Revert "[C++11] Add predecessors(BasicBlock *) / successors(BasicBlock *) iterator ranges."

This reverts commit r213474 (and r213475), which causes a miscompile on
a stage2 LTO build.  I'll reply on the list in a moment.

llvm-svn: 213562
This commit is contained in:
Duncan P. N. Exon Smith 2014-07-21 17:06:51 +00:00
parent 7c4b3a94b6
commit 2ae51d315c
41 changed files with 230 additions and 167 deletions

View File

@ -1854,11 +1854,12 @@ iterate over all predecessors of BB:
#include "llvm/Support/CFG.h"
BasicBlock *BB = ...;
for (BasicBlock *Pred : predecessors(BB)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *Pred = *PI;
// ...
}
Similarly, to iterate over successors use ``successors``.
Similarly, to iterate over successors use ``succ_iterator/succ_begin/succ_end``.
.. _simplechanges:

View File

@ -93,12 +93,6 @@ inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
inline const_pred_iterator pred_end(const BasicBlock *BB) {
return const_pred_iterator(BB, true);
}
inline iterator_range<pred_iterator> predecessors(BasicBlock *BB) {
return make_range(pred_begin(BB), pred_end(BB));
}
inline iterator_range<const_pred_iterator> predecessors(const BasicBlock *BB) {
return make_range(pred_begin(BB), pred_end(BB));
}
@ -263,12 +257,6 @@ inline succ_iterator succ_end(BasicBlock *BB) {
inline succ_const_iterator succ_end(const BasicBlock *BB) {
return succ_const_iterator(BB->getTerminator(), true);
}
inline iterator_range<succ_iterator> successors(BasicBlock *BB) {
return make_range(succ_begin(BB), succ_end(BB));
}
inline iterator_range<succ_const_iterator> successors(const BasicBlock *BB) {
return make_range(succ_begin(BB), succ_end(BB));
}
template <typename T, typename U> struct isPodLike<SuccIterator<T, U> > {
static const bool value = isPodLike<T>::value;

View File

@ -528,9 +528,13 @@ void BranchProbabilityInfo::print(raw_ostream &OS, const Module *) const {
// We print the probabilities from the last function the analysis ran over,
// or the function it is currently running over.
assert(LastF && "Cannot print prior to running over a function");
for (const BasicBlock &BB : *LastF)
for (const BasicBlock *Succ : successors(&BB))
printEdgeProbability(OS << " ", &BB, Succ);
for (Function::const_iterator BI = LastF->begin(), BE = LastF->end();
BI != BE; ++BI) {
for (succ_const_iterator SI = succ_begin(BI), SE = succ_end(BI);
SI != SE; ++SI) {
printEdgeProbability(OS << " ", BI, *SI);
}
}
}
uint32_t BranchProbabilityInfo::getSumForBlock(const BasicBlock *BB) const {
@ -559,7 +563,8 @@ BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
uint32_t MaxWeight = 0;
BasicBlock *MaxSucc = nullptr;
for (BasicBlock *Succ : successors(BB)) {
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
BasicBlock *Succ = *I;
uint32_t Weight = getEdgeWeight(BB, Succ);
uint32_t PrevSum = Sum;

View File

@ -29,8 +29,9 @@ using namespace llvm;
bool Interval::isLoop() const {
// There is a loop in this interval iff one of the predecessors of the header
// node lives in the interval.
for (BasicBlock *Pred : predecessors(HeaderNode))
if (contains(Pred))
for (::pred_iterator I = ::pred_begin(HeaderNode), E = ::pred_end(HeaderNode);
I != E; ++I)
if (contains(*I))
return true;
return false;
}

View File

@ -625,9 +625,9 @@ bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
// Loop over all of our predecessors, merging what we know from them into
// result.
bool EdgesMissing = false;
for (BasicBlock *Pred : predecessors(BB)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
LVILatticeVal EdgeResult;
EdgesMissing |= !getEdgeValue(Val, Pred, BB, EdgeResult);
EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
if (EdgesMissing)
continue;

View File

@ -336,8 +336,9 @@ bool Loop::hasDedicatedExits() const {
SmallVector<BasicBlock *, 4> ExitBlocks;
getExitBlocks(ExitBlocks);
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
for (BasicBlock *Pred : predecessors(ExitBlocks[i]))
if (!contains(Pred))
for (pred_iterator PI = pred_begin(ExitBlocks[i]),
PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
if (!contains(*PI))
return false;
// All the requirements are met.
return true;
@ -359,12 +360,12 @@ Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
BasicBlock *current = *BI;
switchExitBlocks.clear();
for (BasicBlock *Succ : successors(*BI)) {
for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
// If block is inside the loop then it is not a exit block.
if (contains(Succ))
if (contains(*I))
continue;
pred_iterator PI = pred_begin(Succ);
pred_iterator PI = pred_begin(*I);
BasicBlock *firstPred = *PI;
// If current basic block is this exit block's first predecessor
@ -378,17 +379,17 @@ Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
// then it is possible that there are multiple edges from current block
// to one exit block.
if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
ExitBlocks.push_back(Succ);
ExitBlocks.push_back(*I);
continue;
}
// In case of multiple edges from current block to exit block, collect
// only one edge in ExitBlocks. Use switchExitBlocks to keep track of
// duplicate edges.
if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), Succ)
if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
== switchExitBlocks.end()) {
switchExitBlocks.push_back(Succ);
ExitBlocks.push_back(Succ);
switchExitBlocks.push_back(*I);
ExitBlocks.push_back(*I);
}
}
}

View File

@ -4512,12 +4512,13 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
// lead to the loop header.
bool MustExecuteLoopHeader = true;
BasicBlock *Exit = nullptr;
for (BasicBlock *Succ : successors(ExitingBlock))
if (!L->contains(Succ)) {
for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
SI != SE; ++SI)
if (!L->contains(*SI)) {
if (Exit) // Multiple exit successors.
return getCouldNotCompute();
Exit = Succ;
} else if (Succ != L->getHeader()) {
Exit = *SI;
} else if (*SI != L->getHeader()) {
MustExecuteLoopHeader = false;
}

View File

@ -453,8 +453,8 @@ void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
} else {
for (BasicBlock *Pred : predecessors(BB))
PN->addIncoming(InVal, Pred);
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
PN->addIncoming(InVal, *PI);
}
}
}
@ -977,11 +977,11 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
}
} else {
SmallPtrSet<BasicBlock*, 4> VisitedBBs;
for (BasicBlock *Pred : predecessors(BB)) {
if (!VisitedBBs.insert(Pred))
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
if (!VisitedBBs.insert(*PI))
continue;
BasicBlock::InstListType &InstList = Pred->getInstList();
BasicBlock::InstListType &InstList = (*PI)->getInstList();
BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));

View File

@ -1052,8 +1052,9 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
if (OptLevel != CodeGenOpt::None) {
bool AllPredsVisited = true;
for (const BasicBlock *Pred : predecessors(LLVMBB)) {
if (!FuncInfo->VisitedBBs.count(Pred)) {
for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
PI != PE; ++PI) {
if (!FuncInfo->VisitedBBs.count(*PI)) {
AllPredsVisited = false;
break;
}

View File

@ -142,8 +142,8 @@ static void MarkBlocksLiveIn(BasicBlock *BB,
if (!LiveBBs.insert(BB))
return; // already been here.
for (BasicBlock *Pred : predecessors(BB))
MarkBlocksLiveIn(Pred, LiveBBs);
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
MarkBlocksLiveIn(*PI, LiveBBs);
}
/// substituteLPadValues - Substitute the values returned by the landingpad

View File

@ -79,8 +79,8 @@ bool UnreachableBlockElim::runOnFunction(Function &F) {
PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
BB->getInstList().pop_front();
}
for (BasicBlock *S : successors(BB))
S->removePredecessor(BB);
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
(*SI)->removePredecessor(BB);
BB->dropAllReferences();
}

View File

@ -321,9 +321,10 @@ BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
// successors. If there were PHI nodes in the successors, then they need to
// know that incoming branches will be from New, not from Old.
//
for (BasicBlock *Successor : successors(New)) {
for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
// Loop over any phi nodes in the basic block, updating the BB field of
// incoming values...
BasicBlock *Successor = *I;
PHINode *PN;
for (BasicBlock::iterator II = Successor->begin();
(PN = dyn_cast<PHINode>(II)); ++II) {

View File

@ -179,7 +179,9 @@ bool DominatorTree::dominates(const BasicBlockEdge &BBE,
// trivially dominates itself, so we only have to find if it dominates the
// other predecessors. Since the only way out of X is via NormalDest, X can
// only properly dominate a node if NormalDest dominates that node too.
for (const BasicBlock *BB : predecessors(End)) {
for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
PI != E; ++PI) {
const BasicBlock *BB = *PI;
if (BB == Start)
continue;

View File

@ -2107,8 +2107,8 @@ void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
// The landingpad instruction defines its parent as a landing pad block. The
// landing pad block may be branched to only by the unwind edge of an invoke.
for (BasicBlock *Pred : predecessors(BB)) {
const InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
"Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", &LPI);

View File

@ -473,7 +473,8 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
// Now check every path from the entry block to the load for transparency.
// To do this, we perform a depth first search on the inverse CFG from the
// loading block.
for (BasicBlock *P : predecessors(BB)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *P = *PI;
for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
I = idf_ext_begin(P, TranspBlocks),
E = idf_ext_end(P, TranspBlocks); I != E; ++I)

View File

@ -229,7 +229,9 @@ void BlockExtractorPass::SplitLandingPadPreds(Function *F) {
// Look through the landing pad's predecessors. If one of them ends in an
// 'invoke', then we want to split the landing pad.
bool Split = false;
for (BasicBlock *BB : predecessors(LPad)) {
for (pred_iterator
PI = pred_begin(LPad), PE = pred_end(LPad); PI != PE; ++PI) {
BasicBlock *BB = *PI;
if (BB->isLandingPad() && BB != Parent &&
isa<InvokeInst>(Parent->getTerminator())) {
Split = true;

View File

@ -58,12 +58,13 @@ Function* PartialInliner::unswitchFunction(Function* F) {
BasicBlock* returnBlock = nullptr;
BasicBlock* nonReturnBlock = nullptr;
unsigned returnCount = 0;
for (BasicBlock *Succ : successors(entryBlock))
if (isa<ReturnInst>(Succ->getTerminator())) {
returnBlock = Succ;
for (succ_iterator SI = succ_begin(entryBlock), SE = succ_end(entryBlock);
SI != SE; ++SI)
if (isa<ReturnInst>((*SI)->getTerminator())) {
returnBlock = *SI;
returnCount++;
} else
nonReturnBlock = Succ;
nonReturnBlock = *SI;
if (returnCount != 1)
return nullptr;

View File

@ -2718,8 +2718,8 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
if (UserParent != BB) {
bool UserIsSuccessor = false;
// See if the user is one of our successors.
for (BasicBlock *Succ : successors(BB))
if (Succ == UserParent) {
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
if (*SI == UserParent) {
UserIsSuccessor = true;
break;
}

View File

@ -642,7 +642,8 @@ bool DSE::runOnBasicBlock(BasicBlock &BB) {
/// them to F.
static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
BasicBlock *BB, DominatorTree *DT) {
for (BasicBlock *Pred : predecessors(BB)) {
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
BasicBlock *Pred = *I;
if (Pred == BB) continue;
TerminatorInst *PredTI = Pred->getTerminator();
if (PredTI->getNumSuccessors() != 1)

View File

@ -1555,7 +1555,9 @@ bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
FullyAvailableBlocks[UnavailableBlocks[i]] = false;
SmallVector<BasicBlock *, 4> CriticalEdgePred;
for (BasicBlock *Pred : predecessors(LoadBB)) {
for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
PI != E; ++PI) {
BasicBlock *Pred = *PI;
if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
continue;
}
@ -2481,7 +2483,9 @@ bool GVN::performPRE(Function &F) {
BasicBlock *PREPred = nullptr;
predMap.clear();
for (BasicBlock *P : predecessors(CurrentBlock)) {
for (pred_iterator PI = pred_begin(CurrentBlock),
PE = pred_end(CurrentBlock); PI != PE; ++PI) {
BasicBlock *P = *PI;
// We're not interested in PRE where the block is its
// own predecessor, or in blocks with predecessors
// that are not reachable.
@ -2709,13 +2713,14 @@ void GVN::addDeadBlock(BasicBlock *BB) {
for (SmallVectorImpl<BasicBlock *>::iterator I = Dom.begin(),
E = Dom.end(); I != E; I++) {
BasicBlock *B = *I;
for (BasicBlock *S : successors(B)) {
for (succ_iterator SI = succ_begin(B), SE = succ_end(B); SI != SE; SI++) {
BasicBlock *S = *SI;
if (DeadBlocks.count(S))
continue;
bool AllPredDead = true;
for (BasicBlock *Pred : predecessors(S))
if (!DeadBlocks.count(Pred)) {
for (pred_iterator PI = pred_begin(S), PE = pred_end(S); PI != PE; PI++)
if (!DeadBlocks.count(*PI)) {
AllPredDead = false;
break;
}

View File

@ -353,8 +353,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
// If V is a constant, then it is known in all predecessors.
if (Constant *KC = getKnownConstant(V, Preference)) {
for (BasicBlock *Pred : predecessors(BB))
Result.push_back(std::make_pair(KC, Pred));
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
Result.push_back(std::make_pair(KC, *PI));
return true;
}
@ -377,7 +377,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
// "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
// Perhaps getConstantOnEdge should be smart enough to do this?
for (BasicBlock *P : predecessors(BB)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *P = *PI;
// If the value is known by LazyValueInfo to be a constant in a
// predecessor, use that information to try to thread this block.
Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
@ -531,7 +532,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
for (BasicBlock *P : predecessors(BB)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
BasicBlock *P = *PI;
// If the value is known by LazyValueInfo to be a constant in a
// predecessor, use that information to try to thread this block.
LazyValueInfo::Tristate Res =
@ -604,8 +606,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
// If all else fails, see if LVI can figure out a constant value for us.
Constant *CI = LVI->getConstant(V, BB);
if (Constant *KC = getKnownConstant(CI, Preference)) {
for (BasicBlock *Pred : predecessors(BB))
Result.push_back(std::make_pair(KC, Pred));
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
Result.push_back(std::make_pair(KC, *PI));
}
return !Result.empty();
@ -897,7 +899,10 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
// If we got here, the loaded value is transparent through to the start of the
// block. Check to see if it is available in any of the predecessor blocks.
for (BasicBlock *PredBB : predecessors(LoadBB)) {
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
PI != PE; ++PI) {
BasicBlock *PredBB = *PI;
// If we already scanned this predecessor, skip it.
if (!PredsScanned.insert(PredBB))
continue;
@ -947,7 +952,9 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
AvailablePredSet.insert(AvailablePreds[i].first);
// Add all the unavailable predecessors to the PredsToSplit list.
for (BasicBlock *P : predecessors(LoadBB)) {
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
PI != PE; ++PI) {
BasicBlock *P = *PI;
// If the predecessor is an indirect goto, we can't split the edge.
if (isa<IndirectBrInst>(P->getTerminator()))
return false;

View File

@ -145,7 +145,9 @@ bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// bodies of subloops. We visit the headers of loops so that we can process
// their phis, but we contract the rest of the subloop body and only follow
// edges leading back to the original loop.
for (BasicBlock *SuccBB : successors(BB)) {
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
++SI) {
BasicBlock *SuccBB = *SI;
if (!Visited.insert(SuccBB))
continue;

View File

@ -515,9 +515,9 @@ static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
}
// Otherwise, this is an unvisited intra-loop node. Check all successors.
for (BasicBlock *Succ : successors(BB)) {
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
// Check to see if the successor is a trivial loop exit.
if (!isTrivialLoopExitBlockHelper(L, Succ, ExitBB, Visited))
if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
return false;
}
@ -861,7 +861,9 @@ void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
ExitSucc->getFirstInsertionPt());
for (BasicBlock *BB : predecessors(ExitSucc)) {
for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
I != E; ++I) {
BasicBlock *BB = *I;
LandingPadInst *LPI = BB->getLandingPadInst();
LPI->replaceAllUsesWith(PN);
PN->addIncoming(LPI, BB);

View File

@ -865,7 +865,8 @@ void SampleFunctionProfile::buildEdges(Function &F) {
SmallPtrSet<BasicBlock *, 16> Visited;
if (!Predecessors[B1].empty())
llvm_unreachable("Found a stale predecessors list in a basic block.");
for (BasicBlock *B2 : predecessors(B1)) {
for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
BasicBlock *B2 = *PI;
if (Visited.insert(B2))
Predecessors[B1].push_back(B2);
}
@ -874,7 +875,8 @@ void SampleFunctionProfile::buildEdges(Function &F) {
Visited.clear();
if (!Successors[B1].empty())
llvm_unreachable("Found a stale successors list in a basic block.");
for (BasicBlock *B2 : successors(B1)) {
for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
BasicBlock *B2 = *SI;
if (Visited.insert(B2))
Successors[B1].push_back(B2);
}

View File

@ -258,11 +258,10 @@ bool Sinking::SinkInstruction(Instruction *Inst,
// If no suitable postdominator was found, look at all the successors and
// decide which one we should sink to, if any.
for (BasicBlock *Succ : successors(Inst->getParent())) {
if (SuccToSinkTo)
break;
if (IsAcceptableTarget(Inst, Succ))
SuccToSinkTo = Succ;
for (succ_iterator I = succ_begin(Inst->getParent()),
E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) {
if (IsAcceptableTarget(Inst, *I))
SuccToSinkTo = *I;
}
// If we couldn't find a block to sink to, ignore this instruction.

View File

@ -365,39 +365,41 @@ void StructurizeCFG::gatherPredicates(RegionNode *N) {
BBPredicates &Pred = Predicates[BB];
BBPredicates &LPred = LoopPreds[BB];
for (BasicBlock *Predecessor : predecessors(BB)) {
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
PI != PE; ++PI) {
// Ignore it if it's a branch from outside into our region entry
if (!ParentRegion->contains(Predecessor))
if (!ParentRegion->contains(*PI))
continue;
Region *R = RI->getRegionFor(Predecessor);
Region *R = RI->getRegionFor(*PI);
if (R == ParentRegion) {
// It's a top level block in our region
BranchInst *Term = cast<BranchInst>(Predecessor->getTerminator());
BranchInst *Term = cast<BranchInst>((*PI)->getTerminator());
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
BasicBlock *Succ = Term->getSuccessor(i);
if (Succ != BB)
continue;
if (Visited.count(Predecessor)) {
if (Visited.count(*PI)) {
// Normal forward edge
if (Term->isConditional()) {
// Try to treat it like an ELSE block
BasicBlock *Other = Term->getSuccessor(!i);
if (Visited.count(Other) && !Loops.count(Other) &&
!Pred.count(Other) && !Pred.count(Predecessor)) {
!Pred.count(Other) && !Pred.count(*PI)) {
Pred[Other] = BoolFalse;
Pred[Predecessor] = BoolTrue;
Pred[*PI] = BoolTrue;
continue;
}
}
Pred[Predecessor] = buildCondition(Term, i, false);
Pred[*PI] = buildCondition(Term, i, false);
} else {
// Back edge
LPred[Predecessor] = buildCondition(Term, i, true);
LPred[*PI] = buildCondition(Term, i, true);
}
}
@ -572,8 +574,11 @@ void StructurizeCFG::killTerminator(BasicBlock *BB) {
if (!Term)
return;
for (BasicBlock *Succ : successors(BB))
delPhiValues(BB, Succ);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI) {
delPhiValues(BB, *SI);
}
Term->eraseFromParent();
}
@ -587,7 +592,10 @@ void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
BasicBlock *Dominator = nullptr;
// Find all the edges from the sub region to the exit
for (BasicBlock *BB : predecessors(OldExit)) {
for (pred_iterator I = pred_begin(OldExit), E = pred_end(OldExit);
I != E;) {
BasicBlock *BB = *I++;
if (!SubRegion->contains(BB))
continue;

View File

@ -335,7 +335,7 @@ bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) {
}
}
for (auto *SuccBB : successors(BB)) {
for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
auto &State = Visited[SuccBB];
if (State < Escaped) {
State = Escaped;
@ -807,7 +807,8 @@ bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
// predecessors and perform TRC there. Look for predecessors that end
// in unconditional branch and recursive call(s).
SmallVector<BranchInst*, 8> UncondBranchPreds;
for (BasicBlock *Pred : predecessors(BB)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *Pred = *PI;
TerminatorInst *PTI = Pred->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
if (BI->isUnconditional())

View File

@ -549,11 +549,14 @@ void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
// Move the remaining edges from OrigBB to point to NewBB2.
SmallVector<BasicBlock*, 8> NewBB2Preds;
for (BasicBlock *Pred : predecessors(OrigBB)) {
for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
i != e; ) {
BasicBlock *Pred = *i++;
if (Pred == NewBB1) continue;
assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
NewBB2Preds.push_back(Pred);
e = pred_end(OrigBB);
}
BasicBlock *NewBB2 = nullptr;

View File

@ -233,7 +233,9 @@ BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
if (PN->getIncomingBlock(i) != NewBB)
OtherPreds.push_back(PN->getIncomingBlock(i));
} else {
for (BasicBlock *P : predecessors(DestBB)) {
for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
I != E; ++I) {
BasicBlock *P = *I;
if (P != NewBB)
OtherPreds.push_back(P);
}
@ -319,7 +321,9 @@ BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
// the predecessor must be directly in TIL, not in a subloop, or again
// LoopSimplify doesn't hold.
SmallVector<BasicBlock *, 4> LoopPreds;
for (BasicBlock *P : predecessors(DestBB)) {
for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
++I) {
BasicBlock *P = *I;
if (P == NewBB)
continue; // The new block is known.
if (LI->getLoopFor(P) != TIL) {

View File

@ -514,8 +514,9 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
assert(NumPreds < PN->getNumIncomingValues());
// Count how many times each predecessor comes to this block.
std::map<BasicBlock*, unsigned> PredCount;
for (BasicBlock *Pred : predecessors(NewBB))
--PredCount[Pred];
for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
PI != E; ++PI)
--PredCount[*PI];
// Figure out how many entries to remove from each PHI.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)

View File

@ -91,8 +91,9 @@ static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
E = Result.end();
I != E; ++I)
for (BasicBlock *Pred : predecessors(*I))
assert(Result.count(Pred) &&
for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
PI != PE; ++PI)
assert(Result.count(*PI) &&
"No blocks in this region may have entries from outside the region"
" except for the first block!");
#endif
@ -720,9 +721,9 @@ Function *CodeExtractor::extractCodeRegion() {
SmallPtrSet<BasicBlock *, 1> ExitBlocks;
for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
I != E; ++I)
for (BasicBlock *Succ : successors(*I))
if (!Blocks.count(Succ))
ExitBlocks.insert(Succ);
for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
if (!Blocks.count(*SI))
ExitBlocks.insert(*SI);
NumExitBlocks = ExitBlocks.size();
// Construct new function based on inputs/outputs & add allocas for all defs.

View File

@ -1129,8 +1129,8 @@ static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
BasicBlock *BB = I->getParent();
// Loop over all of the successors, removing BB's entry from any PHI
// nodes.
for (BasicBlock *Succ : successors(BB))
Succ->removePredecessor(BB);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
(*SI)->removePredecessor(BB);
// Insert a call to llvm.trap right before this. This turns the undefined
// behavior into a hard fail instead of falling through into random code.
@ -1236,9 +1236,9 @@ static bool markAliveBlocks(BasicBlock *BB,
}
Changed |= ConstantFoldTerminator(BB, true);
for (BasicBlock *Succ : successors(BB))
if (Reachable.insert(Succ))
Worklist.push_back(Succ);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
if (Reachable.insert(*SI))
Worklist.push_back(*SI);
} while (!Worklist.empty());
return Changed;
}
@ -1263,9 +1263,9 @@ bool llvm::removeUnreachableBlocks(Function &F) {
if (Reachable.count(BB))
continue;
for (BasicBlock *Succ : successors(BB))
if (Reachable.count(Succ))
Succ->removePredecessor(BB);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
if (Reachable.count(*SI))
(*SI)->removePredecessor(BB);
BB->dropAllReferences();
}

View File

@ -114,7 +114,9 @@ BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
// Compute the set of predecessors of the loop that are not in the loop.
SmallVector<BasicBlock*, 8> OutsideBlocks;
for (BasicBlock *P : predecessors(Header)) {
for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
PI != PE; ++PI) {
BasicBlock *P = *PI;
if (!L->contains(P)) { // Coming in from outside the loop?
// If the loop is branched to from an indirect branch, we won't
// be able to fully transform the loop, because it prohibits
@ -156,7 +158,8 @@ BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
/// the loop.
static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) {
SmallVector<BasicBlock*, 8> LoopBlocks;
for (BasicBlock *P : predecessors(Exit)) {
for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
BasicBlock *P = *I;
if (L->contains(P)) {
// Don't do this if the loop is exited via an indirect branch.
if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
@ -196,8 +199,10 @@ static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
if (Blocks.insert(BB).second && BB != StopBlock)
// If BB is not already processed and it is not a stop block then
// insert its predecessor in the work list
for (BasicBlock *WBB : predecessors(BB))
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
BasicBlock *WBB = *I;
Worklist.push_back(WBB);
}
} while (!Worklist.empty());
}
@ -311,7 +316,8 @@ static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
// Determine which blocks should stay in L and which should be moved out to
// the Outer loop now.
std::set<BasicBlock*> BlocksInL;
for (BasicBlock *P : predecessors(Header)) {
for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
BasicBlock *P = *PI;
if (DT->dominates(Header, P))
addBlockAndPredsToSet(P, Header, BlocksInL);
}
@ -365,7 +371,9 @@ static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
// Figure out which basic blocks contain back-edges to the loop header.
std::vector<BasicBlock*> BackedgeBlocks;
for (BasicBlock *P : predecessors(Header)) {
for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
BasicBlock *P = *I;
// Indirectbr edges cannot be split, so we must fail if we find one.
if (isa<IndirectBrInst>(P->getTerminator()))
return nullptr;
@ -480,7 +488,9 @@ ReprocessLoop:
if (*BB == L->getHeader()) continue;
SmallPtrSet<BasicBlock*, 4> BadPreds;
for (BasicBlock *P : predecessors(*BB)) {
for (pred_iterator PI = pred_begin(*BB),
PE = pred_end(*BB); PI != PE; ++PI) {
BasicBlock *P = *PI;
if (!L->contains(P))
BadPreds.insert(P);
}
@ -493,8 +503,8 @@ ReprocessLoop:
<< (*I)->getName() << "\n");
// Inform each successor of each dead pred.
for (BasicBlock *Succ : successors(*I))
Succ->removePredecessor(*I);
for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
(*SI)->removePredecessor(*I);
// Zap the dead pred's terminator and replace it with unreachable.
TerminatorInst *TI = (*I)->getTerminator();
TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
@ -551,10 +561,11 @@ ReprocessLoop:
for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
E = ExitBlockSet.end(); I != E; ++I) {
BasicBlock *ExitBlock = *I;
for (BasicBlock *Pred : predecessors(ExitBlock))
for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
PI != PE; ++PI)
// Must be exactly this loop: no subloops, parent loops, or non-loop preds
// allowed.
if (!L->contains(Pred)) {
if (!L->contains(*PI)) {
if (rewriteLoopExitBlock(L, ExitBlock, PP)) {
++NumInserted;
Changed = true;

View File

@ -328,10 +328,11 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
L->addBasicBlockToLoop(New, LI->getBase());
// Add phi entries for newly created values to all exit blocks.
for (BasicBlock *Succ : successors(*BB)) {
if (L->contains(Succ))
for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
SI != SE; ++SI) {
if (L->contains(*SI))
continue;
for (BasicBlock::iterator BBI = Succ->begin();
for (BasicBlock::iterator BBI = (*SI)->begin();
PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
Value *Incoming = phi->getIncomingValueForBlock(*BB);
ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
@ -413,10 +414,11 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
// Remove phi operands at this loop exit
if (Dest != LoopExit) {
BasicBlock *BB = Latches[i];
for (BasicBlock *Succ : successors(BB)) {
if (Succ == Headers[i])
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI) {
if (*SI == Headers[i])
continue;
for (BasicBlock::iterator BBI = Succ->begin();
for (BasicBlock::iterator BBI = (*SI)->begin();
PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
Phi->removeIncomingValue(BB, false);
}

View File

@ -66,8 +66,9 @@ static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
// The new PHI node is inserted in the prolog end basic block.
// The new PHI name is added as an operand of a PHI node in either
// the loop header or the loop exit block.
for (BasicBlock *Succ : successors(Latch)) {
for (BasicBlock::iterator BBI = Succ->begin();
for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
SBI != SBE; ++SBI) {
for (BasicBlock::iterator BBI = (*SBI)->begin();
PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
// Add a new PHI node to the prolog end block and add the

View File

@ -822,7 +822,9 @@ void PromoteMem2Reg::ComputeLiveInBlocks(
// Since the value is live into BB, it is either defined in a predecessor or
// live into it to. Add the preds to the worklist unless they are a
// defining block.
for (BasicBlock *P : predecessors(BB)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *P = *PI;
// The value is not live into a predecessor if it defines the value.
if (DefBlocks.count(P))
continue;
@ -883,8 +885,9 @@ void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
DomTreeNode *Node = Worklist.pop_back_val();
BasicBlock *BB = Node->getBlock();
for (BasicBlock *Succ : successors(BB)) {
DomTreeNode *SuccNode = DT.getNode(Succ);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
++SI) {
DomTreeNode *SuccNode = DT.getNode(*SI);
// Quickly skip all CFG edges that are also dominator tree edges instead
// of catching them below.

View File

@ -110,7 +110,8 @@ Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
}
} else {
bool isFirstPred = true;
for (BasicBlock *PredBB : predecessors(BB)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *PredBB = *PI;
Value *PredVal = GetValueAtEndOfBlock(PredBB);
PredValues.push_back(std::make_pair(PredBB, PredVal));
@ -247,7 +248,8 @@ public:
for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
Preds->push_back(SomePhi->getIncomingBlock(PI));
} else {
Preds->insert(Preds->end(), pred_begin(BB), pred_end(BB));
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
Preds->push_back(*PI);
}
}

View File

@ -130,9 +130,9 @@ static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
BasicBlock *SI2BB = SI2->getParent();
SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
for (BasicBlock *Succ : successors(SI2BB))
if (SI1Succs.count(Succ))
for (BasicBlock::iterator BBI = Succ->begin();
for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
if (SI1Succs.count(*I))
for (BasicBlock::iterator BBI = (*I)->begin();
isa<PHINode>(BBI); ++BBI) {
PHINode *PN = cast<PHINode>(BBI);
if (PN->getIncomingValueForBlock(SI1BB) !=
@ -171,9 +171,9 @@ static bool isProfitableToFoldUnconditional(BranchInst *SI1,
BasicBlock *SI1BB = SI1->getParent();
BasicBlock *SI2BB = SI2->getParent();
SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
for (BasicBlock *Succ : successors(SI2BB))
if (SI1Succs.count(Succ))
for (BasicBlock::iterator BBI = Succ->begin();
for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
if (SI1Succs.count(*I))
for (BasicBlock::iterator BBI = (*I)->begin();
isa<PHINode>(BBI); ++BBI) {
PHINode *PN = cast<PHINode>(BBI);
if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
@ -683,9 +683,9 @@ SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
// Remove PHI node entries for dead edges.
BasicBlock *CheckEdge = TheRealDest;
for (BasicBlock *Succ : successors(TIBB))
if (Succ != CheckEdge)
Succ->removePredecessor(TIBB);
for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
if (*SI != CheckEdge)
(*SI)->removePredecessor(TIBB);
else
CheckEdge = nullptr;
@ -981,9 +981,9 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
// to put the select in this case.
static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
Instruction *I1, Instruction *I2) {
for (BasicBlock *Succ : successors(BB1)) {
for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
PHINode *PN;
for (BasicBlock::iterator BBI = Succ->begin();
for (BasicBlock::iterator BBI = SI->begin();
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
Value *BB1V = PN->getIncomingValueForBlock(BB1);
Value *BB2V = PN->getIncomingValueForBlock(BB2);
@ -1063,9 +1063,9 @@ HoistTerminator:
if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
return Changed;
for (BasicBlock *Succ : successors(BB1)) {
for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
PHINode *PN;
for (BasicBlock::iterator BBI = Succ->begin();
for (BasicBlock::iterator BBI = SI->begin();
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
Value *BB1V = PN->getIncomingValueForBlock(BB1);
Value *BB2V = PN->getIncomingValueForBlock(BB2);
@ -1094,9 +1094,9 @@ HoistTerminator:
// them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
// nodes, so we insert select instruction to compute the final result.
std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
for (BasicBlock *Succ : successors(BB1)) {
for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
PHINode *PN;
for (BasicBlock::iterator BBI = Succ->begin();
for (BasicBlock::iterator BBI = SI->begin();
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
Value *BB1V = PN->getIncomingValueForBlock(BB1);
Value *BB2V = PN->getIncomingValueForBlock(BB2);
@ -1118,8 +1118,8 @@ HoistTerminator:
}
// Update any PHI nodes in our new successors.
for (BasicBlock *Succ : successors(BB1))
AddPredecessorToBlock(Succ, BIParent, BB1);
for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
AddPredecessorToBlock(*SI, BIParent, BB1);
EraseTerminatorInstAndDCECond(BI);
return true;
@ -2051,7 +2051,8 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL) {
if (TrueDest == BB || FalseDest == BB)
return false;
for (BasicBlock *PredBlock : predecessors(BB)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *PredBlock = *PI;
BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
// Check that we have two conditional branches. If there is a PHI node in
@ -2884,8 +2885,8 @@ bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
// Turn all invokes that unwind here into calls and delete the basic block.
bool InvokeRequiresTableEntry = false;
bool Changed = false;
for (BasicBlock *Pred : predecessors(BB)) {
InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
if (II->hasFnAttr(Attribute::UWTable)) {
// Don't remove an `invoke' instruction if the ABI requires an entry into
@ -2932,7 +2933,8 @@ bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
// Find predecessors that end with branches.
SmallVector<BasicBlock*, 8> UncondBranchPreds;
SmallVector<BranchInst*, 8> CondBranchPreds;
for (BasicBlock *P : predecessors(BB)) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *P = *PI;
TerminatorInst *PTI = P->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
if (BI->isUnconditional())
@ -4098,8 +4100,8 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
return SimplifyCFG(BB, TTI, DL) | true;
// Scan predecessor blocks for conditional branches.
for (BasicBlock *Pred : predecessors(BB))
if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI != BI && PBI->isConditional())
if (SimplifyCondBranchToCondBranch(PBI, BI))
return SimplifyCFG(BB, TTI, DL) | true;

View File

@ -2950,8 +2950,9 @@ InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
VectorParts BlockMask = getVectorValue(Zero);
for (BasicBlock *Pred : predecessors(BB)) {
VectorParts EM = createEdgeMask(Pred, BB);
// For each pred:
for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
VectorParts EM = createEdgeMask(*it, BB);
for (unsigned part = 0; part < UF; ++part)
BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
}

View File

@ -292,8 +292,8 @@ bool ReduceCrashingBlocks::TestBlocks(std::vector<const BasicBlock*> &BBs) {
if (!Blocks.count(BB) && BB->getTerminator()->getNumSuccessors()) {
// Loop over all of the successors of this block, deleting any PHI nodes
// that might include it.
for (BasicBlock *Succ : successors(BB))
Succ->removePredecessor(BB);
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
(*SI)->removePredecessor(BB);
TerminatorInst *BBTerm = BB->getTerminator();

View File

@ -125,8 +125,8 @@ class FunctionDifferenceEngine {
unsigned getUnprocPredCount(BasicBlock *Block) const {
unsigned Count = 0;
for (BasicBlock *Pred : predecessors(Block))
if (!Blocks.count(Pred)) Count++;
for (pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E; ++I)
if (!Blocks.count(*I)) Count++;
return Count;
}