mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-02-04 19:26:30 +00:00
Remove the now unused strong phi elimination pass.
llvm-svn: 192604
This commit is contained in:
parent
18bf2f7f32
commit
0ee3f8f595
@ -381,14 +381,6 @@ namespace llvm {
|
||||
/// these register allocator like this: AU.addRequiredID(PHIEliminationID);
|
||||
extern char &PHIEliminationID;
|
||||
|
||||
/// StrongPHIElimination - This pass eliminates machine instruction PHI
|
||||
/// nodes by inserting copy instructions. This destroys SSA information, but
|
||||
/// is the desired input for some register allocators. This pass is
|
||||
/// "required" by these register allocator like this:
|
||||
/// AU.addRequiredID(PHIEliminationID);
|
||||
/// This pass is still in development
|
||||
extern char &StrongPHIEliminationID;
|
||||
|
||||
/// LiveIntervals - This analysis keeps track of the live ranges of virtual
|
||||
/// and physical registers.
|
||||
extern char &LiveIntervalsID;
|
||||
|
@ -242,7 +242,6 @@ void initializeStripDeadPrototypesPassPass(PassRegistry&);
|
||||
void initializeStripDebugDeclarePass(PassRegistry&);
|
||||
void initializeStripNonDebugSymbolsPass(PassRegistry&);
|
||||
void initializeStripSymbolsPass(PassRegistry&);
|
||||
void initializeStrongPHIEliminationPass(PassRegistry&);
|
||||
void initializeTailCallElimPass(PassRegistry&);
|
||||
void initializeTailDuplicatePassPass(PassRegistry&);
|
||||
void initializeTargetPassConfigPass(PassRegistry&);
|
||||
|
@ -97,7 +97,6 @@ add_llvm_library(LLVMCodeGen
|
||||
StackColoring.cpp
|
||||
StackProtector.cpp
|
||||
StackSlotColoring.cpp
|
||||
StrongPHIElimination.cpp
|
||||
TailDuplication.cpp
|
||||
TargetFrameLoweringImpl.cpp
|
||||
TargetInstrInfo.cpp
|
||||
|
@ -60,7 +60,6 @@ void llvm::initializeCodeGen(PassRegistry &Registry) {
|
||||
initializeStackProtectorPass(Registry);
|
||||
initializeStackColoringPass(Registry);
|
||||
initializeStackSlotColoringPass(Registry);
|
||||
initializeStrongPHIEliminationPass(Registry);
|
||||
initializeTailDuplicatePassPass(Registry);
|
||||
initializeTargetPassConfigPass(Registry);
|
||||
initializeTwoAddressInstructionPassPass(Registry);
|
||||
|
@ -58,8 +58,6 @@ OptimizeRegAlloc("optimize-regalloc", cl::Hidden,
|
||||
static cl::opt<cl::boolOrDefault>
|
||||
EnableMachineSched("enable-misched", cl::Hidden,
|
||||
cl::desc("Enable the machine instruction scheduling pass."));
|
||||
static cl::opt<bool> EnableStrongPHIElim("strong-phi-elim", cl::Hidden,
|
||||
cl::desc("Use strong PHI elimination."));
|
||||
static cl::opt<bool> DisablePostRAMachineLICM("disable-postra-machine-licm",
|
||||
cl::Hidden,
|
||||
cl::desc("Disable Machine LICM"));
|
||||
@ -675,24 +673,15 @@ void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
|
||||
// preferably fix the scavenger to not depend on them).
|
||||
addPass(&LiveVariablesID);
|
||||
|
||||
// Add passes that move from transformed SSA into conventional SSA. This is a
|
||||
// "copy coalescing" problem.
|
||||
//
|
||||
if (!EnableStrongPHIElim) {
|
||||
// Edge splitting is smarter with machine loop info.
|
||||
addPass(&MachineLoopInfoID);
|
||||
addPass(&PHIEliminationID);
|
||||
}
|
||||
// Edge splitting is smarter with machine loop info.
|
||||
addPass(&MachineLoopInfoID);
|
||||
addPass(&PHIEliminationID);
|
||||
|
||||
// Eventually, we want to run LiveIntervals before PHI elimination.
|
||||
if (EarlyLiveIntervals)
|
||||
addPass(&LiveIntervalsID);
|
||||
|
||||
addPass(&TwoAddressInstructionPassID);
|
||||
|
||||
if (EnableStrongPHIElim)
|
||||
addPass(&StrongPHIEliminationID);
|
||||
|
||||
addPass(&RegisterCoalescerID);
|
||||
|
||||
// PreRA instruction scheduling.
|
||||
|
@ -1,825 +0,0 @@
|
||||
//===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This pass eliminates PHI instructions by aggressively coalescing the copies
|
||||
// that would be inserted by a naive algorithm and only inserting the copies
|
||||
// that are necessary. The coalescing technique initially assumes that all
|
||||
// registers appearing in a PHI instruction do not interfere. It then eliminates
|
||||
// proven interferences, using dominators to only perform a linear number of
|
||||
// interference tests instead of the quadratic number of interference tests
|
||||
// that this would naively require. This is a technique derived from:
|
||||
//
|
||||
// Budimlic, et al. Fast copy coalescing and live-range identification.
|
||||
// In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
|
||||
// Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
|
||||
// PLDI '02. ACM, New York, NY, 25-32.
|
||||
//
|
||||
// The original implementation constructs a data structure they call a dominance
|
||||
// forest for this purpose. The dominance forest was shown to be unnecessary,
|
||||
// as it is possible to emulate the creation and traversal of a dominance forest
|
||||
// by directly using the dominator tree, rather than actually constructing the
|
||||
// dominance forest. This technique is explained in:
|
||||
//
|
||||
// Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
|
||||
// Quality and Efficiency,
|
||||
// In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
|
||||
// Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
|
||||
// CGO '09. IEEE, Washington, DC, 114-125.
|
||||
//
|
||||
// Careful implementation allows for all of the dominator forest interference
|
||||
// checks to be performed at once in a single depth-first traversal of the
|
||||
// dominator tree, which is what is implemented here.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "strongphielim"
|
||||
#include "llvm/CodeGen/Passes.h"
|
||||
#include "PHIEliminationUtils.h"
|
||||
#include "llvm/ADT/DenseSet.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
||||
#include "llvm/CodeGen/MachineDominators.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
class StrongPHIElimination : public MachineFunctionPass {
|
||||
public:
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
StrongPHIElimination() : MachineFunctionPass(ID) {
|
||||
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage&) const;
|
||||
bool runOnMachineFunction(MachineFunction&);
|
||||
|
||||
private:
|
||||
/// This struct represents a single node in the union-find data structure
|
||||
/// representing the variable congruence classes. There is one difference
|
||||
/// from a normal union-find data structure. We steal two bits from the parent
|
||||
/// pointer . One of these bits is used to represent whether the register
|
||||
/// itself has been isolated, and the other is used to represent whether the
|
||||
/// PHI with that register as its destination has been isolated.
|
||||
///
|
||||
/// Note that this leads to the strange situation where the leader of a
|
||||
/// congruence class may no longer logically be a member, due to being
|
||||
/// isolated.
|
||||
struct Node {
|
||||
enum Flags {
|
||||
kRegisterIsolatedFlag = 1,
|
||||
kPHIIsolatedFlag = 2
|
||||
};
|
||||
Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
|
||||
|
||||
Node *getLeader();
|
||||
|
||||
PointerIntPair<Node*, 2> parent;
|
||||
unsigned value;
|
||||
unsigned rank;
|
||||
};
|
||||
|
||||
/// Add a register in a new congruence class containing only itself.
|
||||
void addReg(unsigned);
|
||||
|
||||
/// Join the congruence classes of two registers. This function is biased
|
||||
/// towards the left argument, i.e. after
|
||||
///
|
||||
/// addReg(r2);
|
||||
/// unionRegs(r1, r2);
|
||||
///
|
||||
/// the leader of the unioned congruence class is the same as the leader of
|
||||
/// r1's congruence class prior to the union. This is actually relied upon
|
||||
/// in the copy insertion code.
|
||||
void unionRegs(unsigned, unsigned);
|
||||
|
||||
/// Get the color of a register. The color is 0 if the register has been
|
||||
/// isolated.
|
||||
unsigned getRegColor(unsigned);
|
||||
|
||||
// Isolate a register.
|
||||
void isolateReg(unsigned);
|
||||
|
||||
/// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
|
||||
/// isolated. Otherwise, it is the original color of its destination and
|
||||
/// all of its operands (before they were isolated, if they were).
|
||||
unsigned getPHIColor(MachineInstr*);
|
||||
|
||||
/// Isolate a PHI.
|
||||
void isolatePHI(MachineInstr*);
|
||||
|
||||
/// Traverses a basic block, splitting any interferences found between
|
||||
/// registers in the same congruence class. It takes two DenseMaps as
|
||||
/// arguments that it also updates: CurrentDominatingParent, which maps
|
||||
/// a color to the register in that congruence class whose definition was
|
||||
/// most recently seen, and ImmediateDominatingParent, which maps a register
|
||||
/// to the register in the same congruence class that most immediately
|
||||
/// dominates it.
|
||||
///
|
||||
/// This function assumes that it is being called in a depth-first traversal
|
||||
/// of the dominator tree.
|
||||
void SplitInterferencesForBasicBlock(
|
||||
MachineBasicBlock&,
|
||||
DenseMap<unsigned, unsigned> &CurrentDominatingParent,
|
||||
DenseMap<unsigned, unsigned> &ImmediateDominatingParent);
|
||||
|
||||
// Lowers a PHI instruction, inserting copies of the source and destination
|
||||
// registers as necessary.
|
||||
void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
|
||||
|
||||
// Merges the live interval of Reg into NewReg and renames Reg to NewReg
|
||||
// everywhere that Reg appears. Requires Reg and NewReg to have non-
|
||||
// overlapping lifetimes.
|
||||
void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
|
||||
|
||||
MachineRegisterInfo *MRI;
|
||||
const TargetInstrInfo *TII;
|
||||
MachineDominatorTree *DT;
|
||||
LiveIntervals *LI;
|
||||
|
||||
BumpPtrAllocator Allocator;
|
||||
|
||||
DenseMap<unsigned, Node*> RegNodeMap;
|
||||
|
||||
// Maps a basic block to a list of its defs of registers that appear as PHI
|
||||
// sources.
|
||||
DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;
|
||||
|
||||
// Maps a color to a pair of a MachineInstr* and a virtual register, which
|
||||
// is the operand of that PHI corresponding to the current basic block.
|
||||
DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
|
||||
|
||||
// FIXME: Can these two data structures be combined? Would a std::multimap
|
||||
// be any better?
|
||||
|
||||
// Stores pairs of predecessor basic blocks and the source registers of
|
||||
// inserted copy instructions.
|
||||
typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
|
||||
SrcCopySet InsertedSrcCopySet;
|
||||
|
||||
// Maps pairs of predecessor basic blocks and colors to their defining copy
|
||||
// instructions.
|
||||
typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
|
||||
SrcCopyMap;
|
||||
SrcCopyMap InsertedSrcCopyMap;
|
||||
|
||||
// Maps inserted destination copy registers to their defining copy
|
||||
// instructions.
|
||||
typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
|
||||
DestCopyMap InsertedDestCopies;
|
||||
};
|
||||
|
||||
struct MIIndexCompare {
|
||||
MIIndexCompare(LiveIntervals *LiveIntervals) : LI(LiveIntervals) { }
|
||||
|
||||
bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
|
||||
return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
|
||||
}
|
||||
|
||||
LiveIntervals *LI;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
STATISTIC(NumPHIsLowered, "Number of PHIs lowered");
|
||||
STATISTIC(NumDestCopiesInserted, "Number of destination copies inserted");
|
||||
STATISTIC(NumSrcCopiesInserted, "Number of source copies inserted");
|
||||
|
||||
char StrongPHIElimination::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
|
||||
"Eliminate PHI nodes for register allocation, intelligently", false, false)
|
||||
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
||||
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
||||
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
||||
INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
|
||||
"Eliminate PHI nodes for register allocation, intelligently", false, false)
|
||||
|
||||
char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
|
||||
|
||||
void StrongPHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesCFG();
|
||||
AU.addRequired<MachineDominatorTree>();
|
||||
AU.addRequired<SlotIndexes>();
|
||||
AU.addPreserved<SlotIndexes>();
|
||||
AU.addRequired<LiveIntervals>();
|
||||
AU.addPreserved<LiveIntervals>();
|
||||
MachineFunctionPass::getAnalysisUsage(AU);
|
||||
}
|
||||
|
||||
static MachineOperand *findLastUse(MachineBasicBlock *MBB, unsigned Reg) {
|
||||
// FIXME: This only needs to check from the first terminator, as only the
|
||||
// first terminator can use a virtual register.
|
||||
for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
|
||||
assert (RI != MBB->rend());
|
||||
MachineInstr *MI = &*RI;
|
||||
|
||||
for (MachineInstr::mop_iterator OI = MI->operands_begin(),
|
||||
OE = MI->operands_end(); OI != OE; ++OI) {
|
||||
MachineOperand &MO = *OI;
|
||||
if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
|
||||
return &MO;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool StrongPHIElimination::runOnMachineFunction(MachineFunction &MF) {
|
||||
MRI = &MF.getRegInfo();
|
||||
TII = MF.getTarget().getInstrInfo();
|
||||
DT = &getAnalysis<MachineDominatorTree>();
|
||||
LI = &getAnalysis<LiveIntervals>();
|
||||
|
||||
for (MachineFunction::iterator I = MF.begin(), E = MF.end();
|
||||
I != E; ++I) {
|
||||
for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
|
||||
BBI != BBE && BBI->isPHI(); ++BBI) {
|
||||
unsigned DestReg = BBI->getOperand(0).getReg();
|
||||
addReg(DestReg);
|
||||
PHISrcDefs[I].push_back(BBI);
|
||||
|
||||
for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
|
||||
MachineOperand &SrcMO = BBI->getOperand(i);
|
||||
unsigned SrcReg = SrcMO.getReg();
|
||||
addReg(SrcReg);
|
||||
unionRegs(DestReg, SrcReg);
|
||||
|
||||
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
|
||||
if (DefMI)
|
||||
PHISrcDefs[DefMI->getParent()].push_back(DefMI);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Perform a depth-first traversal of the dominator tree, splitting
|
||||
// interferences amongst PHI-congruence classes.
|
||||
DenseMap<unsigned, unsigned> CurrentDominatingParent;
|
||||
DenseMap<unsigned, unsigned> ImmediateDominatingParent;
|
||||
for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
|
||||
DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
|
||||
SplitInterferencesForBasicBlock(*DI->getBlock(),
|
||||
CurrentDominatingParent,
|
||||
ImmediateDominatingParent);
|
||||
}
|
||||
|
||||
// Insert copies for all PHI source and destination registers.
|
||||
for (MachineFunction::iterator I = MF.begin(), E = MF.end();
|
||||
I != E; ++I) {
|
||||
for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
|
||||
BBI != BBE && BBI->isPHI(); ++BBI) {
|
||||
InsertCopiesForPHI(BBI, I);
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: Preserve the equivalence classes during copy insertion and use
|
||||
// the preversed equivalence classes instead of recomputing them.
|
||||
RegNodeMap.clear();
|
||||
for (MachineFunction::iterator I = MF.begin(), E = MF.end();
|
||||
I != E; ++I) {
|
||||
for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
|
||||
BBI != BBE && BBI->isPHI(); ++BBI) {
|
||||
unsigned DestReg = BBI->getOperand(0).getReg();
|
||||
addReg(DestReg);
|
||||
|
||||
for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
|
||||
unsigned SrcReg = BBI->getOperand(i).getReg();
|
||||
addReg(SrcReg);
|
||||
unionRegs(DestReg, SrcReg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
DenseMap<unsigned, unsigned> RegRenamingMap;
|
||||
bool Changed = false;
|
||||
for (MachineFunction::iterator I = MF.begin(), E = MF.end();
|
||||
I != E; ++I) {
|
||||
MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
|
||||
while (BBI != BBE && BBI->isPHI()) {
|
||||
MachineInstr *PHI = BBI;
|
||||
|
||||
assert(PHI->getNumOperands() > 0);
|
||||
|
||||
unsigned SrcReg = PHI->getOperand(1).getReg();
|
||||
unsigned SrcColor = getRegColor(SrcReg);
|
||||
unsigned NewReg = RegRenamingMap[SrcColor];
|
||||
if (!NewReg) {
|
||||
NewReg = SrcReg;
|
||||
RegRenamingMap[SrcColor] = SrcReg;
|
||||
}
|
||||
MergeLIsAndRename(SrcReg, NewReg);
|
||||
|
||||
unsigned DestReg = PHI->getOperand(0).getReg();
|
||||
if (!InsertedDestCopies.count(DestReg))
|
||||
MergeLIsAndRename(DestReg, NewReg);
|
||||
|
||||
for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
|
||||
unsigned SrcReg = PHI->getOperand(i).getReg();
|
||||
MergeLIsAndRename(SrcReg, NewReg);
|
||||
}
|
||||
|
||||
++BBI;
|
||||
LI->RemoveMachineInstrFromMaps(PHI);
|
||||
PHI->eraseFromParent();
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Due to the insertion of copies to split live ranges, the live intervals are
|
||||
// guaranteed to not overlap, except in one case: an original PHI source and a
|
||||
// PHI destination copy. In this case, they have the same value and thus don't
|
||||
// truly intersect, so we merge them into the value live at that point.
|
||||
// FIXME: Is there some better way we can handle this?
|
||||
for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
|
||||
E = InsertedDestCopies.end(); I != E; ++I) {
|
||||
unsigned DestReg = I->first;
|
||||
unsigned DestColor = getRegColor(DestReg);
|
||||
unsigned NewReg = RegRenamingMap[DestColor];
|
||||
|
||||
LiveInterval &DestLI = LI->getInterval(DestReg);
|
||||
LiveInterval &NewLI = LI->getInterval(NewReg);
|
||||
|
||||
assert(DestLI.size() == 1
|
||||
&& "PHI destination copy's live interval should be a single live "
|
||||
"range from the beginning of the BB to the copy instruction.");
|
||||
LiveInterval::Segment *DestS = DestLI.begin();
|
||||
VNInfo *NewVNI = NewLI.getVNInfoAt(DestS->start);
|
||||
if (!NewVNI) {
|
||||
NewVNI = NewLI.createValueCopy(DestS->valno, LI->getVNInfoAllocator());
|
||||
MachineInstr *CopyInstr = I->second;
|
||||
CopyInstr->getOperand(1).setIsKill(true);
|
||||
}
|
||||
|
||||
LiveInterval::Segment NewS(DestS->start, DestS->end, NewVNI);
|
||||
NewLI.addSegment(NewS);
|
||||
|
||||
LI->removeInterval(DestReg);
|
||||
MRI->replaceRegWith(DestReg, NewReg);
|
||||
}
|
||||
|
||||
// Adjust the live intervals of all PHI source registers to handle the case
|
||||
// where the PHIs in successor blocks were the only later uses of the source
|
||||
// register.
|
||||
for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
|
||||
E = InsertedSrcCopySet.end(); I != E; ++I) {
|
||||
MachineBasicBlock *MBB = I->first;
|
||||
unsigned SrcReg = I->second;
|
||||
if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
|
||||
SrcReg = RenamedRegister;
|
||||
|
||||
LiveInterval &SrcLI = LI->getInterval(SrcReg);
|
||||
|
||||
bool isLiveOut = false;
|
||||
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
|
||||
SE = MBB->succ_end(); SI != SE; ++SI) {
|
||||
if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
|
||||
isLiveOut = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (isLiveOut)
|
||||
continue;
|
||||
|
||||
MachineOperand *LastUse = findLastUse(MBB, SrcReg);
|
||||
assert(LastUse);
|
||||
SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
|
||||
SrcLI.removeSegment(LastUseIndex.getRegSlot(), LI->getMBBEndIdx(MBB));
|
||||
LastUse->setIsKill(true);
|
||||
}
|
||||
|
||||
Allocator.Reset();
|
||||
RegNodeMap.clear();
|
||||
PHISrcDefs.clear();
|
||||
InsertedSrcCopySet.clear();
|
||||
InsertedSrcCopyMap.clear();
|
||||
InsertedDestCopies.clear();
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
void StrongPHIElimination::addReg(unsigned Reg) {
|
||||
Node *&N = RegNodeMap[Reg];
|
||||
if (!N)
|
||||
N = new (Allocator) Node(Reg);
|
||||
}
|
||||
|
||||
StrongPHIElimination::Node*
|
||||
StrongPHIElimination::Node::getLeader() {
|
||||
Node *N = this;
|
||||
Node *Parent = parent.getPointer();
|
||||
Node *Grandparent = Parent->parent.getPointer();
|
||||
|
||||
while (Parent != Grandparent) {
|
||||
N->parent.setPointer(Grandparent);
|
||||
N = Grandparent;
|
||||
Parent = Parent->parent.getPointer();
|
||||
Grandparent = Parent->parent.getPointer();
|
||||
}
|
||||
|
||||
return Parent;
|
||||
}
|
||||
|
||||
unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
|
||||
DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
|
||||
if (RI == RegNodeMap.end())
|
||||
return 0;
|
||||
Node *Node = RI->second;
|
||||
if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
|
||||
return 0;
|
||||
return Node->getLeader()->value;
|
||||
}
|
||||
|
||||
void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
|
||||
Node *Node1 = RegNodeMap[Reg1]->getLeader();
|
||||
Node *Node2 = RegNodeMap[Reg2]->getLeader();
|
||||
|
||||
if (Node1->rank > Node2->rank) {
|
||||
Node2->parent.setPointer(Node1->getLeader());
|
||||
} else if (Node1->rank < Node2->rank) {
|
||||
Node1->parent.setPointer(Node2->getLeader());
|
||||
} else if (Node1 != Node2) {
|
||||
Node2->parent.setPointer(Node1->getLeader());
|
||||
Node1->rank++;
|
||||
}
|
||||
}
|
||||
|
||||
void StrongPHIElimination::isolateReg(unsigned Reg) {
|
||||
Node *Node = RegNodeMap[Reg];
|
||||
Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
|
||||
}
|
||||
|
||||
unsigned StrongPHIElimination::getPHIColor(MachineInstr *PHI) {
|
||||
assert(PHI->isPHI());
|
||||
|
||||
unsigned DestReg = PHI->getOperand(0).getReg();
|
||||
Node *DestNode = RegNodeMap[DestReg];
|
||||
if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
|
||||
return 0;
|
||||
|
||||
for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
|
||||
unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
|
||||
if (SrcColor)
|
||||
return SrcColor;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void StrongPHIElimination::isolatePHI(MachineInstr *PHI) {
|
||||
assert(PHI->isPHI());
|
||||
Node *Node = RegNodeMap[PHI->getOperand(0).getReg()];
|
||||
Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
|
||||
}
|
||||
|
||||
/// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
|
||||
/// interferences found between registers in the same congruence class. It
|
||||
/// takes two DenseMaps as arguments that it also updates:
|
||||
///
|
||||
/// 1) CurrentDominatingParent, which maps a color to the register in that
|
||||
/// congruence class whose definition was most recently seen.
|
||||
///
|
||||
/// 2) ImmediateDominatingParent, which maps a register to the register in the
|
||||
/// same congruence class that most immediately dominates it.
|
||||
///
|
||||
/// This function assumes that it is being called in a depth-first traversal
|
||||
/// of the dominator tree.
|
||||
///
|
||||
/// The algorithm used here is a generalization of the dominance-based SSA test
|
||||
/// for two variables. If there are variables a_1, ..., a_n such that
|
||||
///
|
||||
/// def(a_1) dom ... dom def(a_n),
|
||||
///
|
||||
/// then we can test for an interference between any two a_i by only using O(n)
|
||||
/// interference tests between pairs of variables. If i < j and a_i and a_j
|
||||
/// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
|
||||
/// Thus, in order to test for an interference involving a_i, we need only check
|
||||
/// for a potential interference with a_i+1.
|
||||
///
|
||||
/// This method can be generalized to arbitrary sets of variables by performing
|
||||
/// a depth-first traversal of the dominator tree. As we traverse down a branch
|
||||
/// of the dominator tree, we keep track of the current dominating variable and
|
||||
/// only perform an interference test with that variable. However, when we go to
|
||||
/// another branch of the dominator tree, the definition of the current dominating
|
||||
/// variable may no longer dominate the current block. In order to correct this,
|
||||
/// we need to use a stack of past choices of the current dominating variable
|
||||
/// and pop from this stack until we find a variable whose definition actually
|
||||
/// dominates the current block.
|
||||
///
|
||||
/// There will be one push on this stack for each variable that has become the
|
||||
/// current dominating variable, so instead of using an explicit stack we can
|
||||
/// simply associate the previous choice for a current dominating variable with
|
||||
/// the new choice. This works better in our implementation, where we test for
|
||||
/// interference in multiple distinct sets at once.
|
||||
void
|
||||
StrongPHIElimination::SplitInterferencesForBasicBlock(
|
||||
MachineBasicBlock &MBB,
|
||||
DenseMap<unsigned, unsigned> &CurrentDominatingParent,
|
||||
DenseMap<unsigned, unsigned> &ImmediateDominatingParent) {
|
||||
// Sort defs by their order in the original basic block, as the code below
|
||||
// assumes that it is processing definitions in dominance order.
|
||||
std::vector<MachineInstr*> &DefInstrs = PHISrcDefs[&MBB];
|
||||
std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));
|
||||
|
||||
for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
|
||||
BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
|
||||
for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
|
||||
E = (*BBI)->operands_end(); I != E; ++I) {
|
||||
const MachineOperand &MO = *I;
|
||||
|
||||
// FIXME: This would be faster if it were possible to bail out of checking
|
||||
// an instruction's operands after the explicit defs, but this is incorrect
|
||||
// for variadic instructions, which may appear before register allocation
|
||||
// in the future.
|
||||
if (!MO.isReg() || !MO.isDef())
|
||||
continue;
|
||||
|
||||
unsigned DestReg = MO.getReg();
|
||||
if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
|
||||
continue;
|
||||
|
||||
// If the virtual register being defined is not used in any PHI or has
|
||||
// already been isolated, then there are no more interferences to check.
|
||||
unsigned DestColor = getRegColor(DestReg);
|
||||
if (!DestColor)
|
||||
continue;
|
||||
|
||||
// The input to this pass sometimes is not in SSA form in every basic
|
||||
// block, as some virtual registers have redefinitions. We could eliminate
|
||||
// this by fixing the passes that generate the non-SSA code, or we could
|
||||
// handle it here by tracking defining machine instructions rather than
|
||||
// virtual registers. For now, we just handle the situation conservatively
|
||||
// in a way that will possibly lead to false interferences.
|
||||
unsigned &CurrentParent = CurrentDominatingParent[DestColor];
|
||||
unsigned NewParent = CurrentParent;
|
||||
if (NewParent == DestReg)
|
||||
continue;
|
||||
|
||||
// Pop registers from the stack represented by ImmediateDominatingParent
|
||||
// until we find a parent that dominates the current instruction.
|
||||
while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
|
||||
|| !getRegColor(NewParent)))
|
||||
NewParent = ImmediateDominatingParent[NewParent];
|
||||
|
||||
// If NewParent is nonzero, then its definition dominates the current
|
||||
// instruction, so it is only necessary to check for the liveness of
|
||||
// NewParent in order to check for an interference.
|
||||
if (NewParent
|
||||
&& LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
|
||||
// If there is an interference, always isolate the new register. This
|
||||
// could be improved by using a heuristic that decides which of the two
|
||||
// registers to isolate.
|
||||
isolateReg(DestReg);
|
||||
CurrentParent = NewParent;
|
||||
} else {
|
||||
// If there is no interference, update ImmediateDominatingParent and set
|
||||
// the CurrentDominatingParent for this color to the current register.
|
||||
ImmediateDominatingParent[DestReg] = NewParent;
|
||||
CurrentParent = DestReg;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// We now walk the PHIs in successor blocks and check for interferences. This
|
||||
// is necessary because the use of a PHI's operands are logically contained in
|
||||
// the predecessor block. The def of a PHI's destination register is processed
|
||||
// along with the other defs in a basic block.
|
||||
|
||||
CurrentPHIForColor.clear();
|
||||
|
||||
for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
|
||||
SE = MBB.succ_end(); SI != SE; ++SI) {
|
||||
for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
|
||||
BBI != BBE && BBI->isPHI(); ++BBI) {
|
||||
MachineInstr *PHI = BBI;
|
||||
|
||||
// If a PHI is already isolated, either by being isolated directly or
|
||||
// having all of its operands isolated, ignore it.
|
||||
unsigned Color = getPHIColor(PHI);
|
||||
if (!Color)
|
||||
continue;
|
||||
|
||||
// Find the index of the PHI operand that corresponds to this basic block.
|
||||
unsigned PredIndex;
|
||||
for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
|
||||
if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
|
||||
break;
|
||||
}
|
||||
assert(PredIndex < PHI->getNumOperands());
|
||||
unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
|
||||
|
||||
// Pop registers from the stack represented by ImmediateDominatingParent
|
||||
// until we find a parent that dominates the current instruction.
|
||||
unsigned &CurrentParent = CurrentDominatingParent[Color];
|
||||
unsigned NewParent = CurrentParent;
|
||||
while (NewParent
|
||||
&& (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
|
||||
|| !getRegColor(NewParent)))
|
||||
NewParent = ImmediateDominatingParent[NewParent];
|
||||
CurrentParent = NewParent;
|
||||
|
||||
// If there is an interference with a register, always isolate the
|
||||
// register rather than the PHI. It is also possible to isolate the
|
||||
// PHI, but that introduces copies for all of the registers involved
|
||||
// in that PHI.
|
||||
if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
|
||||
&& NewParent != PredOperandReg)
|
||||
isolateReg(NewParent);
|
||||
|
||||
std::pair<MachineInstr*, unsigned>
|
||||
&CurrentPHI = CurrentPHIForColor[Color];
|
||||
|
||||
// If two PHIs have the same operand from every shared predecessor, then
|
||||
// they don't actually interfere. Otherwise, isolate the current PHI. This
|
||||
// could possibly be improved, e.g. we could isolate the PHI with the
|
||||
// fewest operands.
|
||||
if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
|
||||
isolatePHI(PHI);
|
||||
else
|
||||
CurrentPHI = std::make_pair(PHI, PredOperandReg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void StrongPHIElimination::InsertCopiesForPHI(MachineInstr *PHI,
|
||||
MachineBasicBlock *MBB) {
|
||||
assert(PHI->isPHI());
|
||||
++NumPHIsLowered;
|
||||
unsigned PHIColor = getPHIColor(PHI);
|
||||
|
||||
for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
|
||||
MachineOperand &SrcMO = PHI->getOperand(i);
|
||||
|
||||
// If a source is defined by an implicit def, there is no need to insert a
|
||||
// copy in the predecessor.
|
||||
if (SrcMO.isUndef())
|
||||
continue;
|
||||
|
||||
unsigned SrcReg = SrcMO.getReg();
|
||||
assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
|
||||
"Machine PHI Operands must all be virtual registers!");
|
||||
|
||||
MachineBasicBlock *PredBB = PHI->getOperand(i + 1).getMBB();
|
||||
unsigned SrcColor = getRegColor(SrcReg);
|
||||
|
||||
// If neither the PHI nor the operand were isolated, then we only need to
|
||||
// set the phi-kill flag on the VNInfo at this PHI.
|
||||
if (PHIColor && SrcColor == PHIColor) {
|
||||
LiveInterval &SrcInterval = LI->getInterval(SrcReg);
|
||||
SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
|
||||
VNInfo *SrcVNI = SrcInterval.getVNInfoBefore(PredIndex);
|
||||
(void)SrcVNI;
|
||||
assert(SrcVNI);
|
||||
continue;
|
||||
}
|
||||
|
||||
unsigned CopyReg = 0;
|
||||
if (PHIColor) {
|
||||
SrcCopyMap::const_iterator I
|
||||
= InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
|
||||
CopyReg
|
||||
= I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
|
||||
}
|
||||
|
||||
if (!CopyReg) {
|
||||
const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
|
||||
CopyReg = MRI->createVirtualRegister(RC);
|
||||
|
||||
MachineBasicBlock::iterator
|
||||
CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
|
||||
unsigned SrcSubReg = SrcMO.getSubReg();
|
||||
MachineInstr *CopyInstr = BuildMI(*PredBB,
|
||||
CopyInsertPoint,
|
||||
PHI->getDebugLoc(),
|
||||
TII->get(TargetOpcode::COPY),
|
||||
CopyReg).addReg(SrcReg, 0, SrcSubReg);
|
||||
LI->InsertMachineInstrInMaps(CopyInstr);
|
||||
++NumSrcCopiesInserted;
|
||||
|
||||
// addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
|
||||
// the newly added range.
|
||||
LI->addSegmentToEndOfBlock(CopyReg, CopyInstr);
|
||||
InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
|
||||
|
||||
addReg(CopyReg);
|
||||
if (PHIColor) {
|
||||
unionRegs(PHIColor, CopyReg);
|
||||
assert(getRegColor(CopyReg) != CopyReg);
|
||||
} else {
|
||||
PHIColor = CopyReg;
|
||||
assert(getRegColor(CopyReg) == CopyReg);
|
||||
}
|
||||
|
||||
// Insert into map if not already there.
|
||||
InsertedSrcCopyMap.insert(std::make_pair(std::make_pair(PredBB, PHIColor),
|
||||
CopyInstr));
|
||||
}
|
||||
|
||||
SrcMO.setReg(CopyReg);
|
||||
|
||||
// If SrcReg is not live beyond the PHI, trim its interval so that it is no
|
||||
// longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
|
||||
// processed later, but this is still correct to do at this point because we
|
||||
// never rely on LiveIntervals being correct while inserting copies.
|
||||
// FIXME: Should this just count uses at PHIs like the normal PHIElimination
|
||||
// pass does?
|
||||
LiveInterval &SrcLI = LI->getInterval(SrcReg);
|
||||
SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
|
||||
SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
|
||||
SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
|
||||
if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
|
||||
SrcLI.removeSegment(MBBStartIndex, PHIIndex, true);
|
||||
}
|
||||
|
||||
unsigned DestReg = PHI->getOperand(0).getReg();
|
||||
unsigned DestColor = getRegColor(DestReg);
|
||||
|
||||
if (PHIColor && DestColor == PHIColor) {
|
||||
LiveInterval &DestLI = LI->getInterval(DestReg);
|
||||
|
||||
// Set the phi-def flag for the VN at this PHI.
|
||||
SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
|
||||
VNInfo *DestVNI = DestLI.getVNInfoAt(PHIIndex.getRegSlot());
|
||||
assert(DestVNI);
|
||||
|
||||
// Prior to PHI elimination, the live ranges of PHIs begin at their defining
|
||||
// instruction. After PHI elimination, PHI instructions are replaced by VNs
|
||||
// with the phi-def flag set, and the live ranges of these VNs start at the
|
||||
// beginning of the basic block.
|
||||
SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
|
||||
DestVNI->def = MBBStartIndex;
|
||||
DestLI.addSegment(LiveInterval::Segment(MBBStartIndex,
|
||||
PHIIndex.getRegSlot(),
|
||||
DestVNI));
|
||||
return;
|
||||
}
|
||||
|
||||
const TargetRegisterClass *RC = MRI->getRegClass(DestReg);
|
||||
unsigned CopyReg = MRI->createVirtualRegister(RC);
|
||||
|
||||
MachineInstr *CopyInstr = BuildMI(*MBB,
|
||||
MBB->SkipPHIsAndLabels(MBB->begin()),
|
||||
PHI->getDebugLoc(),
|
||||
TII->get(TargetOpcode::COPY),
|
||||
DestReg).addReg(CopyReg);
|
||||
LI->InsertMachineInstrInMaps(CopyInstr);
|
||||
PHI->getOperand(0).setReg(CopyReg);
|
||||
++NumDestCopiesInserted;
|
||||
|
||||
// Add the region from the beginning of MBB to the copy instruction to
|
||||
// CopyReg's live interval, and give the VNInfo the phidef flag.
|
||||
LiveInterval &CopyLI = LI->createEmptyInterval(CopyReg);
|
||||
SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
|
||||
SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
|
||||
VNInfo *CopyVNI = CopyLI.getNextValue(MBBStartIndex,
|
||||
LI->getVNInfoAllocator());
|
||||
CopyLI.addSegment(LiveInterval::Segment(MBBStartIndex,
|
||||
DestCopyIndex.getRegSlot(),
|
||||
CopyVNI));
|
||||
|
||||
// Adjust DestReg's live interval to adjust for its new definition at
|
||||
// CopyInstr.
|
||||
LiveInterval &DestLI = LI->createEmptyInterval(DestReg);
|
||||
SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
|
||||
DestLI.removeSegment(PHIIndex.getRegSlot(), DestCopyIndex.getRegSlot());
|
||||
|
||||
VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
|
||||
assert(DestVNI);
|
||||
DestVNI->def = DestCopyIndex.getRegSlot();
|
||||
|
||||
InsertedDestCopies[CopyReg] = CopyInstr;
|
||||
}
|
||||
|
||||
void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
|
||||
if (Reg == NewReg)
|
||||
return;
|
||||
|
||||
LiveInterval &OldLI = LI->getInterval(Reg);
|
||||
LiveInterval &NewLI = LI->getInterval(NewReg);
|
||||
|
||||
// Merge the live ranges of the two registers.
|
||||
DenseMap<VNInfo*, VNInfo*> VNMap;
|
||||
for (LiveInterval::iterator SI = OldLI.begin(), SE = OldLI.end();
|
||||
SI != SE; ++SI) {
|
||||
LiveInterval::Segment OldS = *SI;
|
||||
VNInfo *OldVN = OldS.valno;
|
||||
|
||||
VNInfo *&NewVN = VNMap[OldVN];
|
||||
if (!NewVN) {
|
||||
NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
|
||||
VNMap[OldVN] = NewVN;
|
||||
}
|
||||
|
||||
LiveInterval::Segment S(OldS.start, OldS.end, NewVN);
|
||||
NewLI.addSegment(S);
|
||||
}
|
||||
|
||||
// Remove the LiveInterval for the register being renamed and replace all
|
||||
// of its defs and uses with the new register.
|
||||
LI->removeInterval(Reg);
|
||||
MRI->replaceRegWith(Reg, NewReg);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user