[WinEH] Add CoreCLR EH table emission

Summary:
Emit the handler and clause locations immediately after the standard
xdata.
Clauses are emitted in the same order and format used to communiate them
to the CLR Execution Engine.
Add a lit test to verify correct table generation on a small but
interesting example function.

Reviewers: majnemer, andrew.w.kaylor, rnk

Subscribers: pgavlin, AndyAyers, llvm-commits

Differential Revision: http://reviews.llvm.org/D13451

llvm-svn: 250219
This commit is contained in:
Joseph Tremoulet 2015-10-13 20:18:27 +00:00
parent 95eb9cab96
commit 13827fa654
3 changed files with 521 additions and 3 deletions

View File

@ -139,6 +139,8 @@ void WinException::endFunction(const MachineFunction *MF) {
emitExceptHandlerTable(MF);
else if (Per == EHPersonality::MSVC_CXX)
emitCXXFrameHandler3Table(MF);
else if (Per == EHPersonality::CoreCLR)
emitCLRExceptionTable(MF);
else
emitExceptionTable();
@ -285,6 +287,20 @@ const MCExpr *WinException::getLabelPlusOne(const MCSymbol *Label) {
Asm->OutContext);
}
const MCExpr *WinException::getOffset(const MCSymbol *OffsetOf,
const MCSymbol *OffsetFrom) {
return MCBinaryExpr::createSub(
MCSymbolRefExpr::create(OffsetOf, Asm->OutContext),
MCSymbolRefExpr::create(OffsetFrom, Asm->OutContext), Asm->OutContext);
}
const MCExpr *WinException::getOffsetPlusOne(const MCSymbol *OffsetOf,
const MCSymbol *OffsetFrom) {
return MCBinaryExpr::createAdd(getOffset(OffsetOf, OffsetFrom),
MCConstantExpr::create(1, Asm->OutContext),
Asm->OutContext);
}
int WinException::getFrameIndexOffset(int FrameIndex) {
const TargetFrameLowering &TFI = *Asm->MF->getSubtarget().getFrameLowering();
unsigned UnusedReg;
@ -509,9 +525,7 @@ void WinException::emitCSpecificHandlerTable(const MachineFunction *MF) {
Ctx.createTempSymbol("lsda_begin", /*AlwaysAddSuffix=*/true);
MCSymbol *TableEnd =
Ctx.createTempSymbol("lsda_end", /*AlwaysAddSuffix=*/true);
const MCExpr *LabelDiff =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TableEnd, Ctx),
MCSymbolRefExpr::create(TableBegin, Ctx), Ctx);
const MCExpr *LabelDiff = getOffset(TableEnd, TableBegin);
const MCExpr *EntrySize = MCConstantExpr::create(16, Ctx);
const MCExpr *EntryCount = MCBinaryExpr::createDiv(LabelDiff, EntrySize, Ctx);
OS.EmitValue(EntryCount, 4);
@ -856,3 +870,263 @@ void WinException::emitExceptHandlerTable(const MachineFunction *MF) {
OS.EmitValue(create32bitRef(ExceptOrFinally), 4); // Except/Finally
}
}
static int getRank(WinEHFuncInfo &FuncInfo, int State) {
int Rank = 0;
while (State != -1) {
++Rank;
State = FuncInfo.ClrEHUnwindMap[State].Parent;
}
return Rank;
}
static int getAncestor(WinEHFuncInfo &FuncInfo, int Left, int Right) {
int LeftRank = getRank(FuncInfo, Left);
int RightRank = getRank(FuncInfo, Right);
while (LeftRank < RightRank) {
Right = FuncInfo.ClrEHUnwindMap[Right].Parent;
--RightRank;
}
while (RightRank < LeftRank) {
Left = FuncInfo.ClrEHUnwindMap[Left].Parent;
--LeftRank;
}
while (Left != Right) {
Left = FuncInfo.ClrEHUnwindMap[Left].Parent;
Right = FuncInfo.ClrEHUnwindMap[Right].Parent;
}
return Left;
}
void WinException::emitCLRExceptionTable(const MachineFunction *MF) {
// CLR EH "states" are really just IDs that identify handlers/funclets;
// states, handlers, and funclets all have 1:1 mappings between them, and a
// handler/funclet's "state" is its index in the ClrEHUnwindMap.
MCStreamer &OS = *Asm->OutStreamer;
const Function *F = MF->getFunction();
WinEHFuncInfo &FuncInfo = MMI->getWinEHFuncInfo(F);
MCSymbol *FuncBeginSym = Asm->getFunctionBegin();
MCSymbol *FuncEndSym = Asm->getFunctionEnd();
// A ClrClause describes a protected region.
struct ClrClause {
const MCSymbol *StartLabel; // Start of protected region
const MCSymbol *EndLabel; // End of protected region
int State; // Index of handler protecting the protected region
int EnclosingState; // Index of funclet enclosing the protected region
};
SmallVector<ClrClause, 8> Clauses;
// Build a map from handler MBBs to their corresponding states (i.e. their
// indices in the ClrEHUnwindMap).
int NumStates = FuncInfo.ClrEHUnwindMap.size();
assert(NumStates > 0 && "Don't need exception table!");
DenseMap<const MachineBasicBlock *, int> HandlerStates;
for (int State = 0; State < NumStates; ++State) {
MachineBasicBlock *HandlerBlock =
FuncInfo.ClrEHUnwindMap[State].Handler.get<MachineBasicBlock *>();
HandlerStates[HandlerBlock] = State;
// Use this loop through all handlers to verify our assumption (used in
// the MinEnclosingState computation) that ancestors have lower state
// numbers than their descendants.
assert(FuncInfo.ClrEHUnwindMap[State].Parent < State &&
"ill-formed state numbering");
}
// Map the main function to the NullState.
HandlerStates[MF->begin()] = NullState;
// Write out a sentinel indicating the end of the standard (Windows) xdata
// and the start of the additional (CLR) info.
OS.EmitIntValue(0xffffffff, 4);
// Write out the number of funclets
OS.EmitIntValue(NumStates, 4);
// Walk the machine blocks/instrs, computing and emitting a few things:
// 1. Emit a list of the offsets to each handler entry, in lexical order.
// 2. Compute a map (EndSymbolMap) from each funclet to the symbol at its end.
// 3. Compute the list of ClrClauses, in the required order (inner before
// outer, earlier before later; the order by which a forward scan with
// early termination will find the innermost enclosing clause covering
// a given address).
// 4. A map (MinClauseMap) from each handler index to the index of the
// outermost funclet/function which contains a try clause targeting the
// key handler. This will be used to determine IsDuplicate-ness when
// emitting ClrClauses. The NullState value is used to indicate that the
// top-level function contains a try clause targeting the key handler.
// HandlerStack is a stack of (PendingStartLabel, PendingState) pairs for
// try regions we entered before entering the PendingState try but which
// we haven't yet exited.
SmallVector<std::pair<const MCSymbol *, int>, 4> HandlerStack;
// EndSymbolMap and MinClauseMap are maps described above.
std::unique_ptr<MCSymbol *[]> EndSymbolMap(new MCSymbol *[NumStates]);
SmallVector<int, 4> MinClauseMap((size_t)NumStates, NumStates);
// Visit the root function and each funclet.
for (MachineFunction::const_iterator FuncletStart = MF->begin(),
FuncletEnd = MF->begin(),
End = MF->end();
FuncletStart != End; FuncletStart = FuncletEnd) {
int FuncletState = HandlerStates[FuncletStart];
// Find the end of the funclet
MCSymbol *EndSymbol = FuncEndSym;
while (++FuncletEnd != End) {
if (FuncletEnd->isEHFuncletEntry()) {
EndSymbol = getMCSymbolForMBB(Asm, FuncletEnd);
break;
}
}
// Emit the function/funclet end and, if this is a funclet (and not the
// root function), record it in the EndSymbolMap.
OS.EmitValue(getOffset(EndSymbol, FuncBeginSym), 4);
if (FuncletState != NullState) {
// Record the end of the handler.
EndSymbolMap[FuncletState] = EndSymbol;
}
// Walk the state changes in this function/funclet and compute its clauses.
// Funclets always start in the null state.
const MCSymbol *CurrentStartLabel = nullptr;
int CurrentState = NullState;
assert(HandlerStack.empty());
for (const auto &StateChange :
InvokeStateChangeIterator::range(FuncInfo, FuncletStart, FuncletEnd)) {
// Close any try regions we're not still under
int AncestorState =
getAncestor(FuncInfo, CurrentState, StateChange.NewState);
while (CurrentState != AncestorState) {
assert(CurrentState != NullState && "Failed to find ancestor!");
// Close the pending clause
Clauses.push_back({CurrentStartLabel, StateChange.PreviousEndLabel,
CurrentState, FuncletState});
// Now the parent handler is current
CurrentState = FuncInfo.ClrEHUnwindMap[CurrentState].Parent;
// Pop the new start label from the handler stack if we've exited all
// descendants of the corresponding handler.
if (HandlerStack.back().second == CurrentState)
CurrentStartLabel = HandlerStack.pop_back_val().first;
}
if (StateChange.NewState != CurrentState) {
// For each clause we're starting, update the MinClauseMap so we can
// know which is the topmost funclet containing a clause targeting
// it.
for (int EnteredState = StateChange.NewState;
EnteredState != CurrentState;
EnteredState = FuncInfo.ClrEHUnwindMap[EnteredState].Parent) {
int &MinEnclosingState = MinClauseMap[EnteredState];
if (FuncletState < MinEnclosingState)
MinEnclosingState = FuncletState;
}
// Save the previous current start/label on the stack and update to
// the newly-current start/state.
HandlerStack.emplace_back(CurrentStartLabel, CurrentState);
CurrentStartLabel = StateChange.NewStartLabel;
CurrentState = StateChange.NewState;
}
}
assert(HandlerStack.empty());
}
// Now emit the clause info, starting with the number of clauses.
OS.EmitIntValue(Clauses.size(), 4);
for (ClrClause &Clause : Clauses) {
// Emit a CORINFO_EH_CLAUSE :
/*
struct CORINFO_EH_CLAUSE
{
CORINFO_EH_CLAUSE_FLAGS Flags; // actually a CorExceptionFlag
DWORD TryOffset;
DWORD TryLength; // actually TryEndOffset
DWORD HandlerOffset;
DWORD HandlerLength; // actually HandlerEndOffset
union
{
DWORD ClassToken; // use for catch clauses
DWORD FilterOffset; // use for filter clauses
};
};
enum CORINFO_EH_CLAUSE_FLAGS
{
CORINFO_EH_CLAUSE_NONE = 0,
CORINFO_EH_CLAUSE_FILTER = 0x0001, // This clause is for a filter
CORINFO_EH_CLAUSE_FINALLY = 0x0002, // This clause is a finally clause
CORINFO_EH_CLAUSE_FAULT = 0x0004, // This clause is a fault clause
};
typedef enum CorExceptionFlag
{
COR_ILEXCEPTION_CLAUSE_NONE,
COR_ILEXCEPTION_CLAUSE_FILTER = 0x0001, // This is a filter clause
COR_ILEXCEPTION_CLAUSE_FINALLY = 0x0002, // This is a finally clause
COR_ILEXCEPTION_CLAUSE_FAULT = 0x0004, // This is a fault clause
COR_ILEXCEPTION_CLAUSE_DUPLICATED = 0x0008, // duplicated clause. This
// clause was duplicated
// to a funclet which was
// pulled out of line
} CorExceptionFlag;
*/
// Add 1 to the start/end of the EH clause; the IP associated with a
// call when the runtime does its scan is the IP of the next instruction
// (the one to which control will return after the call), so we need
// to add 1 to the end of the clause to cover that offset. We also add
// 1 to the start of the clause to make sure that the ranges reported
// for all clauses are disjoint. Note that we'll need some additional
// logic when machine traps are supported, since in that case the IP
// that the runtime uses is the offset of the faulting instruction
// itself; if such an instruction immediately follows a call but the
// two belong to different clauses, we'll need to insert a nop between
// them so the runtime can distinguish the point to which the call will
// return from the point at which the fault occurs.
const MCExpr *ClauseBegin =
getOffsetPlusOne(Clause.StartLabel, FuncBeginSym);
const MCExpr *ClauseEnd = getOffsetPlusOne(Clause.EndLabel, FuncBeginSym);
ClrEHUnwindMapEntry &Entry = FuncInfo.ClrEHUnwindMap[Clause.State];
MachineBasicBlock *HandlerBlock = Entry.Handler.get<MachineBasicBlock *>();
MCSymbol *BeginSym = getMCSymbolForMBB(Asm, HandlerBlock);
const MCExpr *HandlerBegin = getOffset(BeginSym, FuncBeginSym);
MCSymbol *EndSym = EndSymbolMap[Clause.State];
const MCExpr *HandlerEnd = getOffset(EndSym, FuncBeginSym);
uint32_t Flags = 0;
switch (Entry.HandlerType) {
case ClrHandlerType::Catch:
// Leaving bits 0-2 clear indicates catch.
break;
case ClrHandlerType::Filter:
Flags |= 1;
break;
case ClrHandlerType::Finally:
Flags |= 2;
break;
case ClrHandlerType::Fault:
Flags |= 4;
break;
}
if (Clause.EnclosingState != MinClauseMap[Clause.State]) {
// This is a "duplicate" clause; the handler needs to be entered from a
// frame above the one holding the invoke.
assert(Clause.EnclosingState > MinClauseMap[Clause.State]);
Flags |= 8;
}
OS.EmitIntValue(Flags, 4);
// Write the clause start/end
OS.EmitValue(ClauseBegin, 4);
OS.EmitValue(ClauseEnd, 4);
// Write out the handler start/end
OS.EmitValue(HandlerBegin, 4);
OS.EmitValue(HandlerEnd, 4);
// Write out the type token or filter offset
assert(Entry.HandlerType != ClrHandlerType::Filter && "NYI: filters");
OS.EmitIntValue(Entry.TypeToken, 4);
}
}

View File

@ -54,6 +54,8 @@ class LLVM_LIBRARY_VISIBILITY WinException : public EHStreamer {
/// tables.
void emitExceptHandlerTable(const MachineFunction *MF);
void emitCLRExceptionTable(const MachineFunction *MF);
void computeIP2StateTable(
const MachineFunction *MF, WinEHFuncInfo &FuncInfo,
SmallVectorImpl<std::pair<const MCExpr *, int>> &IPToStateTable);
@ -66,6 +68,9 @@ class LLVM_LIBRARY_VISIBILITY WinException : public EHStreamer {
const MCExpr *create32bitRef(const MCSymbol *Value);
const MCExpr *create32bitRef(const Value *V);
const MCExpr *getLabelPlusOne(const MCSymbol *Label);
const MCExpr *getOffset(const MCSymbol *OffsetOf, const MCSymbol *OffsetFrom);
const MCExpr *getOffsetPlusOne(const MCSymbol *OffsetOf,
const MCSymbol *OffsetFrom);
/// Gets the offset that we should use in a table for a stack object with the
/// given index. For targets using CFI (Win64, etc), this is relative to the

View File

@ -0,0 +1,239 @@
; RUN: llc -mtriple=x86_64-pc-windows-coreclr < %s | FileCheck %s
declare void @ProcessCLRException()
declare void @f(i32)
; Simplified IR for pseudo-C# like the following:
; void test1() {
; try {
; f(1);
; try {
; f(2);
; } catch (type1) {
; f(3);
; } catch (type2) [
; f(4);
; try {
; f(5);
; } fault {
; f(6);
; }
; }
; } finally {
; f(7);
; }
; f(8);
; }
; CHECK-LABEL: test1: # @test1
; CHECK-NEXT: [[L_begin:.*func_begin.*]]:
define void @test1() personality i8* bitcast (void ()* @ProcessCLRException to i8*) {
entry:
; CHECK: # %entry
; CHECK: .seh_endprologue
; CHECK: [[L_before_f1:.+]]:
; CHECK-NEXT: movl $1, %ecx
; CHECK-NEXT: callq f
; CHECK-NEXT: [[L_after_f1:.+]]:
invoke void @f(i32 1)
to label %inner_try unwind label %finally.pad
inner_try:
; CHECK: # %inner_try
; CHECK: [[L_before_f2:.+]]:
; CHECK-NEXT: movl $2, %ecx
; CHECK-NEXT: callq f
; CHECK-NEXT: [[L_after_f2:.+]]:
invoke void @f(i32 2)
to label %finally.clone unwind label %catch1.pad
catch1.pad:
; CHECK: .seh_proc [[L_catch1:[^ ]+]]
%catch1 = catchpad [i32 1]
to label %catch1.body unwind label %catch2.pad
catch1.body:
; CHECK: .seh_endprologue
; CHECK: [[L_before_f3:.+]]:
; CHECK-NEXT: movl $3, %ecx
; CHECK-NEXT: callq f
; CHECK-NEXT: [[L_after_f3:.+]]:
invoke void @f(i32 3)
to label %catch1.ret unwind label %catch.end
catch1.ret:
catchret %catch1 to label %finally.clone
catch2.pad:
; CHECK: .seh_proc [[L_catch2:[^ ]+]]
%catch2 = catchpad [i32 2]
to label %catch2.body unwind label %catch.end
catch2.body:
; CHECK: .seh_endprologue
; CHECK: [[L_before_f4:.+]]:
; CHECK-NEXT: movl $4, %ecx
; CHECK-NEXT: callq f
; CHECK-NEXT: [[L_after_f4:.+]]:
invoke void @f(i32 4)
to label %try_in_catch unwind label %catch.end
try_in_catch:
; CHECK: # %try_in_catch
; CHECK: [[L_before_f5:.+]]:
; CHECK-NEXT: movl $5, %ecx
; CHECK-NEXT: callq f
; CHECK-NEXT: [[L_after_f5:.+]]:
invoke void @f(i32 5)
to label %catch2.ret unwind label %fault.pad
fault.pad:
; CHECK: .seh_proc [[L_fault:[^ ]+]]
%fault = cleanuppad [i32 undef]
; CHECK: .seh_endprologue
; CHECK: [[L_before_f6:.+]]:
; CHECK-NEXT: movl $6, %ecx
; CHECK-NEXT: callq f
; CHECK-NEXT: [[L_after_f6:.+]]:
invoke void @f(i32 6)
to label %fault.ret unwind label %fault.end
fault.ret:
cleanupret %fault unwind label %catch.end
fault.end:
cleanupendpad %fault unwind label %catch.end
catch2.ret:
catchret %catch2 to label %finally.clone
catch.end:
catchendpad unwind label %finally.pad
finally.clone:
call void @f(i32 7)
br label %tail
finally.pad:
; CHECK: .seh_proc [[L_finally:[^ ]+]]
%finally = cleanuppad []
; CHECK: .seh_endprologue
; CHECK: [[L_before_f7:.+]]:
; CHECK-NEXT: movl $7, %ecx
; CHECK-NEXT: callq f
; CHECK-NEXT: [[L_after_f7:.+]]:
invoke void @f(i32 7)
to label %finally.ret unwind label %finally.end
finally.ret:
cleanupret %finally unwind to caller
finally.end:
cleanupendpad %finally unwind to caller
tail:
call void @f(i32 8)
ret void
; CHECK: [[L_end:.*func_end.*]]:
}
; Now check for EH table in xdata (following standard xdata)
; CHECK-LABEL: .section .xdata
; standard xdata comes here
; CHECK: .long 4{{$}}
; ^ number of funclets
; CHECK-NEXT: .long [[L_catch1]]-[[L_begin]]
; ^ offset from L_begin to start of 1st funclet
; CHECK-NEXT: .long [[L_catch2]]-[[L_begin]]
; ^ offset from L_begin to start of 2nd funclet
; CHECK-NEXT: .long [[L_fault]]-[[L_begin]]
; ^ offset from L_begin to start of 3rd funclet
; CHECK-NEXT: .long [[L_finally]]-[[L_begin]]
; ^ offset from L_begin to start of 4th funclet
; CHECK-NEXT: .long [[L_end]]-[[L_begin]]
; ^ offset from L_begin to end of last funclet
; CHECK-NEXT: .long 7
; ^ number of EH clauses
; Clause 1: call f(2) is guarded by catch1
; CHECK-NEXT: .long 0
; ^ flags (0 => catch handler)
; CHECK-NEXT: .long ([[L_before_f2]]-[[L_begin]])+1
; ^ offset of start of clause
; CHECK-NEXT: .long ([[L_after_f2]]-[[L_begin]])+1
; ^ offset of end of clause
; CHECK-NEXT: .long [[L_catch1]]-[[L_begin]]
; ^ offset of start of handler
; CHECK-NEXT: .long [[L_catch2]]-[[L_begin]]
; ^ offset of end of handler
; CHECK-NEXT: .long 1
; ^ type token of catch (from catchpad)
; Clause 2: call f(2) is also guarded by catch2
; CHECK-NEXT: .long 0
; ^ flags (0 => catch handler)
; CHECK-NEXT: .long ([[L_before_f2]]-[[L_begin]])+1
; ^ offset of start of clause
; CHECK-NEXT: .long ([[L_after_f2]]-[[L_begin]])+1
; ^ offset of end of clause
; CHECK-NEXT: .long [[L_catch2]]-[[L_begin]]
; ^ offset of start of handler
; CHECK-NEXT: .long [[L_fault]]-[[L_begin]]
; ^ offset of end of handler
; CHECK-NEXT: .long 2
; ^ type token of catch (from catchpad)
; Clause 3: calls f(1) and f(2) are guarded by finally
; CHECK-NEXT: .long 2
; ^ flags (2 => finally handler)
; CHECK-NEXT: .long ([[L_before_f1]]-[[L_begin]])+1
; ^ offset of start of clause
; CHECK-NEXT: .long ([[L_after_f2]]-[[L_begin]])+1
; ^ offset of end of clause
; CHECK-NEXT: .long [[L_finally]]-[[L_begin]]
; ^ offset of start of handler
; CHECK-NEXT: .long [[L_end]]-[[L_begin]]
; ^ offset of end of handler
; CHECK-NEXT: .long 0
; ^ type token slot (null for finally)
; Clause 4: call f(3) is guarded by finally
; This is a "duplicate" because the protected range (f(3))
; is in funclet catch1 but the finally's immediate parent
; is the main function, not that funclet.
; CHECK-NEXT: .long 10
; ^ flags (2 => finally handler | 8 => duplicate)
; CHECK-NEXT: .long ([[L_before_f3]]-[[L_begin]])+1
; ^ offset of start of clause
; CHECK-NEXT: .long ([[L_after_f3]]-[[L_begin]])+1
; ^ offset of end of clause
; CHECK-NEXT: .long [[L_finally]]-[[L_begin]]
; ^ offset of start of handler
; CHECK-NEXT: .long [[L_end]]-[[L_begin]]
; ^ offset of end of handler
; CHECK-NEXT: .long 0
; ^ type token slot (null for finally)
; Clause 5: call f(5) is guarded by fault
; CHECK-NEXT: .long 4
; ^ flags (4 => fault handler)
; CHECK-NEXT: .long ([[L_before_f5]]-[[L_begin]])+1
; ^ offset of start of clause
; CHECK-NEXT: .long ([[L_after_f5]]-[[L_begin]])+1
; ^ offset of end of clause
; CHECK-NEXT: .long [[L_fault]]-[[L_begin]]
; ^ offset of start of handler
; CHECK-NEXT: .long [[L_finally]]-[[L_begin]]
; ^ offset of end of handler
; CHECK-NEXT: .long 0
; ^ type token slot (null for fault)
; Clause 6: calls f(4) and f(5) are guarded by finally
; This is a "duplicate" because the protected range (f(4)-f(5))
; is in funclet catch2 but the finally's immediate parent
; is the main function, not that funclet.
; CHECK-NEXT: .long 10
; ^ flags (2 => finally handler | 8 => duplicate)
; CHECK-NEXT: .long ([[L_before_f4]]-[[L_begin]])+1
; ^ offset of start of clause
; CHECK-NEXT: .long ([[L_after_f5]]-[[L_begin]])+1
; ^ offset of end of clause
; CHECK-NEXT: .long [[L_finally]]-[[L_begin]]
; ^ offset of start of handler
; CHECK-NEXT: .long [[L_end]]-[[L_begin]]
; ^ offset of end of handler
; CHECK-NEXT: .long 0
; ^ type token slot (null for finally)
; Clause 7: call f(6) is guarded by finally
; This is a "duplicate" because the protected range (f(3))
; is in funclet catch1 but the finally's immediate parent
; is the main function, not that funclet.
; CHECK-NEXT: .long 10
; ^ flags (2 => finally handler | 8 => duplicate)
; CHECK-NEXT: .long ([[L_before_f6]]-[[L_begin]])+1
; ^ offset of start of clause
; CHECK-NEXT: .long ([[L_after_f6]]-[[L_begin]])+1
; ^ offset of end of clause
; CHECK-NEXT: .long [[L_finally]]-[[L_begin]]
; ^ offset of start of handler
; CHECK-NEXT: .long [[L_end]]-[[L_begin]]
; ^ offset of end of handler
; CHECK-NEXT: .long 0
; ^ type token slot (null for finally)