Introduce control flow speculation tracking pass for AArch64

The pass implements tracking of control flow miss-speculation into a "taint"
register. That taint register can then be used to mask off registers with
sensitive data when executing under miss-speculation, a.k.a. "transient
execution".
This pass is aimed at mitigating against SpectreV1-style vulnarabilities.

At the moment, it implements the tracking of miss-speculation of control
flow into a taint register, but doesn't implement a mechanism yet to then
use that taint register to mask off vulnerable data in registers (something
for a follow-on improvement). Possible strategies to mask out vulnerable
data that can be implemented on top of this are:
- speculative load hardening to automatically mask of data loaded
  in registers.
- using intrinsics to mask of data in registers as indicated by the
  programmer (see https://lwn.net/Articles/759423/).

For AArch64, the following implementation choices are made.
Some of these are different than the implementation choices made in
the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
the instruction set characteristics result in different trade-offs.
- The speculation hardening is done after register allocation. With a
  relative abundance of registers, one register is reserved (X16) to be
  the taint register. X16 is expected to not clash with other register
  reservation mechanisms with very high probability because:
  . The AArch64 ABI doesn't guarantee X16 to be retained across any call.
  . The only way to request X16 to be used as a programmer is through
    inline assembly. In the rare case a function explicitly demands to
    use X16/W16, this pass falls back to hardening against speculation
    by inserting a DSB SYS/ISB barrier pair which will prevent control
    flow speculation.
- It is easy to insert mask operations at this late stage as we have
  mask operations available that don't set flags.
- The taint variable contains all-ones when no miss-speculation is detected,
  and contains all-zeros when miss-speculation is detected. Therefore, when
  masking, an AND instruction (which only changes the register to be masked,
  no other side effects) can easily be inserted anywhere that's needed.
- The tracking of miss-speculation is done by using a data-flow conditional
  select instruction (CSEL) to evaluate the flags that were also used to
  make conditional branch direction decisions. Speculation of the CSEL
  instruction can be limited with a CSDB instruction - so the combination of
  CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
  aren't speculated. When conditional branch direction gets miss-speculated,
  the semantics of the inserted CSEL instruction is such that the taint
  register will contain all zero bits.
  One key requirement for this to work is that the conditional branch is
  followed by an execution of the CSEL instruction, where the CSEL
  instruction needs to use the same flags status as the conditional branch.
  This means that the conditional branches must not be implemented as one
  of the AArch64 conditional branches that do not use the flags as input
  (CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
  selectors to not produce these instructions when speculation hardening
  is enabled. This pass will assert if it does encounter such an instruction.
- On function call boundaries, the miss-speculation state is transferred from
  the taint register X16 to be encoded in the SP register as value 0.

Future extensions/improvements could be:
- Implement this functionality using full speculation barriers, akin to the
  x86-slh-lfence option. This may be more useful for the intrinsics-based
  approach than for the SLH approach to masking.
  Note that this pass already inserts the full speculation barriers if the
  function for some niche reason makes use of X16/W16.
- no indirect branch misprediction gets protected/instrumented; but this
  could be done for some indirect branches, such as switch jump tables.

Differential Revision: https://reviews.llvm.org/D54896

llvm-svn: 349456
This commit is contained in:
Kristof Beyls 2018-12-18 08:50:02 +00:00
parent c2b513c47d
commit 12ed09fb71
14 changed files with 789 additions and 9 deletions

View File

@ -39,6 +39,7 @@ FunctionPass *createAArch64ISelDag(AArch64TargetMachine &TM,
CodeGenOpt::Level OptLevel);
FunctionPass *createAArch64StorePairSuppressPass();
FunctionPass *createAArch64ExpandPseudoPass();
FunctionPass *createAArch64SpeculationHardeningPass();
FunctionPass *createAArch64LoadStoreOptimizationPass();
FunctionPass *createAArch64SIMDInstrOptPass();
ModulePass *createAArch64PromoteConstantPass();
@ -68,6 +69,7 @@ void initializeAArch64ConditionalComparesPass(PassRegistry&);
void initializeAArch64ConditionOptimizerPass(PassRegistry&);
void initializeAArch64DeadRegisterDefinitionsPass(PassRegistry&);
void initializeAArch64ExpandPseudoPass(PassRegistry&);
void initializeAArch64SpeculationHardeningPass(PassRegistry&);
void initializeAArch64LoadStoreOptPass(PassRegistry&);
void initializeAArch64SIMDInstrOptPass(PassRegistry&);
void initializeAArch64PreLegalizerCombinerPass(PassRegistry&);

View File

@ -2258,6 +2258,13 @@ static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
/// Try to emit a combined compare-and-branch instruction.
bool AArch64FastISel::emitCompareAndBranch(const BranchInst *BI) {
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
// will not be produced, as they are conditional branch instructions that do
// not set flags.
if (FuncInfo.MF->getFunction().hasFnAttribute(
Attribute::SpeculativeLoadHardening))
return false;
assert(isa<CmpInst>(BI->getCondition()) && "Expected cmp instruction");
const CmpInst *CI = cast<CmpInst>(BI->getCondition());
CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);

View File

@ -4343,6 +4343,13 @@ SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
MachineFunction &MF = DAG.getMachineFunction();
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
// will not be produced, as they are conditional branch instructions that do
// not set flags.
bool ProduceNonFlagSettingCondBr =
!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
// Handle f128 first, since lowering it will result in comparing the return
// value of a libcall against zero, which is just what the rest of LowerBR_CC
// is expecting to deal with.
@ -4385,7 +4392,7 @@ SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
// If the RHS of the comparison is zero, we can potentially fold this
// to a specialized branch.
const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
if (RHSC && RHSC->getZExtValue() == 0) {
if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
if (CC == ISD::SETEQ) {
// See if we can use a TBZ to fold in an AND as well.
// TBZ has a smaller branch displacement than CBZ. If the offset is
@ -4428,7 +4435,7 @@ SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
}
}
if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
LHS.getOpcode() != ISD::AND) {
LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
// Don't combine AND since emitComparison converts the AND to an ANDS
// (a.k.a. TST) and the test in the test bit and branch instruction
// becomes redundant. This would also increase register pressure.
@ -10807,6 +10814,13 @@ SDValue performCONDCombine(SDNode *N,
static SDValue performBRCONDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
// will not be produced, as they are conditional branch instructions that do
// not set flags.
if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
return SDValue();
if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
N = NV.getNode();
SDValue Chain = N->getOperand(0);

View File

@ -964,6 +964,13 @@ bool AArch64InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
const MachineFunction &MF) const {
if (TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF))
return true;
switch (MI.getOpcode()) {
case AArch64::DSB:
case AArch64::ISB:
// DSB and ISB also are scheduling barriers.
return true;
default:;
}
return isSEHInstruction(MI);
}

View File

@ -788,16 +788,36 @@ bool AArch64InstructionSelector::select(MachineInstr &I,
const unsigned CondReg = I.getOperand(0).getReg();
MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
if (selectCompareBranch(I, MF, MRI))
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
// instructions will not be produced, as they are conditional branch
// instructions that do not set flags.
bool ProduceNonFlagSettingCondBr =
!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
if (ProduceNonFlagSettingCondBr && selectCompareBranch(I, MF, MRI))
return true;
auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::TBNZW))
.addUse(CondReg)
.addImm(/*bit offset=*/0)
.addMBB(DestMBB);
if (ProduceNonFlagSettingCondBr) {
auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::TBNZW))
.addUse(CondReg)
.addImm(/*bit offset=*/0)
.addMBB(DestMBB);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MIB.getInstr(), TII, TRI, RBI);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MIB.getInstr(), TII, TRI, RBI);
} else {
auto CMP = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ANDSWri))
.addDef(AArch64::WZR)
.addUse(CondReg)
.addImm(1);
constrainSelectedInstRegOperands(*CMP.getInstr(), TII, TRI, RBI);
auto Bcc =
BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::Bcc))
.addImm(AArch64CC::EQ)
.addMBB(DestMBB);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*Bcc.getInstr(), TII, TRI, RBI);
}
}
case TargetOpcode::G_BRINDIRECT: {

View File

@ -203,6 +203,10 @@ AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
if (hasBasePointer(MF))
markSuperRegs(Reserved, AArch64::W19);
// SLH uses register W16/X16 as the taint register.
if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
markSuperRegs(Reserved, AArch64::W16);
assert(checkAllSuperRegsMarked(Reserved));
return Reserved;
}

View File

@ -0,0 +1,368 @@
//===- AArch64SpeculationHardening.cpp - Harden Against Missspeculation --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass to insert code to mitigate against side channel
// vulnerabilities that may happen under control flow miss-speculation.
//
// The pass implements tracking of control flow miss-speculation into a "taint"
// register. That taint register can then be used to mask off registers with
// sensitive data when executing under miss-speculation, a.k.a. "transient
// execution".
// This pass is aimed at mitigating against SpectreV1-style vulnarabilities.
//
// At the moment, it implements the tracking of miss-speculation of control
// flow into a taint register, but doesn't implement a mechanism yet to then
// use that taint register to mask of vulnerable data in registers (something
// for a follow-on improvement). Possible strategies to mask out vulnerable
// data that can be implemented on top of this are:
// - speculative load hardening to automatically mask of data loaded
// in registers.
// - using intrinsics to mask of data in registers as indicated by the
// programmer (see https://lwn.net/Articles/759423/).
//
// For AArch64, the following implementation choices are made below.
// Some of these are different than the implementation choices made in
// the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
// the instruction set characteristics result in different trade-offs.
// - The speculation hardening is done after register allocation. With a
// relative abundance of registers, one register is reserved (X16) to be
// the taint register. X16 is expected to not clash with other register
// reservation mechanisms with very high probability because:
// . The AArch64 ABI doesn't guarantee X16 to be retained across any call.
// . The only way to request X16 to be used as a programmer is through
// inline assembly. In the rare case a function explicitly demands to
// use X16/W16, this pass falls back to hardening against speculation
// by inserting a DSB SYS/ISB barrier pair which will prevent control
// flow speculation.
// - It is easy to insert mask operations at this late stage as we have
// mask operations available that don't set flags.
// - The taint variable contains all-ones when no miss-speculation is detected,
// and contains all-zeros when miss-speculation is detected. Therefore, when
// masking, an AND instruction (which only changes the register to be masked,
// no other side effects) can easily be inserted anywhere that's needed.
// - The tracking of miss-speculation is done by using a data-flow conditional
// select instruction (CSEL) to evaluate the flags that were also used to
// make conditional branch direction decisions. Speculation of the CSEL
// instruction can be limited with a CSDB instruction - so the combination of
// CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
// aren't speculated. When conditional branch direction gets miss-speculated,
// the semantics of the inserted CSEL instruction is such that the taint
// register will contain all zero bits.
// One key requirement for this to work is that the conditional branch is
// followed by an execution of the CSEL instruction, where the CSEL
// instruction needs to use the same flags status as the conditional branch.
// This means that the conditional branches must not be implemented as one
// of the AArch64 conditional branches that do not use the flags as input
// (CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
// selectors to not produce these instructions when speculation hardening
// is enabled. This pass will assert if it does encounter such an instruction.
// - On function call boundaries, the miss-speculation state is transferred from
// the taint register X16 to be encoded in the SP register as value 0.
//
// Future extensions/improvements could be:
// - Implement this functionality using full speculation barriers, akin to the
// x86-slh-lfence option. This may be more useful for the intrinsics-based
// approach than for the SLH approach to masking.
// Note that this pass already inserts the full speculation barriers if the
// function for some niche reason makes use of X16/W16.
// - no indirect branch misprediction gets protected/instrumented; but this
// could be done for some indirect branches, such as switch jump tables.
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
#include "AArch64Subtarget.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "aarch64-speculation-hardening"
#define AARCH64_SPECULATION_HARDENING_NAME "AArch64 speculation hardening pass"
namespace {
class AArch64SpeculationHardening : public MachineFunctionPass {
public:
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
static char ID;
AArch64SpeculationHardening() : MachineFunctionPass(ID) {
initializeAArch64SpeculationHardeningPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &Fn) override;
StringRef getPassName() const override {
return AARCH64_SPECULATION_HARDENING_NAME;
}
private:
unsigned MisspeculatingTaintReg;
bool UseControlFlowSpeculationBarrier;
bool functionUsesHardeningRegister(MachineFunction &MF) const;
bool instrumentControlFlow(MachineBasicBlock &MBB);
bool endsWithCondControlFlow(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
AArch64CC::CondCode &CondCode) const;
void insertTrackingCode(MachineBasicBlock &SplitEdgeBB,
AArch64CC::CondCode &CondCode, DebugLoc DL) const;
void insertSPToRegTaintPropagation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MBBI) const;
void insertRegToSPTaintPropagation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MBBI,
unsigned TmpReg) const;
};
} // end anonymous namespace
char AArch64SpeculationHardening::ID = 0;
INITIALIZE_PASS(AArch64SpeculationHardening, "aarch64-speculation-hardening",
AARCH64_SPECULATION_HARDENING_NAME, false, false)
bool AArch64SpeculationHardening::endsWithCondControlFlow(
MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
AArch64CC::CondCode &CondCode) const {
SmallVector<MachineOperand, 1> analyzeBranchCondCode;
if (TII->analyzeBranch(MBB, TBB, FBB, analyzeBranchCondCode, false))
return false;
// Ignore if the BB ends in an unconditional branch/fall-through.
if (analyzeBranchCondCode.empty())
return false;
// If the BB ends with a single conditional branch, FBB will be set to
// nullptr (see API docs for TII->analyzeBranch). For the rest of the
// analysis we want the FBB block to be set always.
assert(TBB != nullptr);
if (FBB == nullptr)
FBB = MBB.getFallThrough();
// If both the true and the false condition jump to the same basic block,
// there isn't need for any protection - whether the branch is speculated
// correctly or not, we end up executing the architecturally correct code.
if (TBB == FBB)
return false;
assert(MBB.succ_size() == 2);
// translate analyzeBranchCondCode to CondCode.
assert(analyzeBranchCondCode.size() == 1 && "unknown Cond array format");
CondCode = AArch64CC::CondCode(analyzeBranchCondCode[0].getImm());
return true;
}
void AArch64SpeculationHardening::insertTrackingCode(
MachineBasicBlock &SplitEdgeBB, AArch64CC::CondCode &CondCode,
DebugLoc DL) const {
if (UseControlFlowSpeculationBarrier) {
// insert full control flow speculation barrier (DSB SYS + ISB)
BuildMI(SplitEdgeBB, SplitEdgeBB.begin(), DL, TII->get(AArch64::ISB))
.addImm(0xf);
BuildMI(SplitEdgeBB, SplitEdgeBB.begin(), DL, TII->get(AArch64::DSB))
.addImm(0xf);
} else {
BuildMI(SplitEdgeBB, SplitEdgeBB.begin(), DL, TII->get(AArch64::CSELXr))
.addDef(MisspeculatingTaintReg)
.addUse(MisspeculatingTaintReg)
.addUse(AArch64::XZR)
.addImm(CondCode);
SplitEdgeBB.addLiveIn(AArch64::NZCV);
}
}
bool AArch64SpeculationHardening::instrumentControlFlow(
MachineBasicBlock &MBB) {
LLVM_DEBUG(dbgs() << "Instrument control flow tracking on MBB: " << MBB);
bool Modified = false;
MachineBasicBlock *TBB = nullptr;
MachineBasicBlock *FBB = nullptr;
AArch64CC::CondCode CondCode;
if (!endsWithCondControlFlow(MBB, TBB, FBB, CondCode)) {
LLVM_DEBUG(dbgs() << "... doesn't end with CondControlFlow\n");
} else {
// Now insert:
// "CSEL MisSpeculatingR, MisSpeculatingR, XZR, cond" on the True edge and
// "CSEL MisSpeculatingR, MisSpeculatingR, XZR, Invertcond" on the False
// edge.
AArch64CC::CondCode InvCondCode = AArch64CC::getInvertedCondCode(CondCode);
MachineBasicBlock *SplitEdgeTBB = MBB.SplitCriticalEdge(TBB, *this);
MachineBasicBlock *SplitEdgeFBB = MBB.SplitCriticalEdge(FBB, *this);
assert(SplitEdgeTBB != nullptr);
assert(SplitEdgeFBB != nullptr);
DebugLoc DL;
if (MBB.instr_end() != MBB.instr_begin())
DL = (--MBB.instr_end())->getDebugLoc();
insertTrackingCode(*SplitEdgeTBB, CondCode, DL);
insertTrackingCode(*SplitEdgeFBB, InvCondCode, DL);
LLVM_DEBUG(dbgs() << "SplitEdgeTBB: " << *SplitEdgeTBB << "\n");
LLVM_DEBUG(dbgs() << "SplitEdgeFBB: " << *SplitEdgeFBB << "\n");
Modified = true;
}
// Perform correct code generation around function calls and before returns.
{
SmallVector<MachineInstr *, 4> ReturnInstructions;
SmallVector<MachineInstr *, 4> CallInstructions;
for (MachineInstr &MI : MBB) {
if (MI.isReturn())
ReturnInstructions.push_back(&MI);
else if (MI.isCall())
CallInstructions.push_back(&MI);
}
Modified |=
(ReturnInstructions.size() > 0) || (CallInstructions.size() > 0);
for (MachineInstr *Return : ReturnInstructions)
insertRegToSPTaintPropagation(Return->getParent(), Return, AArch64::X17);
for (MachineInstr *Call : CallInstructions) {
// Just after the call:
MachineBasicBlock::iterator i = Call;
i++;
insertSPToRegTaintPropagation(Call->getParent(), i);
// Just before the call:
insertRegToSPTaintPropagation(Call->getParent(), Call, AArch64::X17);
}
}
return Modified;
}
void AArch64SpeculationHardening::insertSPToRegTaintPropagation(
MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) const {
// If full control flow speculation barriers are used, emit a control flow
// barrier to block potential miss-speculation in flight coming in to this
// function.
if (UseControlFlowSpeculationBarrier) {
// insert full control flow speculation barrier (DSB SYS + ISB)
BuildMI(*MBB, MBBI, DebugLoc(), TII->get(AArch64::DSB)).addImm(0xf);
BuildMI(*MBB, MBBI, DebugLoc(), TII->get(AArch64::ISB)).addImm(0xf);
return;
}
// CMP SP, #0 === SUBS xzr, SP, #0
BuildMI(*MBB, MBBI, DebugLoc(), TII->get(AArch64::SUBSXri))
.addDef(AArch64::XZR)
.addUse(AArch64::SP)
.addImm(0)
.addImm(0); // no shift
// CSETM x16, NE === CSINV x16, xzr, xzr, EQ
BuildMI(*MBB, MBBI, DebugLoc(), TII->get(AArch64::CSINVXr))
.addDef(MisspeculatingTaintReg)
.addUse(AArch64::XZR)
.addUse(AArch64::XZR)
.addImm(AArch64CC::EQ);
}
void AArch64SpeculationHardening::insertRegToSPTaintPropagation(
MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
unsigned TmpReg) const {
// If full control flow speculation barriers are used, there will not be
// miss-speculation when returning from this function, and therefore, also
// no need to encode potential miss-speculation into the stack pointer.
if (UseControlFlowSpeculationBarrier)
return;
// mov Xtmp, SP === ADD Xtmp, SP, #0
BuildMI(*MBB, MBBI, DebugLoc(), TII->get(AArch64::ADDXri))
.addDef(TmpReg)
.addUse(AArch64::SP)
.addImm(0)
.addImm(0); // no shift
// and Xtmp, Xtmp, TaintReg === AND Xtmp, Xtmp, TaintReg, #0
BuildMI(*MBB, MBBI, DebugLoc(), TII->get(AArch64::ANDXrs))
.addDef(TmpReg, RegState::Renamable)
.addUse(TmpReg, RegState::Kill | RegState::Renamable)
.addUse(MisspeculatingTaintReg, RegState::Kill)
.addImm(0);
// mov SP, Xtmp === ADD SP, Xtmp, #0
BuildMI(*MBB, MBBI, DebugLoc(), TII->get(AArch64::ADDXri))
.addDef(AArch64::SP)
.addUse(TmpReg, RegState::Kill)
.addImm(0)
.addImm(0); // no shift
}
bool AArch64SpeculationHardening::functionUsesHardeningRegister(
MachineFunction &MF) const {
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
// treat function calls specially, as the hardening register does not
// need to remain live across function calls.
if (MI.isCall())
continue;
if (MI.readsRegister(MisspeculatingTaintReg, TRI) ||
MI.modifiesRegister(MisspeculatingTaintReg, TRI))
return true;
}
}
return false;
}
bool AArch64SpeculationHardening::runOnMachineFunction(MachineFunction &MF) {
if (!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
return false;
MisspeculatingTaintReg = AArch64::X16;
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getSubtarget().getRegisterInfo();
bool Modified = false;
UseControlFlowSpeculationBarrier = functionUsesHardeningRegister(MF);
// Instrument control flow speculation tracking, if requested.
LLVM_DEBUG(
dbgs()
<< "***** AArch64SpeculationHardening - track control flow *****\n");
// 1. Add instrumentation code to function entry and exits.
SmallVector<MachineBasicBlock *, 2> EntryBlocks;
EntryBlocks.push_back(&MF.front());
for (const LandingPadInfo &LPI : MF.getLandingPads())
EntryBlocks.push_back(LPI.LandingPadBlock);
for (auto Entry : EntryBlocks)
insertSPToRegTaintPropagation(
Entry, Entry->SkipPHIsLabelsAndDebug(Entry->begin()));
// 2. Add instrumentation code to every basic block.
for (auto &MBB : MF)
Modified |= instrumentControlFlow(MBB);
return Modified;
}
/// \brief Returns an instance of the pseudo instruction expansion pass.
FunctionPass *llvm::createAArch64SpeculationHardeningPass() {
return new AArch64SpeculationHardening();
}

View File

@ -177,6 +177,7 @@ extern "C" void LLVMInitializeAArch64Target() {
initializeFalkorHWPFFixPass(*PR);
initializeFalkorMarkStridedAccessesLegacyPass(*PR);
initializeLDTLSCleanupPass(*PR);
initializeAArch64SpeculationHardeningPass(*PR);
}
//===----------------------------------------------------------------------===//
@ -550,6 +551,16 @@ void AArch64PassConfig::addPreSched2() {
if (TM->getOptLevel() != CodeGenOpt::None) {
if (EnableLoadStoreOpt)
addPass(createAArch64LoadStoreOptimizationPass());
}
// The AArch64SpeculationHardeningPass destroys dominator tree and natural
// loop info, which is needed for the FalkorHWPFFixPass and also later on.
// Therefore, run the AArch64SpeculationHardeningPass before the
// FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop
// info.
addPass(createAArch64SpeculationHardeningPass());
if (TM->getOptLevel() != CodeGenOpt::None) {
if (EnableFalkorHWPFFix)
addPass(createFalkorHWPFFixPass());
}

View File

@ -52,6 +52,7 @@ add_llvm_target(AArch64CodeGen
AArch64RegisterBankInfo.cpp
AArch64RegisterInfo.cpp
AArch64SelectionDAGInfo.cpp
AArch64SpeculationHardening.cpp
AArch64StorePairSuppress.cpp
AArch64Subtarget.cpp
AArch64TargetMachine.cpp

View File

@ -50,6 +50,7 @@
; CHECK-NEXT: Prologue/Epilogue Insertion & Frame Finalization
; CHECK-NEXT: Post-RA pseudo instruction expansion pass
; CHECK-NEXT: AArch64 pseudo instruction expansion pass
; CHECK-NEXT: AArch64 speculation hardening pass
; CHECK-NEXT: Analyze Machine Code For Garbage Collection
; CHECK-NEXT: Branch relaxation pass
; CHECK-NEXT: AArch64 Branch Targets

View File

@ -146,6 +146,7 @@
; CHECK-NEXT: Post-RA pseudo instruction expansion pass
; CHECK-NEXT: AArch64 pseudo instruction expansion pass
; CHECK-NEXT: AArch64 load / store optimization pass
; CHECK-NEXT: AArch64 speculation hardening pass
; CHECK-NEXT: MachineDominator Tree Construction
; CHECK-NEXT: Machine Natural Loop Construction
; CHECK-NEXT: Falkor HW Prefetch Fix Late Phase

View File

@ -0,0 +1,71 @@
; RUN: sed -e 's/SLHATTR/speculative_load_hardening/' %s | llc -verify-machineinstrs -mtriple=aarch64-none-linux-gnu | FileCheck %s --check-prefixes=CHECK,SLH --dump-input-on-failure
; RUN: sed -e 's/SLHATTR//' %s | llc -verify-machineinstrs -mtriple=aarch64-none-linux-gnu | FileCheck %s --check-prefixes=CHECK,NOSLH --dump-input-on-failure
declare i64 @g(i64, i64) local_unnamed_addr
define i64 @f_using_reserved_reg_x16(i64 %a, i64 %b) local_unnamed_addr SLHATTR {
; CHECK-LABEL: f_using_reserved_reg_x16
; SLH: dsb sy
; SLH: isb
; NOSLH-NOT: dsb sy
; NOSLH-NOT: isb
entry:
%cmp = icmp ugt i64 %a, %b
br i1 %cmp, label %if.then, label %cleanup
; CHECK: b.ls
; SLH: dsb sy
; SLH: isb
; NOSLH-NOT: dsb sy
; NOSLH-NOT: isb
if.then:
%0 = tail call i64 asm "autia1716", "={x17},{x16},0"(i64 %b, i64 %a)
; CHECK: bl g
; SLH: dsb sy
; SLH: isb
; NOSLH-NOT: dsb sy
; NOSLH-NOT: isb
; CHECK: ret
%call = tail call i64 @g(i64 %a, i64 %b) #3
%add = add i64 %call, %0
br label %cleanup
cleanup:
; SLH: dsb sy
; SLH: isb
; NOSLH-NOT: dsb sy
; NOSLH-NOT: isb
; SLH: ret
%retval.0 = phi i64 [ %add, %if.then ], [ %b, %entry ]
ret i64 %retval.0
}
define i32 @f_clobbered_reg_w16(i32 %a, i32 %b) local_unnamed_addr SLHATTR {
; CHECK-LABEL: f_clobbered_reg_w16
entry:
; SLH: dsb sy
; SLH: isb
; NOSLH-NOT: dsb sy
; NOSLH-NOT: isb
%cmp = icmp sgt i32 %a, %b
br i1 %cmp, label %if.then, label %if.end
; CHECK: b.le
if.then:
; SLH: dsb sy
; SLH: isb
; NOSLH-NOT: dsb sy
; NOSLH-NOT: isb
; CHECK: mov w16, w0
tail call void asm sideeffect "mov w16, ${0:w}", "r,~{w16}"(i32 %a)
br label %if.end
; SLH: ret
if.end:
%add = add nsw i32 %b, %a
ret i32 %add
; SLH: dsb sy
; SLH: isb
; NOSLH-NOT: dsb sy
; NOSLH-NOT: isb
; SLH: ret
}

View File

@ -0,0 +1,156 @@
; RUN: sed -e 's/SLHATTR/speculative_load_hardening/' %s | llc -verify-machineinstrs -mtriple=aarch64-none-linux-gnu | FileCheck %s --check-prefixes=CHECK,SLH --dump-input-on-failure
; RUN: sed -e 's/SLHATTR//' %s | llc -verify-machineinstrs -mtriple=aarch64-none-linux-gnu | FileCheck %s --check-prefixes=CHECK,NOSLH --dump-input-on-failure
; RUN: sed -e 's/SLHATTR/speculative_load_hardening/' %s | llc -verify-machineinstrs -mtriple=aarch64-none-linux-gnu -global-isel | FileCheck %s --check-prefixes=CHECK,SLH --dump-input-on-failure
; RUN sed -e 's/SLHATTR//' %s | llc -verify-machineinstrs -mtriple=aarch64-none-linux-gnu -global-isel | FileCheck %s --check-prefixes=CHECK,NOSLH --dump-input-on-failure
; RUN: sed -e 's/SLHATTR/speculative_load_hardening/' %s | llc -verify-machineinstrs -mtriple=aarch64-none-linux-gnu -fast-isel | FileCheck %s --check-prefixes=CHECK,SLH --dump-input-on-failure
; RUN: sed -e 's/SLHATTR//' %s | llc -verify-machineinstrs -mtriple=aarch64-none-linux-gnu -fast-isel | FileCheck %s --check-prefixes=CHECK,NOSLH --dump-input-on-failure
define i32 @f(i8* nocapture readonly %p, i32 %i, i32 %N) local_unnamed_addr SLHATTR {
; CHECK-LABEL: f
entry:
; SLH: cmp sp, #0
; SLH: csetm x16, ne
; NOSLH-NOT: cmp sp, #0
; NOSLH-NOT: csetm x16, ne
; SLH: mov x17, sp
; SLH: and x17, x17, x16
; SLH: mov sp, x17
; NOSLH-NOT: mov x17, sp
; NOSLH-NOT: and x17, x17, x16
; NOSLH-NOT: mov sp, x17
%call = tail call i32 @tail_callee(i32 %i)
; SLH: cmp sp, #0
; SLH: csetm x16, ne
; NOSLH-NOT: cmp sp, #0
; NOSLH-NOT: csetm x16, ne
%cmp = icmp slt i32 %call, %N
br i1 %cmp, label %if.then, label %return
; GlobalISel lowers the branch to a b.ne sometimes instead of b.ge as expected..
; CHECK: b.[[COND:(ge)|(lt)|(ne)]]
if.then: ; preds = %entry
; NOSLH-NOT: csel x16, x16, xzr, {{(lt)|(ge)|(eq)}}
; SLH-DAG: csel x16, x16, xzr, {{(lt)|(ge)|(eq)}}
%idxprom = sext i32 %i to i64
%arrayidx = getelementptr inbounds i8, i8* %p, i64 %idxprom
%0 = load i8, i8* %arrayidx, align 1
; CHECK-DAG: ldrb [[LOADED:w[0-9]+]],
%conv = zext i8 %0 to i32
br label %return
; SLH-DAG: csel x16, x16, xzr, [[COND]]
; NOSLH-NOT: csel x16, x16, xzr, [[COND]]
return: ; preds = %entry, %if.then
%retval.0 = phi i32 [ %conv, %if.then ], [ 0, %entry ]
; SLH: mov x17, sp
; SLH: and x17, x17, x16
; SLH: mov sp, x17
; NOSLH-NOT: mov x17, sp
; NOSLH-NOT: and x17, x17, x16
; NOSLH-NOT: mov sp, x17
ret i32 %retval.0
}
; Make sure that for a tail call, taint doesn't get put into SP twice.
define i32 @tail_caller(i32 %a) local_unnamed_addr SLHATTR {
; CHECK-LABEL: tail_caller:
; SLH: mov x17, sp
; SLH: and x17, x17, x16
; SLH: mov sp, x17
; NOSLH-NOT: mov x17, sp
; NOSLH-NOT: and x17, x17, x16
; NOSLH-NOT: mov sp, x17
; GlobalISel doesn't optimize tail calls (yet?), so only check that
; cross-call taint register setup code is missing if a tail call was
; actually produced.
; SLH: {{(bl tail_callee[[:space:]] cmp sp, #0)|(b tail_callee)}}
; SLH-NOT: cmp sp, #0
%call = tail call i32 @tail_callee(i32 %a)
ret i32 %call
}
declare i32 @tail_callee(i32) local_unnamed_addr
; Verify that no cb(n)z/tb(n)z instructions are produced when implementing
; SLH
define i32 @compare_branch_zero(i32, i32) SLHATTR {
; CHECK-LABEL: compare_branch_zero
%3 = icmp eq i32 %0, 0
br i1 %3, label %then, label %else
;SLH-NOT: cb{{n?}}z
;NOSLH: cb{{n?}}z
then:
%4 = sdiv i32 5, %1
ret i32 %4
else:
%5 = sdiv i32 %1, %0
ret i32 %5
}
define i32 @test_branch_zero(i32, i32) SLHATTR {
; CHECK-LABEL: test_branch_zero
%3 = and i32 %0, 16
%4 = icmp eq i32 %3, 0
br i1 %4, label %then, label %else
;SLH-NOT: tb{{n?}}z
;NOSLH: tb{{n?}}z
then:
%5 = sdiv i32 5, %1
ret i32 %5
else:
%6 = sdiv i32 %1, %0
ret i32 %6
}
define i32 @landingpad(i32 %l0, i32 %l1) SLHATTR personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
; CHECK-LABEL: landingpad
entry:
; SLH: cmp sp, #0
; SLH: csetm x16, ne
; NOSLH-NOT: cmp sp, #0
; NOSLH-NOT: csetm x16, ne
; CHECK: bl _Z10throwing_fv
invoke void @_Z10throwing_fv()
to label %exit unwind label %lpad
; SLH: cmp sp, #0
; SLH: csetm x16, ne
lpad:
%l4 = landingpad { i8*, i32 }
catch i8* null
; SLH: cmp sp, #0
; SLH: csetm x16, ne
; NOSLH-NOT: cmp sp, #0
; NOSLH-NOT: csetm x16, ne
%l5 = extractvalue { i8*, i32 } %l4, 0
%l6 = tail call i8* @__cxa_begin_catch(i8* %l5)
%l7 = icmp sgt i32 %l0, %l1
br i1 %l7, label %then, label %else
; GlobalISel lowers the branch to a b.ne sometimes instead of b.ge as expected..
; CHECK: b.[[COND:(le)|(gt)|(ne)]]
then:
; SLH-DAG: csel x16, x16, xzr, [[COND]]
%l9 = sdiv i32 %l0, %l1
br label %postif
else:
; SLH-DAG: csel x16, x16, xzr, {{(gt)|(le)|(eq)}}
%l11 = sdiv i32 %l1, %l0
br label %postif
postif:
%l13 = phi i32 [ %l9, %then ], [ %l11, %else ]
tail call void @__cxa_end_catch()
br label %exit
exit:
%l15 = phi i32 [ %l13, %postif ], [ 0, %entry ]
ret i32 %l15
}
declare i32 @__gxx_personality_v0(...)
declare void @_Z10throwing_fv() local_unnamed_addr
declare i8* @__cxa_begin_catch(i8*) local_unnamed_addr
declare void @__cxa_end_catch() local_unnamed_addr

View File

@ -0,0 +1,117 @@
# RUN: llc -verify-machineinstrs -mtriple=aarch64-none-linux-gnu \
# RUN: -start-before aarch64-speculation-hardening -o - %s \
# RUN: | FileCheck %s --dump-input-on-failure
# Check that the speculation hardening pass generates code as expected for
# basic blocks ending with a variety of branch patterns:
# - (1) no branches (fallthrough)
# - (2) one unconditional branch
# - (3) one conditional branch + fall-through
# - (4) one conditional branch + one unconditional branch
# - other direct branches don't seem to be generated by the AArch64 codegen
--- |
define void @nobranch_fallthrough(i32 %a, i32 %b) speculative_load_hardening {
ret void
}
define void @uncondbranch(i32 %a, i32 %b) speculative_load_hardening {
ret void
}
define void @condbranch_fallthrough(i32 %a, i32 %b) speculative_load_hardening {
ret void
}
define void @condbranch_uncondbranch(i32 %a, i32 %b) speculative_load_hardening {
ret void
}
define void @indirectbranch(i32 %a, i32 %b) speculative_load_hardening {
ret void
}
...
---
name: nobranch_fallthrough
tracksRegLiveness: true
body: |
; CHECK-LABEL: nobranch_fallthrough
bb.0:
successors: %bb.1
liveins: $w0, $w1
; CHECK-NOT: csel
bb.1:
liveins: $w0
RET undef $lr, implicit $w0
...
---
name: uncondbranch
tracksRegLiveness: true
body: |
; CHECK-LABEL: uncondbranch
bb.0:
successors: %bb.1
liveins: $w0, $w1
B %bb.1
; CHECK-NOT: csel
bb.1:
liveins: $w0
RET undef $lr, implicit $w0
...
---
name: condbranch_fallthrough
tracksRegLiveness: true
body: |
; CHECK-LABEL: condbranch_fallthrough
bb.0:
successors: %bb.1, %bb.2
liveins: $w0, $w1
$wzr = SUBSWrs renamable $w0, renamable $w1, 0, implicit-def $nzcv, implicit-def $nzcv
Bcc 11, %bb.2, implicit $nzcv
; CHECK: b.lt [[BB_LT_T:\.LBB[0-9_]+]]
bb.1:
liveins: $nzcv, $w0
; CHECK: csel x16, x16, xzr, ge
RET undef $lr, implicit $w0
bb.2:
liveins: $nzcv, $w0
; CHECK: csel x16, x16, xzr, lt
RET undef $lr, implicit $w0
...
---
name: condbranch_uncondbranch
tracksRegLiveness: true
body: |
; CHECK-LABEL: condbranch_uncondbranch
bb.0:
successors: %bb.1, %bb.2
liveins: $w0, $w1
$wzr = SUBSWrs renamable $w0, renamable $w1, 0, implicit-def $nzcv, implicit-def $nzcv
Bcc 11, %bb.2, implicit $nzcv
B %bb.1, implicit $nzcv
; CHECK: b.lt [[BB_LT_T:\.LBB[0-9_]+]]
bb.1:
liveins: $nzcv, $w0
; CHECK: csel x16, x16, xzr, ge
RET undef $lr, implicit $w0
bb.2:
liveins: $nzcv, $w0
; CHECK: csel x16, x16, xzr, lt
RET undef $lr, implicit $w0
...
---
name: indirectbranch
tracksRegLiveness: true
body: |
; Check that no instrumentation is done on indirect branches (for now).
; CHECK-LABEL: indirectbranch
bb.0:
successors: %bb.1, %bb.2
liveins: $x0
BR $x0
bb.1:
liveins: $x0
; CHECK-NOT: csel
RET undef $lr, implicit $x0
bb.2:
liveins: $x0
; CHECK-NOT: csel
RET undef $lr, implicit $x0
...