Changes From Review Feedback:

* Have the SimplifyLibCalls pass acquire the TargetData and pass it down to
  the optimization classes so they can use it to make better choices for
  the signatures of functions, etc.
* Rearrange the code a little so the utility functions are closer to their
  usage and keep the core of the pass near the top of the files.
* Adjust the StrLen pass to get/use the correct prototype depending on the
  TargetData::getIntPtrType() result. The result of strlen is size_t which
  could be either uint or ulong depending on the platform.
* Clean up some coding nits (cast vs. dyn_cast, remove redundant items from
  a switch, etc.)
* Implement the MemMoveOptimization as a twin of MemCpyOptimization (they
  only differ in name).

llvm-svn: 21569
This commit is contained in:
Reid Spencer 2005-04-26 19:13:17 +00:00
parent 23a4d5b15c
commit 27afdaf88f

View File

@ -24,6 +24,7 @@
#include "llvm/Instructions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/hash_map"
#include "llvm/Target/TargetData.h"
#include <iostream>
using namespace llvm;
@ -44,6 +45,9 @@ namespace {
/// @brief A ModulePass for optimizing well-known function calls
struct SimplifyLibCalls : public ModulePass {
/// We need some target data for accurate signature details that are
/// target dependent. So we require target data in our AnalysisUsage.
virtual void getAnalysisUsage(AnalysisUsage& Info) const;
/// For this pass, process all of the function calls in the module, calling
/// RecognizeCall and OptimizeCall as appropriate.
@ -71,7 +75,8 @@ namespace {
/// true. This avoids doing initialization until the optimizer is actually
/// going to be called upon to do some optimization.
virtual bool ValidateCalledFunction(
const Function* F ///< The function that is the target of call sites
const Function* F, ///< The function that is the target of call sites
const TargetData& TD ///< Information about the target
) = 0;
/// The implementations of this function in subclasses is the heart of the
@ -84,7 +89,8 @@ namespace {
/// @param f the function that ci calls.
/// @brief Optimize a call, if possible.
virtual bool OptimizeCall(
CallInst* ci ///< The call instruction that should be optimized.
CallInst* ci, ///< The call instruction that should be optimized.
const TargetData& TD ///< Information about the target
) = 0;
const char * getFunctionName() const { return func_name; }
@ -106,16 +112,84 @@ namespace {
/// Make sure we get our virtual table in this file.
CallOptimizer::~CallOptimizer() { }
}
ModulePass *llvm::createSimplifyLibCallsPass()
{
return new SimplifyLibCalls();
}
void SimplifyLibCalls::getAnalysisUsage(AnalysisUsage& Info) const
{
// Ask that the TargetData analysis be performed before us so we can use
// the target data.
Info.addRequired<TargetData>();
}
bool SimplifyLibCalls::runOnModule(Module &M)
{
TargetData& TD = getAnalysis<TargetData>();
bool result = false;
// The call optimizations can be recursive. That is, the optimization might
// generate a call to another function which can also be optimized. This way
// we make the CallOptimizer instances very specific to the case they handle.
// It also means we need to keep running over the function calls in the module
// until we don't get any more optimizations possible.
bool found_optimization = false;
do
{
found_optimization = false;
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
{
// All the "well-known" functions are external and have external linkage
// because they live in a runtime library somewhere and were (probably)
// not compiled by LLVM. So, we only act on external functions that have
// external linkage and non-empty uses.
if (FI->isExternal() && FI->hasExternalLinkage() && !FI->use_empty())
{
// Get the optimization class that pertains to this function
if (CallOptimizer* CO = optlist[FI->getName().c_str()] )
{
// Make sure the called function is suitable for the optimization
if (CO->ValidateCalledFunction(FI,TD))
{
// Loop over each of the uses of the function
for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end();
UI != UE ; )
{
// If the use of the function is a call instruction
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
{
// Do the optimization on the CallOptimizer.
if (CO->OptimizeCall(CI,TD))
{
++SimplifiedLibCalls;
found_optimization = result = true;
}
}
}
}
}
}
}
} while (found_optimization);
return result;
}
namespace {
/// Provide some functions for accessing standard library prototypes and
/// caching them so we don't have to keep recomputing them
FunctionType* get_strlen()
FunctionType* get_strlen(const Type* IntPtrTy)
{
static FunctionType* strlen_type = 0;
if (!strlen_type)
{
std::vector<const Type*> args;
args.push_back(PointerType::get(Type::SByteTy));
strlen_type = FunctionType::get(Type::IntTy, args, false);
strlen_type = FunctionType::get(IntPtrTy, args, false);
}
return strlen_type;
}
@ -144,7 +218,7 @@ namespace {
/// elements or if there is no null-terminator. The logic below checks
bool getConstantStringLength(Value* V, uint64_t& len )
{
assert(V != 0 && "Invalid args to getCharArrayLength");
assert(V != 0 && "Invalid args to getConstantStringLength");
len = 0; // make sure we initialize this
User* GEP = 0;
// If the value is not a GEP instruction nor a constant expression with a
@ -160,6 +234,10 @@ namespace {
else
return false;
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return false;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
if (ConstantInt* op1 = dyn_cast<ConstantInt>(GEP->getOperand(1)))
@ -187,10 +265,8 @@ namespace {
if (!GV || !GV->isConstant() || !GV->hasInitializer())
return false;
// Get the initializer and make sure its valid.
// Get the initializer.
Constant* INTLZR = GV->getInitializer();
if (!INTLZR)
return false;
// Handle the ConstantAggregateZero case
if (ConstantAggregateZero* CAZ = dyn_cast<ConstantAggregateZero>(INTLZR))
@ -229,64 +305,6 @@ namespace {
len -= start_idx;
return true; // success!
}
}
ModulePass *llvm::createSimplifyLibCallsPass()
{
return new SimplifyLibCalls();
}
bool SimplifyLibCalls::runOnModule(Module &M)
{
bool result = false;
// The call optimizations can be recursive. That is, the optimization might
// generate a call to another function which can also be optimized. This way
// we make the CallOptimizer instances very specific to the case they handle.
// It also means we need to keep running over the function calls in the module
// until we don't get any more optimizations possible.
bool found_optimization = false;
do
{
found_optimization = false;
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
{
// All the "well-known" functions are external and have external linkage
// because they live in a runtime library somewhere and were (probably)
// not compiled by LLVM. So, we only act on external functions that have
// external linkage and non-empty uses.
if (FI->isExternal() && FI->hasExternalLinkage() && !FI->use_empty())
{
// Get the optimization class that pertains to this function
if (CallOptimizer* CO = optlist[FI->getName().c_str()] )
{
// Make sure the called function is suitable for the optimization
if (CO->ValidateCalledFunction(FI))
{
// Loop over each of the uses of the function
for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end();
UI != UE ; )
{
// If the use of the function is a call instruction
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
{
// Do the optimization on the CallOptimizer.
if (CO->OptimizeCall(CI))
{
++SimplifiedLibCalls;
found_optimization = result = true;
}
}
}
}
}
}
}
} while (found_optimization);
return result;
}
namespace {
/// This CallOptimizer will find instances of a call to "exit" that occurs
/// within the "main" function and change it to a simple "ret" instruction with
@ -301,7 +319,7 @@ struct ExitInMainOptimization : public CallOptimizer
// Make sure the called function looks like exit (int argument, int return
// type, external linkage, not varargs).
virtual bool ValidateCalledFunction(const Function* f)
virtual bool ValidateCalledFunction(const Function* f, const TargetData& TD)
{
if (f->arg_size() >= 1)
if (f->arg_begin()->getType()->isInteger())
@ -309,7 +327,7 @@ struct ExitInMainOptimization : public CallOptimizer
return false;
}
virtual bool OptimizeCall(CallInst* ci)
virtual bool OptimizeCall(CallInst* ci, const TargetData& TD)
{
// To be careful, we check that the call to exit is coming from "main", that
// main has external linkage, and the return type of main and the argument
@ -369,11 +387,11 @@ public:
{}
virtual ~StrCatOptimization() {}
inline Function* get_strlen_func(Module*M)
inline Function* get_strlen_func(Module*M,const Type* IntPtrTy)
{
if (strlen_func)
return strlen_func;
return strlen_func = M->getOrInsertFunction("strlen",get_strlen());
return strlen_func = M->getOrInsertFunction("strlen",get_strlen(IntPtrTy));
}
inline Function* get_memcpy_func(Module* M)
@ -384,7 +402,7 @@ public:
}
/// @brief Make sure that the "strcat" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f)
virtual bool ValidateCalledFunction(const Function* f, const TargetData& TD)
{
if (f->getReturnType() == PointerType::get(Type::SByteTy))
if (f->arg_size() == 2)
@ -409,7 +427,7 @@ public:
/// Perform the optimization if the length of the string concatenated
/// is reasonably short and it is a constant array.
virtual bool OptimizeCall(CallInst* ci)
virtual bool OptimizeCall(CallInst* ci, const TargetData& TD)
{
// Extract the initializer (while making numerous checks) from the
// source operand of the call to strcat. If we get null back, one of
@ -438,7 +456,8 @@ public:
// optimized in another pass). Note that the get_strlen_func() call
// caches the Function* for us.
CallInst* strlen_inst =
new CallInst(get_strlen_func(M),ci->getOperand(1),"",ci);
new CallInst(get_strlen_func(M,TD.getIntPtrType()),
ci->getOperand(1),"",ci);
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
@ -476,9 +495,9 @@ struct StrLenOptimization : public CallOptimizer
virtual ~StrLenOptimization() {}
/// @brief Make sure that the "strlen" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f)
virtual bool ValidateCalledFunction(const Function* f, const TargetData& TD)
{
if (f->getReturnType() == Type::IntTy)
if (f->getReturnType() == TD.getIntPtrType())
if (f->arg_size() == 1)
if (Function::const_arg_iterator AI = f->arg_begin())
if (AI->getType() == PointerType::get(Type::SByteTy))
@ -487,14 +506,14 @@ struct StrLenOptimization : public CallOptimizer
}
/// @brief Perform the strlen optimization
virtual bool OptimizeCall(CallInst* ci)
virtual bool OptimizeCall(CallInst* ci, const TargetData& TD)
{
// Get the length of the string
uint64_t len = 0;
if (!getConstantStringLength(ci->getOperand(1),len))
return false;
ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,len));
ci->replaceAllUsesWith(ConstantInt::get(TD.getIntPtrType(),len));
ci->eraseFromParent();
return true;
}
@ -507,22 +526,16 @@ struct StrLenOptimization : public CallOptimizer
struct MemCpyOptimization : public CallOptimizer
{
MemCpyOptimization() : CallOptimizer("llvm.memcpy") {}
protected:
MemCpyOptimization(const char* fname) : CallOptimizer(fname) {}
public:
virtual ~MemCpyOptimization() {}
/// @brief Make sure that the "memcpy" function has the right prototype
virtual bool ValidateCalledFunction(const Function* f)
virtual bool ValidateCalledFunction(const Function* f, const TargetData& TD)
{
if (f->getReturnType() == PointerType::get(Type::SByteTy))
if (f->arg_size() == 4)
{
Function::const_arg_iterator AI = f->arg_begin();
if (AI++->getType() == PointerType::get(Type::SByteTy))
if (AI++->getType() == PointerType::get(Type::SByteTy))
if (AI++->getType() == Type::IntTy)
if (AI->getType() == Type::IntTy)
return true;
}
return false;
// Just make sure this has 4 arguments per LLVM spec.
return f->arg_size() == 4;
}
/// Because of alignment and instruction information that we don't have, we
@ -531,51 +544,63 @@ struct MemCpyOptimization : public CallOptimizer
/// alignment match the sizes of our intrinsic types so we can do a load and
/// store instead of the memcpy call.
/// @brief Perform the memcpy optimization.
virtual bool OptimizeCall(CallInst* ci)
virtual bool OptimizeCall(CallInst* ci, const TargetData& TD)
{
ConstantInt* CI = dyn_cast<ConstantInt>(ci->getOperand(3));
ConstantInt* CI = cast<ConstantInt>(ci->getOperand(3));
assert(CI && "Operand should be ConstantInt");
uint64_t len = CI->getRawValue();
CI = dyn_cast<ConstantInt>(ci->getOperand(4));
assert(CI && "Operand should be ConstantInt");
uint64_t alignment = CI->getRawValue();
if (len != alignment)
if (len > alignment)
return false;
Value* dest = ci->getOperand(1);
Value* src = ci->getOperand(2);
LoadInst* LI = 0;
CastInst* SrcCast = 0;
CastInst* DestCast = 0;
switch (len)
{
case 0:
// Just replace with the destination parameter since a zero length
// memcpy is a no-op.
ci->replaceAllUsesWith(dest);
ci->eraseFromParent();
return true;
case 1:
SrcCast = new CastInst(src,PointerType::get(Type::SByteTy),"",ci);
DestCast = new CastInst(dest,PointerType::get(Type::SByteTy),"",ci);
LI = new LoadInst(SrcCast,"",ci);
break;
case 2:
SrcCast = new CastInst(src,PointerType::get(Type::ShortTy),"",ci);
DestCast = new CastInst(dest,PointerType::get(Type::ShortTy),"",ci);
LI = new LoadInst(SrcCast,"",ci);
break;
case 4:
SrcCast = new CastInst(src,PointerType::get(Type::IntTy),"",ci);
DestCast = new CastInst(dest,PointerType::get(Type::IntTy),"",ci);
LI = new LoadInst(SrcCast,"",ci);
break;
case 8:
SrcCast = new CastInst(src,PointerType::get(Type::LongTy),"",ci);
DestCast = new CastInst(dest,PointerType::get(Type::LongTy),"",ci);
LI = new LoadInst(SrcCast,"",ci);
break;
default:
return false;
}
LoadInst* LI = new LoadInst(SrcCast,"",ci);
StoreInst* SI = new StoreInst(LI, DestCast, ci);
ci->replaceAllUsesWith(dest);
ci->eraseFromParent();
return true;
}
} MemCpyOptimizer;
/// This CallOptimizer will simplify a call to the memmove library function. It
/// is identical to MemCopyOptimization except for the name of the intrinsic.
/// @brief Simplify the memmove library function.
struct MemMoveOptimization : public MemCpyOptimization
{
MemMoveOptimization() : MemCpyOptimization("llvm.memmove") {}
} MemMoveOptimizer;
}