer &allowed,
const CoalesceMap &cealesces,
PBQP::PBQPNum spillCost) const;
/// \brief Builds a PBQP interference matrix.
///
/// @return Either a pointer to a non-zero PBQP matrix representing the
/// allocation option costs, or a null pointer for a zero matrix.
///
/// Expects allowed sets for two interfering LiveIntervals. These allowed
/// sets should contain only allocable registers from the LiveInterval's
/// register class, with any interfering pre-colored registers removed.
template <typename RegContainer>
PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
const RegContainer &allowed2) const;
///
/// Expects allowed sets for two potentially coalescable LiveIntervals,
/// and an estimated benefit due to coalescing. The allowed sets should
/// contain only allocable registers from the LiveInterval's register
/// classes, with any interfering pre-colored registers removed.
template <typename RegContainer>
PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
const RegContainer &allowed2,
PBQP::PBQPNum cBenefit) const;
/// \brief Finds coalescing opportunities and returns them as a map.
///
/// Any entries in the map are guaranteed coalescable, even if their
/// corresponding live intervals overlap.
CoalesceMap findCoalesces();
/// \brief Finds the initial set of vreg intervals to allocate.
void findVRegIntervalsToAlloc();
/// \brief Constructs a PBQP problem representation of the register
/// allocation problem for this function.
///
/// @return a PBQP solver object for the register allocation problem.
PBQP::Graph constructPBQPProblem();
/// \brief Adds a stack interval if the given live interval has been
/// spilled. Used to support stack slot coloring.
void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
/// \brief Given a solved PBQP problem maps this solution back to a register
/// assignment.
bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
/// \brief Given a solved PBQP problem maps this solution back to a register
/// assignment.
bool mapPBQPToRegAlloc2(const PBQPRAProblem &problem,
const PBQP::Solution &solution);
/// \brief Postprocessing before final spilling. Sets basic block "live in"
/// variables.
void finalizeAlloc() const;
};
}
#endif /* LLVM_CODEGEN_REGALLOCPBQP_H */