llvm-mirror/lib/Transforms/TransformInternals.h

147 lines
5.4 KiB
C
Raw Normal View History

//===-- TransformInternals.h - Shared functions for Transforms --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file declares shared functions used by the different components
// of the Transforms library.
//
//===----------------------------------------------------------------------===//
#ifndef TRANSFORM_INTERNALS_H
#define TRANSFORM_INTERNALS_H
#include "llvm/BasicBlock.h"
#include "llvm/Target/TargetData.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include <map>
#include <set>
namespace llvm {
static inline int64_t getConstantValue(const ConstantInt *CPI) {
return (int64_t)cast<ConstantInt>(CPI)->getRawValue();
}
// getPointedToComposite - If the argument is a pointer type, and the pointed to
// value is a composite type, return the composite type, else return null.
//
static inline const CompositeType *getPointedToComposite(const Type *Ty) {
const PointerType *PT = dyn_cast<PointerType>(Ty);
return PT ? dyn_cast<CompositeType>(PT->getElementType()) : 0;
}
// ConvertibleToGEP - This function returns true if the specified value V is
// a valid index into a pointer of type Ty. If it is valid, Idx is filled in
// with the values that would be appropriate to make this a getelementptr
// instruction. The type returned is the root type that the GEP would point
// to if it were synthesized with this operands.
//
// If BI is nonnull, cast instructions are inserted as appropriate for the
// arguments of the getelementptr.
//
const Type *ConvertibleToGEP(const Type *Ty, Value *V,
std::vector<Value*> &Indices,
const TargetData &TD,
BasicBlock::iterator *BI = 0);
//===----------------------------------------------------------------------===//
// ValueHandle Class - Smart pointer that occupies a slot on the users USE list
// that prevents it from being destroyed. This "looks" like an Instruction
// with Opcode UserOp1.
//
class ValueMapCache;
class ValueHandle : public Instruction {
ValueMapCache &Cache;
public:
ValueHandle(ValueMapCache &VMC, Value *V);
ValueHandle(const ValueHandle &);
~ValueHandle();
virtual Instruction *clone() const { abort(); return 0; }
virtual const char *getOpcodeName() const {
return "ValueHandle";
}
inline bool operator<(const ValueHandle &VH) const {
return getOperand(0) < VH.getOperand(0);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ValueHandle *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::UserOp1);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
// ------------- Expression Conversion ---------------------
typedef std::map<const Value*, const Type*> ValueTypeCache;
struct ValueMapCache {
// Operands mapped - Contains an entry if the first value (the user) has had
// the second value (the operand) mapped already.
//
std::set<const User*> OperandsMapped;
// Expression Map - Contains an entry from the old value to the new value of
// an expression that has been converted over.
//
std::map<const Value *, Value *> ExprMap;
typedef std::map<const Value *, Value *> ExprMapTy;
// Cast Map - Cast instructions can have their source and destination values
// changed independently for each part. Because of this, our old naive
// implementation would create a TWO new cast instructions, which would cause
// all kinds of problems. Here we keep track of the newly allocated casts, so
// that we only create one for a particular instruction.
//
std::set<ValueHandle> NewCasts;
};
bool ExpressionConvertibleToType(Value *V, const Type *Ty, ValueTypeCache &Map,
const TargetData &TD);
Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC,
const TargetData &TD);
// ValueConvertibleToType - Return true if it is possible
bool ValueConvertibleToType(Value *V, const Type *Ty,
ValueTypeCache &ConvertedTypes,
const TargetData &TD);
void ConvertValueToNewType(Value *V, Value *NewVal, ValueMapCache &VMC,
const TargetData &TD);
// getStructOffsetType - Return a vector of offsets that are to be used to index
// into the specified struct type to get as close as possible to index as we
// can. Note that it is possible that we cannot get exactly to Offset, in which
// case we update offset to be the offset we actually obtained. The resultant
// leaf type is returned.
//
// If StopEarly is set to true (the default), the first object with the
// specified type is returned, even if it is a struct type itself. In this
// case, this routine will not drill down to the leaf type. Set StopEarly to
// false if you want a leaf
//
const Type *getStructOffsetType(const Type *Ty, unsigned &Offset,
std::vector<Value*> &Offsets,
const TargetData &TD, bool StopEarly = true);
} // End llvm namespace
#endif