Fix PR86. This makes basicaa _SIGNIFICANLY_ more aggressive with getelementptr's

llvm-svn: 10410
This commit is contained in:
Chris Lattner 2003-12-11 22:44:13 +00:00
parent 1f7737b44f
commit 2185bd56cc

View File

@ -41,11 +41,14 @@ namespace {
AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size);
private:
// CheckGEPInstructions - Check two GEP instructions of compatible types and
// equal number of arguments. This checks to see if the index expressions
// CheckGEPInstructions - Check two GEP instructions with known
// must-aliasing base pointers. This checks to see if the index expressions
// preclude the pointers from aliasing...
AliasResult CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1Size,
GetElementPtrInst *GEP2, unsigned G2Size);
AliasResult
CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
unsigned G1Size,
const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
unsigned G2Size);
};
// Register this pass...
@ -89,6 +92,13 @@ static const Value *getUnderlyingObject(const Value *V) {
return 0;
}
static const User *isGEP(const Value *V) {
if (isa<GetElementPtrInst>(V) ||
(isa<ConstantExpr>(V) &&
cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
return cast<User>(V);
return 0;
}
// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
// as array references. Note that this function is heavily tail recursive.
@ -97,6 +107,14 @@ static const Value *getUnderlyingObject(const Value *V) {
AliasAnalysis::AliasResult
BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
// Strip off any constant expression casts if they exist
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
if (CE->getOpcode() == Instruction::Cast)
V1 = CE->getOperand(0);
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
if (CE->getOpcode() == Instruction::Cast)
V2 = CE->getOperand(0);
// Strip off constant pointer refs if they exist
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
V1 = CPR->getValue();
@ -145,19 +163,67 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
return NoAlias; // Unique values don't alias null
}
// If we have two gep instructions with identical indices, return an alias
// result equal to the alias result of the original pointer...
// If we have two gep instructions with must-alias'ing base pointers, figure
// out if the indexes to the GEP tell us anything about the derived pointer.
// Note that we also handle chains of getelementptr instructions as well as
// constant expression getelementptrs here.
//
if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1))
if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2))
if (GEP1->getNumOperands() == GEP2->getNumOperands() &&
GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) {
AliasResult GAlias =
CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size,
(GetElementPtrInst*)GEP2, V2Size);
if (GAlias != MayAlias)
return GAlias;
if (isGEP(V1) && isGEP(V2)) {
// Drill down into the first non-gep value, to test for must-aliasing of
// the base pointers.
const Value *BasePtr1 = V1, *BasePtr2 = V2;
do {
BasePtr1 = cast<User>(BasePtr1)->getOperand(0);
} while (isGEP(BasePtr1) &&
cast<User>(BasePtr1)->getOperand(1) ==
Constant::getNullValue(cast<User>(BasePtr1)->getOperand(1)->getType()));
do {
BasePtr2 = cast<User>(BasePtr2)->getOperand(0);
} while (isGEP(BasePtr2) &&
cast<User>(BasePtr2)->getOperand(1) ==
Constant::getNullValue(cast<User>(BasePtr2)->getOperand(1)->getType()));
// Do the base pointers alias?
AliasResult BaseAlias = alias(BasePtr1, V1Size, BasePtr2, V2Size);
if (BaseAlias == NoAlias) return NoAlias;
if (BaseAlias == MustAlias) {
// If the base pointers alias each other exactly, check to see if we can
// figure out anything about the resultant pointers, to try to prove
// non-aliasing.
// Collect all of the chained GEP operands together into one simple place
std::vector<Value*> GEP1Ops(cast<User>(V1)->op_begin()+1,
cast<User>(V1)->op_end());
std::vector<Value*> GEP2Ops(cast<User>(V2)->op_begin()+1,
cast<User>(V2)->op_end());
// Accumulate all of the chained indexes into the operand arrays
BasePtr1 = cast<User>(V1)->getOperand(0);
BasePtr2 = cast<User>(V2)->getOperand(0);
while (const User *G = isGEP(BasePtr1)) {
if (!isa<Constant>(GEP1Ops[0]) ||
!cast<Constant>(GEP1Ops[0])->isNullValue())
break; // Don't handle folding arbitrary pointer offsets yet...
GEP1Ops.erase(GEP1Ops.begin());
GEP1Ops.insert(GEP1Ops.begin(), G->op_begin()+1, G->op_end());
BasePtr1 = G->getOperand(0);
}
while (const User *G = isGEP(BasePtr2)) {
if (!isa<Constant>(GEP2Ops[0]) ||
!cast<Constant>(GEP2Ops[0])->isNullValue())
break; // Don't handle folding arbitrary pointer offsets yet...
GEP2Ops.erase(GEP2Ops.begin());
GEP2Ops.insert(GEP2Ops.begin(), G->op_begin()+1, G->op_end());
BasePtr2 = G->getOperand(0);
}
AliasResult GAlias =
CheckGEPInstructions(BasePtr1->getType(), GEP1Ops, V1Size,
BasePtr2->getType(), GEP2Ops, V2Size);
if (GAlias != MayAlias)
return GAlias;
}
}
// Check to see if these two pointers are related by a getelementptr
// instruction. If one pointer is a GEP with a non-zero index of the other
@ -219,45 +285,60 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
return MayAlias;
}
static Value *CheckArrayIndicesForOverflow(const Type *PtrTy,
const std::vector<Value*> &Indices,
const ConstantInt *Idx) {
if (const ConstantSInt *IdxS = dyn_cast<ConstantSInt>(Idx)) {
if (IdxS->getValue() < 0) // Underflow on the array subscript?
return Constant::getNullValue(Type::LongTy);
else { // Check for overflow
const ArrayType *ATy =
cast<ArrayType>(GetElementPtrInst::getIndexedType(PtrTy, Indices,true));
if (IdxS->getValue() >= (int64_t)ATy->getNumElements())
return ConstantSInt::get(Type::LongTy, ATy->getNumElements()-1);
/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
/// base pointers. This checks to see if the index expressions preclude the
/// pointers from aliasing...
AliasAnalysis::AliasResult BasicAliasAnalysis::
CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
unsigned G1S,
const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
unsigned G2S) {
// We currently can't handle the case when the base pointers have different
// primitive types. Since this is uncommon anyway, we are happy being
// extremely conservative.
if (BasePtr1Ty != BasePtr2Ty)
return MayAlias;
const Type *GEPPointerTy = BasePtr1Ty;
// Find the (possibly empty) initial sequence of equal values... which are not
// necessarily constants.
unsigned NumGEP1Operands = GEP1Ops.size(), NumGEP2Operands = GEP2Ops.size();
unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
unsigned UnequalOper = 0;
while (UnequalOper != MinOperands &&
GEP1Ops[UnequalOper] == GEP2Ops[UnequalOper]) {
// Advance through the type as we go...
++UnequalOper;
if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
else {
// If all operands equal each other, then the derived pointers must
// alias each other...
BasePtr1Ty = 0;
assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
"Ran out of type nesting, but not out of operands?");
return MustAlias;
}
}
return (Value*)Idx; // Everything is acceptable.
}
// CheckGEPInstructions - Check two GEP instructions of compatible types and
// equal number of arguments. This checks to see if the index expressions
// preclude the pointers from aliasing...
//
AliasAnalysis::AliasResult
BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S,
GetElementPtrInst *GEP2, unsigned G2S){
// Do the base pointers alias?
AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S,
GEP2->getOperand(0), G2S);
if (BaseAlias != MustAlias) // No or May alias: We cannot add anything...
return BaseAlias;
// Find the (possibly empty) initial sequence of equal values...
unsigned NumGEPOperands = GEP1->getNumOperands();
unsigned UnequalOper = 1;
while (UnequalOper != NumGEPOperands &&
GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper))
++UnequalOper;
// If we have seen all constant operands, and run out of indexes on one of the
// getelementptrs, check to see if the tail of the leftover one is all zeros.
// If so, return mustalias.
if (UnequalOper == MinOperands && MinOperands != MaxOperands) {
if (GEP1Ops.size() < GEP2Ops.size()) std::swap(GEP1Ops, GEP2Ops);
// If all operands equal each other, then the derived pointers must
// alias each other...
if (UnequalOper == NumGEPOperands) return MustAlias;
bool AllAreZeros = true;
for (unsigned i = UnequalOper; i != MaxOperands; ++i)
if (!isa<Constant>(GEP1Ops[i]) ||
!cast<Constant>(GEP1Ops[i])->isNullValue()) {
AllAreZeros = false;
break;
}
if (AllAreZeros) return MustAlias;
}
// So now we know that the indexes derived from the base pointers,
// which are known to alias, are different. We can still determine a
@ -271,101 +352,150 @@ BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S,
// Scan for the first operand that is constant and unequal in the
// two getelemenptrs...
unsigned FirstConstantOper = UnequalOper;
for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) {
const Value *G1Oper = GEP1->getOperand(FirstConstantOper);
const Value *G2Oper = GEP2->getOperand(FirstConstantOper);
for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
const Value *G1Oper = GEP1Ops[FirstConstantOper];
const Value *G2Oper = GEP2Ops[FirstConstantOper];
if (G1Oper != G2Oper && // Found non-equal constant indexes...
isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) {
// Make sure they are comparable... and make sure the GEP with
// the smaller leading constant is GEP1.
ConstantBool *Compare =
*cast<Constant>(GEP1->getOperand(FirstConstantOper)) >
*cast<Constant>(GEP2->getOperand(FirstConstantOper));
// Make sure they are comparable (ie, not constant expressions)... and
// make sure the GEP with the smaller leading constant is GEP1.
ConstantBool *Compare = *cast<Constant>(G1Oper) > *cast<Constant>(G2Oper);
if (Compare) { // If they are comparable...
if (Compare->getValue())
std::swap(GEP1, GEP2); // Make GEP1 < GEP2
std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
break;
}
}
BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
}
// No constant operands, we cannot tell anything...
if (FirstConstantOper == NumGEPOperands) return MayAlias;
// No shared constant operands, and we ran out of common operands. At this
// point, the GEP instructions have run through all of their operands, and we
// haven't found evidence that there are any deltas between the GEP's.
// However, one GEP may have more operands than the other. If this is the
// case, there may still be hope. This this now.
if (FirstConstantOper == MinOperands) {
// Make GEP1Ops be the longer one if there is a longer one.
if (GEP1Ops.size() < GEP2Ops.size())
std::swap(GEP1Ops, GEP2Ops);
// Is there anything to check?
if (GEP1Ops.size() > MinOperands) {
for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
if (isa<Constant>(GEP1Ops[i]) && !isa<ConstantExpr>(GEP1Ops[i]) &&
!cast<Constant>(GEP1Ops[i])->isNullValue()) {
// Yup, there's a constant in the tail. Set all variables to
// constants in the GEP instruction to make it suiteable for
// TargetData::getIndexedOffset.
for (i = 0; i != MaxOperands; ++i)
if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i]))
GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
// Okay, now get the offset. This is the relative offset for the full
// instruction.
const TargetData &TD = getTargetData();
int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
// Now crop off any constants from the end...
GEP1Ops.resize(MinOperands);
int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
// If the tail provided a bit enough offset, return noalias!
if ((uint64_t)(Offset2-Offset1) >= SizeMax)
return NoAlias;
}
}
// Couldn't find anything useful.
return MayAlias;
}
// If there are non-equal constants arguments, then we can figure
// out a minimum known delta between the two index expressions... at
// this point we know that the first constant index of GEP1 is less
// than the first constant index of GEP2.
//
std::vector<Value*> Indices1;
Indices1.reserve(NumGEPOperands-1);
for (gep_type_iterator I = gep_type_begin(GEP1);
I.getOperandNum() != FirstConstantOper; ++I)
if (isa<StructType>(*I))
Indices1.push_back(I.getOperand());
else
Indices1.push_back(Constant::getNullValue(Type::LongTy));
std::vector<Value*> Indices2;
Indices2.reserve(NumGEPOperands-1);
Indices2 = Indices1; // Copy the zeros prefix...
// Advance BasePtr[12]Ty over this first differing constant operand.
BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP2Ops[FirstConstantOper]);
BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP1Ops[FirstConstantOper]);
// Add the two known constant operands...
Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper));
Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper));
const Type *GEPPointerTy = GEP1->getOperand(0)->getType();
// We are going to be using TargetData::getIndexedOffset to determine the
// offset that each of the GEP's is reaching. To do this, we have to convert
// all variable references to constant references. To do this, we convert the
// initial equal sequence of variables into constant zeros to start with.
for (unsigned i = 0; i != FirstConstantOper; ++i) {
if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i]) ||
!isa<Constant>(GEP2Ops[i]) || isa<ConstantExpr>(GEP2Ops[i])) {
GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
GEP2Ops[i] = Constant::getNullValue(GEP2Ops[i]->getType());
}
}
// We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
// Loop over the rest of the operands...
for (unsigned i = FirstConstantOper+1; i != NumGEPOperands; ++i) {
const Value *Op1 = GEP1->getOperand(i);
const Value *Op2 = GEP2->getOperand(i);
if (Op1 == Op2) { // If they are equal, use a zero index...
if (!isa<Constant>(Op1)) {
Indices1.push_back(Constant::getNullValue(Op1->getType()));
Indices2.push_back(Indices1.back());
} else {
Indices1.push_back((Value*)Op1);
Indices2.push_back((Value*)Op2);
}
for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
const Value *Op1 = i < GEP1Ops.size() ? GEP1Ops[i] : 0;
const Value *Op2 = i < GEP2Ops.size() ? GEP2Ops[i] : 0;
// If they are equal, use a zero index...
if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
if (!isa<Constant>(Op1) || isa<ConstantExpr>(Op1))
GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
// Otherwise, just keep the constants we have.
} else {
if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
// If this is an array index, make sure the array element is in range...
if (i != 1) // The pointer index can be "out of range"
Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices1, Op1C);
Indices1.push_back((Value*)Op1);
} else {
// GEP1 is known to produce a value less than GEP2. To be
// conservatively correct, we must assume the largest possible constant
// is used in this position. This cannot be the initial index to the
// GEP instructions (because we know we have at least one element before
// this one with the different constant arguments), so we know that the
// current index must be into either a struct or array. Because we know
// it's not constant, this cannot be a structure index. Because of
// this, we can calculate the maximum value possible.
//
const ArrayType *ElTy =
cast<ArrayType>(GEP1->getIndexedType(GEPPointerTy, Indices1, true));
Indices1.push_back(ConstantSInt::get(Type::LongTy,
ElTy->getNumElements()-1));
if (Op1) {
if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
// If this is an array index, make sure the array element is in range.
if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
if (Op1C->getRawValue() >= AT->getNumElements())
return MayAlias; // Be conservative with out-of-range accesses
} else {
// GEP1 is known to produce a value less than GEP2. To be
// conservatively correct, we must assume the largest possible
// constant is used in this position. This cannot be the initial
// index to the GEP instructions (because we know we have at least one
// element before this one with the different constant arguments), so
// we know that the current index must be into either a struct or
// array. Because we know it's not constant, this cannot be a
// structure index. Because of this, we can calculate the maximum
// value possible.
//
if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
GEP1Ops[i] = ConstantSInt::get(Type::LongTy,AT->getNumElements()-1);
}
}
if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op2)) {
// If this is an array index, make sure the array element is in range...
if (i != 1) // The pointer index can be "out of range"
Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices2, Op1C);
Indices2.push_back((Value*)Op2);
if (Op2) {
if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
// If this is an array index, make sure the array element is in range.
if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
if (Op2C->getRawValue() >= AT->getNumElements())
return MayAlias; // Be conservative with out-of-range accesses
} else { // Conservatively assume the minimum value for this index
GEP2Ops[i] = Constant::getNullValue(Op2->getType());
}
}
else // Conservatively assume the minimum value for this index
Indices2.push_back(Constant::getNullValue(Op2->getType()));
}
if (BasePtr1Ty && Op1) {
if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
else
BasePtr1Ty = 0;
}
if (BasePtr2Ty && Op2) {
if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
else
BasePtr2Ty = 0;
}
}
int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1);
int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2);
int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops);
int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops);
assert(Offset1 < Offset2 &&"There is at least one different constant here!");
if ((uint64_t)(Offset2-Offset1) >= SizeMax) {