Many many changes and bugfixes:

* Remove support for unsized arrays
* Add pointer indexing support
* Allow more arbitrary malloc type changes (which are too generous currently
  and should be fixed in the future)
* Allow more and better conversions

llvm-svn: 1464
This commit is contained in:
Chris Lattner 2001-12-14 16:35:53 +00:00
parent 315df5b058
commit 1dc9744cc7

View File

@ -41,13 +41,6 @@ static bool AllIndicesZero(const MemAccessInst *MAI) {
return true;
}
static unsigned getBaseTypeSize(const Type *Ty) {
if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
if (ATy->isUnsized())
return getBaseTypeSize(ATy->getElementType());
return TD.getTypeSize(Ty);
}
// Peephole Malloc instructions: we take a look at the use chain of the
// malloc instruction, and try to find out if the following conditions hold:
@ -67,61 +60,39 @@ static bool MallocConvertableToType(MallocInst *MI, const Type *Ty,
// Deal with the type to allocate, not the pointer type...
Ty = cast<PointerType>(Ty)->getElementType();
if (!Ty->isSized()) return false; // Can only alloc something with a size
// Analyze the number of bytes allocated...
analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize());
// Get information about the base datatype being allocated, before & after
unsigned ReqTypeSize = TD.getTypeSize(Ty);
unsigned OldTypeSize = TD.getTypeSize(MI->getType()->getElementType());
// Must have a scale or offset to analyze it...
if (!Expr.Offset && !Expr.Scale) return false;
if (Expr.Offset && (Expr.Scale || Expr.Var)) {
// This is wierd, shouldn't happen, but if it does, I wanna know about it!
cerr << "LevelRaise.cpp: Crazy allocation detected!\n";
return false;
}
// Get the number of bytes allocated...
int SizeVal = getConstantValue(Expr.Offset ? Expr.Offset : Expr.Scale);
if (SizeVal <= 0) {
// Get the offset and scale of the allocation...
int OffsetVal = Expr.Offset ? getConstantValue(Expr.Offset) : 0;
int ScaleVal = Expr.Scale ? getConstantValue(Expr.Scale) : (Expr.Var ? 1 : 0);
if (ScaleVal < 0 || OffsetVal < 0) {
cerr << "malloc of a negative number???\n";
return false;
}
unsigned Size = (unsigned)SizeVal;
unsigned ReqTypeSize = getBaseTypeSize(Ty);
// Does the size of the allocated type match the number of bytes
// allocated?
// The old type might not be of unit size, take old size into consideration
// here...
unsigned Offset = (unsigned)OffsetVal * OldTypeSize;
unsigned Scale = (unsigned)ScaleVal * OldTypeSize;
// In order to be successful, both the scale and the offset must be a multiple
// of the requested data type's size.
//
if (ReqTypeSize == Size)
return true;
// If not, it's possible that an array of constant size is being allocated.
// In this case, the Size will be a multiple of the data size.
//
if (!Expr.Offset) return false; // Offset must be set, not scale...
#if 1
return false;
#else // THIS CAN ONLY BE RUN VERY LATE, after several passes to make sure
// things are adequately raised!
// See if the allocated amount is a multiple of the type size...
if (Size/ReqTypeSize*ReqTypeSize != Size)
if (Offset/ReqTypeSize*ReqTypeSize != Offset ||
Scale/ReqTypeSize*ReqTypeSize != Scale)
return false; // Nope.
// Unfortunately things tend to be powers of two, so there may be
// many false hits. We don't want to optimistically assume that we
// have the right type on the first try, so scan the use list of the
// malloc instruction, looking for the cast to the biggest type...
//
for (Value::use_iterator I = MI->use_begin(), E = MI->use_end(); I != E; ++I)
if (CastInst *CI = dyn_cast<CastInst>(*I))
if (const PointerType *PT =
dyn_cast<PointerType>(CI->getOperand(0)->getType()))
if (getBaseTypeSize(PT->getElementType()) > ReqTypeSize)
return false; // We found a type bigger than this one!
return true;
#endif
}
static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty,
@ -135,44 +106,61 @@ static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty,
const PointerType *AllocTy = cast<PointerType>(Ty);
const Type *ElType = AllocTy->getElementType();
if (Expr.Var && !isa<ArrayType>(ElType)) {
ElType = ArrayType::get(AllocTy->getElementType());
AllocTy = PointerType::get(ElType);
unsigned DataSize = TD.getTypeSize(ElType);
unsigned OldTypeSize = TD.getTypeSize(MI->getType()->getElementType());
// Get the offset and scale coefficients that we are allocating...
int OffsetVal = (Expr.Offset ? getConstantValue(Expr.Offset) : 0);
int ScaleVal = Expr.Scale ? getConstantValue(Expr.Scale) : (Expr.Var ? 1 : 0);
// The old type might not be of unit size, take old size into consideration
// here...
unsigned Offset = (unsigned)OffsetVal * OldTypeSize / DataSize;
unsigned Scale = (unsigned)ScaleVal * OldTypeSize / DataSize;
// Locate the malloc instruction, because we may be inserting instructions
It = find(BB->getInstList().begin(), BB->getInstList().end(), MI);
// If we have a scale, apply it first...
if (Expr.Var) {
// Expr.Var is not neccesarily unsigned right now, insert a cast now.
if (Expr.Var->getType() != Type::UIntTy) {
Instruction *CI = new CastInst(Expr.Var, Type::UIntTy);
if (Expr.Var->hasName()) CI->setName(Expr.Var->getName()+"-uint");
It = BB->getInstList().insert(It, CI)+1;
Expr.Var = CI;
}
if (Scale != 1) {
Instruction *ScI =
BinaryOperator::create(Instruction::Mul, Expr.Var,
ConstantUInt::get(Type::UIntTy, Scale));
if (Expr.Var->hasName()) ScI->setName(Expr.Var->getName()+"-scl");
It = BB->getInstList().insert(It, ScI)+1;
Expr.Var = ScI;
}
} else {
// If we are not scaling anything, just make the offset be the "var"...
Expr.Var = ConstantUInt::get(Type::UIntTy, Offset);
Offset = 0; Scale = 1;
}
// If the array size specifier is not an unsigned integer, insert a cast now.
if (Expr.Var && Expr.Var->getType() != Type::UIntTy) {
It = find(BB->getInstList().begin(), BB->getInstList().end(), MI);
CastInst *SizeCast = new CastInst(Expr.Var, Type::UIntTy);
It = BB->getInstList().insert(It, SizeCast)+1;
Expr.Var = SizeCast;
}
// If we have an offset now, add it in...
if (Offset != 0) {
assert(Expr.Var && "Var must be nonnull by now!");
// Check to see if they are allocating a constant sized array of a type...
#if 0 // THIS CAN ONLY BE RUN VERY LATE
if (!Expr.Var) {
unsigned OffsetAmount = (unsigned)getConstantValue(Expr.Offset);
unsigned DataSize = TD.getTypeSize(ElType);
if (OffsetAmount > DataSize) // Allocate a sized array amount...
Expr.Var = ConstantUInt::get(Type::UIntTy, OffsetAmount/DataSize);
Instruction *AddI =
BinaryOperator::create(Instruction::Add, Expr.Var,
ConstantUInt::get(Type::UIntTy, Offset));
if (Expr.Var->hasName()) AddI->setName(Expr.Var->getName()+"-off");
It = BB->getInstList().insert(It, AddI)+1;
Expr.Var = AddI;
}
#endif
Instruction *NewI = new MallocInst(AllocTy, Expr.Var, Name);
if (AllocTy != Ty) { // Create a cast instruction to cast it to the correct ty
if (It == BB->end())
It = find(BB->getInstList().begin(), BB->getInstList().end(), MI);
// Insert the new malloc directly into the code ourselves
assert(It != BB->getInstList().end());
It = BB->getInstList().insert(It, NewI)+1;
// Return the cast as the value to use...
NewI = new CastInst(NewI, Ty);
}
assert(AllocTy == Ty);
return NewI;
}
@ -183,7 +171,7 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
if (V->getType() == Ty) return true; // Expression already correct type!
// Expression type must be holdable in a register.
if (!isFirstClassType(Ty))
if (!Ty->isFirstClassType())
return false;
ValueTypeCache::iterator CTMI = CTMap.find(V);
@ -298,13 +286,12 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
if (ElTy) break; // Found a number of zeros we can strip off!
// Otherwise, we can convert a GEP from one form to the other iff the
// current gep is of the form 'getelementptr [sbyte]*, unsigned N
// current gep is of the form 'getelementptr sbyte*, unsigned N
// and we could convert this to an appropriate GEP for the new type.
//
if (GEP->getNumOperands() == 2 &&
GEP->getOperand(1)->getType() == Type::UIntTy &&
GEP->getType() == PointerType::get(Type::SByteTy)) {
const PointerType *NewSrcTy = PointerType::get(ArrayType::get(PVTy));
// Do not Check to see if our incoming pointer can be converted
// to be a ptr to an array of the right type... because in more cases than
@ -316,9 +303,12 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
// the appropriate size... if so, allow it.
//
vector<Value*> Indices;
const Type *ElTy = ConvertableToGEP(NewSrcTy, I->getOperand(1), Indices);
const Type *ElTy = ConvertableToGEP(PTy, I->getOperand(1), Indices);
if (ElTy) {
assert(ElTy == PVTy && "Internal error, setup wrong!");
if (!ExpressionConvertableToType(I->getOperand(0),
PointerType::get(ElTy), CTMap))
return false; // Can't continue, ExConToTy might have polluted set!
break;
}
}
@ -332,9 +322,10 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
GEP->getOperand(1)->getType() == Type::UIntTy &&
TD.getTypeSize(PTy->getElementType()) ==
TD.getTypeSize(GEP->getType()->getElementType())) {
const PointerType *NewSrcTy = PointerType::get(ArrayType::get(PVTy));
if (ExpressionConvertableToType(I->getOperand(0), NewSrcTy, CTMap))
break;
const PointerType *NewSrcTy = PointerType::get(PVTy);
if (!ExpressionConvertableToType(I->getOperand(0), NewSrcTy, CTMap))
return false;
break;
}
return false; // No match, maybe next time.
@ -394,8 +385,6 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
Constant *Dummy = Constant::getNullConstant(Ty);
//cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I << "BB Before: " << BB << endl;
switch (I->getOpcode()) {
case Instruction::Cast:
Res = new CastInst(I->getOperand(0), Ty, Name);
@ -429,7 +418,7 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
PointerType::get(Ty), VMC));
assert(Res->getOperand(0)->getType() == PointerType::get(Ty));
assert(Ty == Res->getType());
assert(isFirstClassType(Res->getType()) && "Load of structure or array!");
assert(Res->getType()->isFirstClassType() && "Load of structure or array!");
break;
}
@ -488,12 +477,15 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
}
}
if (Res == 0) { // Didn't match...
if (Res == 0 && GEP->getNumOperands() == 2 &&
GEP->getOperand(1)->getType() == Type::UIntTy &&
GEP->getType() == PointerType::get(Type::SByteTy)) {
// Otherwise, we can convert a GEP from one form to the other iff the
// current gep is of the form 'getelementptr [sbyte]*, unsigned N
// and we could convert this to an appropriate GEP for the new type.
//
const PointerType *NewSrcTy = PointerType::get(ArrayType::get(PVTy));
const PointerType *NewSrcTy = PointerType::get(PVTy);
BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I);
// Check to see if 'N' is an expression that can be converted to
@ -502,12 +494,13 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
vector<Value*> Indices;
const Type *ElTy = ConvertableToGEP(NewSrcTy, I->getOperand(1),
Indices, &It);
if (ElTy) {
CastInst *NewCast = new CastInst(I->getOperand(0),NewSrcTy,Name+"-adj");
It = BIL.insert(It, NewCast)+1; // Insert the cast...
if (ElTy) {
assert(ElTy == PVTy && "Internal error, setup wrong!");
Res = new GetElementPtrInst(NewCast, Indices, Name);
Res = new GetElementPtrInst(Constant::getNullConstant(NewSrcTy),
Indices, Name);
VMC.ExprMap[I] = Res;
Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),
NewSrcTy, VMC));
}
}
@ -517,7 +510,7 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
// getelemenptr [[int] *] * %reg115, uint %reg138 ; [int]**
//
if (Res == 0) {
const PointerType *NewSrcTy = PointerType::get(ArrayType::get(PVTy));
const PointerType *NewSrcTy = PointerType::get(PVTy);
Res = new GetElementPtrInst(Constant::getNullConstant(NewSrcTy),
GEP->copyIndices(), Name);
VMC.ExprMap[I] = Res;
@ -605,10 +598,10 @@ bool ValueConvertableToType(Value *V, const Type *Ty,
//
static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
ValueTypeCache &CTMap) {
if (V->getType() == Ty) return true; // Operand already the right type?
// if (V->getType() == Ty) return true; // Operand already the right type?
// Expression type must be holdable in a register.
if (!isFirstClassType(Ty))
if (!Ty->isFirstClassType())
return false;
Instruction *I = dyn_cast<Instruction>(U);
@ -619,8 +612,13 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
assert(I->getOperand(0) == V);
// We can convert the expr if the cast destination type is losslessly
// convertable to the requested type.
if (!Ty->isLosslesslyConvertableTo(I->getOperand(0)->getType()))
// Also, do not change a cast that is a noop cast. For all intents and
// purposes it should be eliminated.
if (!Ty->isLosslesslyConvertableTo(I->getOperand(0)->getType()) ||
I->getType() == I->getOperand(0)->getType())
return false;
#if 1
// We also do not allow conversion of a cast that casts from a ptr to array
// of X to a *X. For example: cast [4 x %List *] * %val to %List * *
@ -645,6 +643,9 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
CTMap[I] = RetTy;
return true;
}
// We have to return failure here because ValueConvertableToType could
// have polluted our map
return false;
}
}
// FALLTHROUGH
@ -665,6 +666,10 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
assert(I->getOperand(0) == V);
return ValueConvertableToType(I, Ty, CTMap);
case Instruction::Free:
assert(I->getOperand(0) == V);
return isa<PointerType>(Ty); // Free can free any pointer type!
case Instruction::Load:
// Cannot convert the types of any subscripts...
if (I->getOperand(0) != V) return false;
@ -685,7 +690,7 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
assert(Offset == 0 && "Offset changed from zero???");
}
if (!isFirstClassType(LoadedTy))
if (!LoadedTy->isFirstClassType())
return false;
if (TD.getTypeSize(LoadedTy) != TD.getTypeSize(LI->getType()))
@ -706,8 +711,6 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
CTMap);
} else if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
const Type *ElTy = PT->getElementType();
if (ArrayType *AT = dyn_cast<ArrayType>(ElTy))
ElTy = AT->getElementType(); // Avoid getDataSize on unsized array type!
assert(V == I->getOperand(1));
// Must move the same amount of data...
@ -720,24 +723,42 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
return false;
}
case Instruction::GetElementPtr: {
// Convert a getelementptr [sbyte] * %reg111, uint 16 freely back to
// anything that is a pointer type...
//
if (I->getType() != PointerType::get(Type::SByteTy) ||
I->getNumOperands() != 2 || V != I->getOperand(0) ||
I->getOperand(1)->getType() != Type::UIntTy || !isa<PointerType>(Ty))
return false;
case Instruction::GetElementPtr:
if (V != I->getOperand(0) || !isa<PointerType>(Ty)) return false;
// Check to see if the second argument is an expression that can
// be converted to the appropriate size... if so, allow it.
// If we have a two operand form of getelementptr, this is really little
// more than a simple addition. As with addition, check to see if the
// getelementptr instruction can be changed to index into the new type.
//
vector<Value*> Indices;
const Type *ElTy = ConvertableToGEP(Ty, I->getOperand(1), Indices);
if (ElTy == 0) return false; // Cannot make conversion...
if (I->getNumOperands() == 2) {
const Type *OldElTy = cast<PointerType>(I->getType())->getElementType();
unsigned DataSize = TD.getTypeSize(OldElTy);
Value *Index = I->getOperand(1);
Instruction *TempScale = 0;
return ValueConvertableToType(I, ElTy, CTMap);
}
// If the old data element is not unit sized, we have to create a scale
// instruction so that ConvertableToGEP will know the REAL amount we are
// indexing by. Note that this is never inserted into the instruction
// stream, so we have to delete it when we're done.
//
if (DataSize != 1) {
TempScale = BinaryOperator::create(Instruction::Mul, Index,
ConstantUInt::get(Type::UIntTy,
DataSize));
Index = TempScale;
}
// Check to see if the second argument is an expression that can
// be converted to the appropriate size... if so, allow it.
//
vector<Value*> Indices;
const Type *ElTy = ConvertableToGEP(Ty, Index, Indices);
delete TempScale; // Free our temporary multiply if we made it
if (ElTy == 0) return false; // Cannot make conversion...
return ValueConvertableToType(I, PointerType::get(ElTy), CTMap);
}
return false;
case Instruction::PHINode: {
PHINode *PN = cast<PHINode>(I);
@ -860,20 +881,28 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
I->getOperand(1), Name);
break;
case Instruction::Free: // Free can free any pointer type!
assert(I->getOperand(0) == OldVal);
Res = new FreeInst(NewVal);
break;
case Instruction::Load: {
assert(I->getOperand(0) == OldVal && isa<PointerType>(NewVal->getType()));
const Type *LoadedTy = cast<PointerType>(NewVal->getType())->getElementType();
const Type *LoadedTy =
cast<PointerType>(NewVal->getType())->getElementType();
vector<Value*> Indices;
Indices.push_back(ConstantUInt::get(Type::UIntTy, 0));
if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
unsigned Offset = 0; // No offset, get first leaf.
LoadedTy = getStructOffsetType(CT, Offset, Indices, false);
}
assert(isFirstClassType(LoadedTy));
assert(LoadedTy->isFirstClassType());
Res = new LoadInst(NewVal, Indices, Name);
assert(isFirstClassType(Res->getType()) && "Load of structure or array!");
assert(Res->getType()->isFirstClassType() && "Load of structure or array!");
break;
}
@ -886,11 +915,13 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
} else { // Replace the source pointer
const Type *ValTy = cast<PointerType>(NewTy)->getElementType();
vector<Value*> Indices;
#if 0
Indices.push_back(ConstantUInt::get(Type::UIntTy, 0));
while (ArrayType *AT = dyn_cast<ArrayType>(ValTy)) {
Indices.push_back(ConstantUInt::get(Type::UIntTy, 0));
ValTy = AT->getElementType();
}
#endif
Res = new StoreInst(Constant::getNullConstant(ValTy), NewVal, Indices);
VMC.ExprMap[I] = Res;
Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), ValTy, VMC));
@ -900,22 +931,57 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
case Instruction::GetElementPtr: {
// Convert a getelementptr [sbyte] * %reg111, uint 16 freely back to
// anything that is a pointer type...
// Convert a one index getelementptr into just about anything that is
// desired.
//
BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I);
// Check to see if the second argument is an expression that can
// be converted to the appropriate size... if so, allow it.
const Type *OldElTy = cast<PointerType>(I->getType())->getElementType();
unsigned DataSize = TD.getTypeSize(OldElTy);
Value *Index = I->getOperand(1);
if (DataSize != 1) {
// Insert a multiply of the old element type is not a unit size...
Index = BinaryOperator::create(Instruction::Mul, Index,
ConstantUInt::get(Type::UIntTy, DataSize));
It = BIL.insert(It, cast<Instruction>(Index))+1;
}
// Perform the conversion now...
//
vector<Value*> Indices;
const Type *ElTy = ConvertableToGEP(NewVal->getType(), I->getOperand(1),
Indices, &It);
const Type *ElTy = ConvertableToGEP(NewVal->getType(), Index, Indices, &It);
assert(ElTy != 0 && "GEP Conversion Failure!");
Res = new GetElementPtrInst(NewVal, Indices, Name);
break;
assert(Res->getType() == PointerType::get(ElTy) &&
"ConvertableToGet failed!");
}
#if 0
if (I->getType() == PointerType::get(Type::SByteTy)) {
// Convert a getelementptr sbyte * %reg111, uint 16 freely back to
// anything that is a pointer type...
//
BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I);
// Check to see if the second argument is an expression that can
// be converted to the appropriate size... if so, allow it.
//
vector<Value*> Indices;
const Type *ElTy = ConvertableToGEP(NewVal->getType(), I->getOperand(1),
Indices, &It);
assert(ElTy != 0 && "GEP Conversion Failure!");
Res = new GetElementPtrInst(NewVal, Indices, Name);
} else {
// Convert a getelementptr ulong * %reg123, uint %N
// to getelementptr long * %reg123, uint %N
// ... where the type must simply stay the same size...
//
Res = new GetElementPtrInst(NewVal,
cast<GetElementPtrInst>(I)->copyIndices(),
Name);
}
#endif
break;
case Instruction::PHINode: {
PHINode *OldPN = cast<PHINode>(I);
@ -949,6 +1015,9 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
return;
}
// If the instruction was newly created, insert it into the instruction
// stream.
//
BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I);
assert(It != BIL.end() && "Instruction not in own basic block??");
BIL.insert(It, Res); // Keep It pointing to old instruction