[InstCombine] clean up fold for X / C -> X * (1.0/C); NFCI

This should work with vector constants too, but it's currently limited to scalar.

llvm-svn: 325187
This commit is contained in:
Sanjay Patel 2018-02-14 23:04:17 +00:00
parent f35a8dc055
commit 019b67ac3d

View File

@ -1317,33 +1317,34 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
return nullptr;
}
/// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
/// FP value and:
/// 1) 1/C is exact, or
/// 2) reciprocal is allowed.
/// If the conversion was successful, the simplified expression "X * 1/C" is
/// returned; otherwise, nullptr is returned.
static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Constant *Divisor,
bool AllowReciprocal) {
if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
/// Try to convert X/C into X * (1/C).
static Instruction *foldFDivConstantDivisor(BinaryOperator &FDiv) {
// TODO: Handle vector constants.
ConstantFP *CFP;
if (!match(FDiv.getOperand(1), m_ConstantFP(CFP)))
return nullptr;
const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
const APFloat &FpVal = CFP->getValueAPF();
APFloat Reciprocal(FpVal.getSemantics());
bool Cvt = FpVal.getExactInverse(&Reciprocal);
if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
// This returns false if the inverse would be a denormal.
bool HasRecip = FpVal.getExactInverse(&Reciprocal);
// If the inverse is not exact, we may still be able to convert if we are
// not operating with strict math.
if (!HasRecip && FDiv.hasAllowReciprocal() && FpVal.isFiniteNonZero()) {
Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
(void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
Cvt = !Reciprocal.isDenormal();
Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
// Disallow denormal constants because we don't know what would happen
// on all targets.
// TODO: Function attributes can tell us that denorms are flushed?
HasRecip = !Reciprocal.isDenormal();
}
if (!Cvt)
if (!HasRecip)
return nullptr;
ConstantFP *R;
R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
return BinaryOperator::CreateFMul(Dividend, R);
auto *RecipCFP = ConstantFP::get(FDiv.getContext(), Reciprocal);
return BinaryOperator::CreateFMul(FDiv.getOperand(0), RecipCFP);
}
Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
@ -1356,14 +1357,17 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *FMul = foldFDivConstantDivisor(I)) {
FMul->copyFastMathFlags(&I);
return FMul;
}
if (isa<Constant>(Op0))
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
bool AllowReassociate = I.isFast();
bool AllowReciprocal = I.hasAllowReciprocal();
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
@ -1377,18 +1381,14 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
// (X*C1)/C2 => X * (C1/C2)
//
Constant *C = ConstantExpr::getFDiv(C1, C2);
if (isNormalFp(C))
Res = BinaryOperator::CreateFMul(X, C);
} else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
// (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
// (X/C1)/C2 => X /(C2*C1)
Constant *C = ConstantExpr::getFMul(C1, C2);
if (isNormalFp(C)) {
Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
if (!Res)
Res = BinaryOperator::CreateFDiv(X, C);
}
if (isNormalFp(C))
Res = BinaryOperator::CreateFDiv(X, C);
}
if (Res) {
@ -1396,13 +1396,6 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
return Res;
}
}
// X / C => X * 1/C
if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) {
T->copyFastMathFlags(&I);
return T;
}
return nullptr;
}