llvm-mirror/lib/Transforms/Scalar/ADCE.cpp

452 lines
18 KiB
C++
Raw Normal View History

//===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
//
// This file implements "aggressive" dead code elimination. ADCE is DCe where
// values are assumed to be dead until proven otherwise. This is similar to
// SCCP, except applied to the liveness of values.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Type.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/Constant.h"
#include "llvm/Support/CFG.h"
#include "Support/Debug.h"
#include "Support/DepthFirstIterator.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
#include <algorithm>
namespace {
Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed");
Statistic<> NumInstRemoved ("adce", "Number of instructions removed");
//===----------------------------------------------------------------------===//
// ADCE Class
//
// This class does all of the work of Aggressive Dead Code Elimination.
// It's public interface consists of a constructor and a doADCE() method.
//
class ADCE : public FunctionPass {
Function *Func; // The function that we are working on
std::vector<Instruction*> WorkList; // Instructions that just became live
std::set<Instruction*> LiveSet; // The set of live instructions
//===--------------------------------------------------------------------===//
// The public interface for this class
//
public:
// Execute the Aggressive Dead Code Elimination Algorithm
//
virtual bool runOnFunction(Function &F) {
Func = &F;
bool Changed = doADCE();
assert(WorkList.empty());
LiveSet.clear();
return Changed;
}
// getAnalysisUsage - We require post dominance frontiers (aka Control
// Dependence Graph)
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<PostDominatorTree>();
AU.addRequired<PostDominanceFrontier>();
}
//===--------------------------------------------------------------------===//
// The implementation of this class
//
private:
// doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
// true if the function was modified.
//
bool doADCE();
void markBlockAlive(BasicBlock *BB);
// dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
// instructions in the specified basic block, dropping references on
// instructions that are dead according to LiveSet.
bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB);
TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI);
inline void markInstructionLive(Instruction *I) {
if (LiveSet.count(I)) return;
DEBUG(std::cerr << "Insn Live: " << I);
LiveSet.insert(I);
WorkList.push_back(I);
}
inline void markTerminatorLive(const BasicBlock *BB) {
DEBUG(std::cerr << "Terminator Live: " << BB->getTerminator());
markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator()));
}
};
RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination");
} // End of anonymous namespace
Pass *createAggressiveDCEPass() { return new ADCE(); }
void ADCE::markBlockAlive(BasicBlock *BB) {
// Mark the basic block as being newly ALIVE... and mark all branches that
// this block is control dependent on as being alive also...
//
PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>();
PostDominanceFrontier::const_iterator It = CDG.find(BB);
if (It != CDG.end()) {
// Get the blocks that this node is control dependent on...
const PostDominanceFrontier::DomSetType &CDB = It->second;
for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live
bind_obj(this, &ADCE::markTerminatorLive));
}
// If this basic block is live, and it ends in an unconditional branch, then
// the branch is alive as well...
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
if (BI->isUnconditional())
markTerminatorLive(BB);
}
// dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
// instructions in the specified basic block, dropping references on
// instructions that are dead according to LiveSet.
bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) {
bool Changed = false;
for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; )
if (!LiveSet.count(I)) { // Is this instruction alive?
I->dropAllReferences(); // Nope, drop references...
2003-04-23 16:37:45 +00:00
if (PHINode *PN = dyn_cast<PHINode>(I)) {
// We don't want to leave PHI nodes in the program that have
// #arguments != #predecessors, so we remove them now.
//
PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
// Delete the instruction...
I = BB->getInstList().erase(I);
Changed = true;
} else {
++I;
}
} else {
++I;
}
return Changed;
}
/// convertToUnconditionalBranch - Transform this conditional terminator
/// instruction into an unconditional branch because we don't care which of the
/// successors it goes to. This eliminate a use of the condition as well.
///
TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) {
BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI);
BasicBlock *BB = TI->getParent();
// Remove entries from PHI nodes to avoid confusing ourself later...
for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
TI->getSuccessor(i)->removePredecessor(BB);
// Delete the old branch itself...
BB->getInstList().erase(TI);
return NB;
}
// doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
// true if the function was modified.
//
bool ADCE::doADCE() {
bool MadeChanges = false;
// Iterate over all of the instructions in the function, eliminating trivially
// dead instructions, and marking instructions live that are known to be
// needed. Perform the walk in depth first order so that we avoid marking any
// instructions live in basic blocks that are unreachable. These blocks will
// be eliminated later, along with the instructions inside.
//
for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func);
BBI != BBE; ++BBI) {
BasicBlock *BB = *BBI;
for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
if (II->mayWriteToMemory() || isa<ReturnInst>(II) || isa<UnwindInst>(II)){
markInstructionLive(II);
++II; // Increment the inst iterator if the inst wasn't deleted
} else if (isInstructionTriviallyDead(II)) {
// Remove the instruction from it's basic block...
II = BB->getInstList().erase(II);
++NumInstRemoved;
MadeChanges = true;
} else {
++II; // Increment the inst iterator if the inst wasn't deleted
}
}
}
// Check to ensure we have an exit node for this CFG. If we don't, we won't
// have any post-dominance information, thus we cannot perform our
// transformations safely.
//
PostDominatorTree &DT = getAnalysis<PostDominatorTree>();
if (DT[&Func->getEntryBlock()] == 0) {
WorkList.clear();
return MadeChanges;
}
DEBUG(std::cerr << "Processing work list\n");
// AliveBlocks - Set of basic blocks that we know have instructions that are
// alive in them...
//
std::set<BasicBlock*> AliveBlocks;
// Process the work list of instructions that just became live... if they
// became live, then that means that all of their operands are necessary as
// well... make them live as well.
//
while (!WorkList.empty()) {
Instruction *I = WorkList.back(); // Get an instruction that became live...
WorkList.pop_back();
BasicBlock *BB = I->getParent();
if (!AliveBlocks.count(BB)) { // Basic block not alive yet...
AliveBlocks.insert(BB); // Block is now ALIVE!
markBlockAlive(BB); // Make it so now!
}
// PHI nodes are a special case, because the incoming values are actually
// defined in the predecessor nodes of this block, meaning that the PHI
// makes the predecessors alive.
//
if (PHINode *PN = dyn_cast<PHINode>(I))
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
if (!AliveBlocks.count(*PI)) {
AliveBlocks.insert(BB); // Block is now ALIVE!
markBlockAlive(*PI);
}
// Loop over all of the operands of the live instruction, making sure that
// they are known to be alive as well...
//
for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
markInstructionLive(Operand);
}
DEBUG(
std::cerr << "Current Function: X = Live\n";
for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){
std::cerr << I->getName() << ":\t"
<< (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n");
for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
if (LiveSet.count(BI)) std::cerr << "X ";
std::cerr << *BI;
}
});
// Find the first postdominator of the entry node that is alive. Make it the
// new entry node...
//
if (AliveBlocks.size() == Func->size()) { // No dead blocks?
for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) {
// Loop over all of the instructions in the function, telling dead
// instructions to drop their references. This is so that the next sweep
// over the program can safely delete dead instructions without other dead
// instructions still refering to them.
//
dropReferencesOfDeadInstructionsInLiveBlock(I);
// Check to make sure the terminator instruction is live. If it isn't,
// this means that the condition that it branches on (we know it is not an
// unconditional branch), is not needed to make the decision of where to
// go to, because all outgoing edges go to the same place. We must remove
// the use of the condition (because it's probably dead), so we convert
// the terminator to a conditional branch.
//
TerminatorInst *TI = I->getTerminator();
if (!LiveSet.count(TI))
convertToUnconditionalBranch(TI);
}
} else { // If there are some blocks dead...
// If the entry node is dead, insert a new entry node to eliminate the entry
// node as a special case.
//
if (!AliveBlocks.count(&Func->front())) {
BasicBlock *NewEntry = new BasicBlock();
NewEntry->getInstList().push_back(new BranchInst(&Func->front()));
Func->getBasicBlockList().push_front(NewEntry);
AliveBlocks.insert(NewEntry); // This block is always alive!
LiveSet.insert(NewEntry->getTerminator()); // The branch is live
}
// Loop over all of the alive blocks in the function. If any successor
// blocks are not alive, we adjust the outgoing branches to branch to the
// first live postdominator of the live block, adjusting any PHI nodes in
// the block to reflect this.
//
for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
if (AliveBlocks.count(I)) {
BasicBlock *BB = I;
TerminatorInst *TI = BB->getTerminator();
// If the terminator instruction is alive, but the block it is contained
// in IS alive, this means that this terminator is a conditional branch
// on a condition that doesn't matter. Make it an unconditional branch
// to ONE of the successors. This has the side effect of dropping a use
// of the conditional value, which may also be dead.
if (!LiveSet.count(TI))
TI = convertToUnconditionalBranch(TI);
// Loop over all of the successors, looking for ones that are not alive.
// We cannot save the number of successors in the terminator instruction
// here because we may remove them if we don't have a postdominator...
//
for (unsigned i = 0; i != TI->getNumSuccessors(); ++i)
if (!AliveBlocks.count(TI->getSuccessor(i))) {
// Scan up the postdominator tree, looking for the first
// postdominator that is alive, and the last postdominator that is
// dead...
//
PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
// There is a special case here... if there IS no post-dominator for
// the block we have no owhere to point our branch to. Instead,
// convert it to a return. This can only happen if the code
// branched into an infinite loop. Note that this may not be
// desirable, because we _are_ altering the behavior of the code.
// This is a well known drawback of ADCE, so in the future if we
// choose to revisit the decision, this is where it should be.
//
if (LastNode == 0) { // No postdominator!
// Call RemoveSuccessor to transmogrify the terminator instruction
// to not contain the outgoing branch, or to create a new
// terminator if the form fundementally changes (ie unconditional
// branch to return). Note that this will change a branch into an
// infinite loop into a return instruction!
//
RemoveSuccessor(TI, i);
// RemoveSuccessor may replace TI... make sure we have a fresh
// pointer... and e variable.
//
TI = BB->getTerminator();
// Rescan this successor...
--i;
} else {
PostDominatorTree::Node *NextNode = LastNode->getIDom();
while (!AliveBlocks.count(NextNode->getBlock())) {
LastNode = NextNode;
NextNode = NextNode->getIDom();
}
// Get the basic blocks that we need...
BasicBlock *LastDead = LastNode->getBlock();
BasicBlock *NextAlive = NextNode->getBlock();
// Make the conditional branch now go to the next alive block...
TI->getSuccessor(i)->removePredecessor(BB);
TI->setSuccessor(i, NextAlive);
// If there are PHI nodes in NextAlive, we need to add entries to
// the PHI nodes for the new incoming edge. The incoming values
// should be identical to the incoming values for LastDead.
//
for (BasicBlock::iterator II = NextAlive->begin();
PHINode *PN = dyn_cast<PHINode>(II); ++II)
if (LiveSet.count(PN)) { // Only modify live phi nodes
// Get the incoming value for LastDead...
int OldIdx = PN->getBasicBlockIndex(LastDead);
assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!");
Value *InVal = PN->getIncomingValue(OldIdx);
// Add an incoming value for BB now...
PN->addIncoming(InVal, BB);
}
}
}
// Now loop over all of the instructions in the basic block, telling
// dead instructions to drop their references. This is so that the next
// sweep over the program can safely delete dead instructions without
// other dead instructions still refering to them.
//
dropReferencesOfDeadInstructionsInLiveBlock(BB);
}
}
// We make changes if there are any dead blocks in the function...
if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) {
MadeChanges = true;
NumBlockRemoved += NumDeadBlocks;
}
// Loop over all of the basic blocks in the function, removing control flow
// edges to live blocks (also eliminating any entries in PHI functions in
// referenced blocks).
//
for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
if (!AliveBlocks.count(BB)) {
// Remove all outgoing edges from this basic block and convert the
// terminator into a return instruction.
std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB));
if (!Succs.empty()) {
// Loop over all of the successors, removing this block from PHI node
// entries that might be in the block...
while (!Succs.empty()) {
Succs.back()->removePredecessor(BB);
Succs.pop_back();
}
// Delete the old terminator instruction...
BB->getInstList().pop_back();
const Type *RetTy = Func->getReturnType();
BB->getInstList().push_back(new ReturnInst(RetTy != Type::VoidTy ?
Constant::getNullValue(RetTy) : 0));
}
}
// Loop over all of the basic blocks in the function, dropping references of
// the dead basic blocks. We must do this after the previous step to avoid
// dropping references to PHIs which still have entries...
//
for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
if (!AliveBlocks.count(BB))
BB->dropAllReferences();
// Now loop through all of the blocks and delete the dead ones. We can safely
// do this now because we know that there are no references to dead blocks
// (because they have dropped all of their references... we also remove dead
// instructions from alive blocks.
//
for (Function::iterator BI = Func->begin(); BI != Func->end(); )
if (!AliveBlocks.count(BI)) { // Delete dead blocks...
BI = Func->getBasicBlockList().erase(BI);
} else { // Scan alive blocks...
for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); )
if (!LiveSet.count(II)) { // Is this instruction alive?
// Nope... remove the instruction from it's basic block...
II = BI->getInstList().erase(II);
++NumInstRemoved;
MadeChanges = true;
} else {
++II;
}
++BI; // Increment iterator...
}
return MadeChanges;
}